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1 Problem I

We consider the evolution PDE

∂tf = ∆f + div(Ef), (1.1)

on the unknown f = f(t, x), t ≥ 0, x ∈ Rd, with E = E(x) a given smooth force field which
satisfies for some γ ≥ 1

∀ |x| ≥ 1, |E(x)| ≤ C |x|γ−1, divE(x) ≤ C|x|γ−2, x · E ≥ |x|γ.

We complement the equation with an initial condition

f(0, x) = f0(x).

Question 1. Which strategy can be used in order to exhibit a semigroup S(t) in Lp(Rd),
which provides solutions to (2.1) for initial data in Lp(Rd)? Is the semigroup positive? mass
conservative? Explain briefly why there exists a function G = G(x) such that

0 ≤ G ∈ L2(m), 〈G〉 :=

∫
G = 1, LG = 0.

We accept that G > 0. For any nice function f : Rd → R we denote h := f/G and,
reciprocally, for any nice function h : Rd → R we denote f := Gh.

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or Ci some constants which may differ from line to line.

Question 2. Prove that for any weight function m : Rd → [1,∞) and any nice function
f : Rd → R, there holds ∫

(Lf)fm = −
∫
|∇f |2m+

1

2

∫
f 2L∗m,

where we will make explicit the expression of L∗.
Question 3. Prove that there exist w : Rd → [1,∞), α > 0 and b, R0 ≥ 0 such that

L∗w ≤ −αw + b1BR0
.
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Question 4. For some constant λ ≥ 0 to be specified later, we define W := w + λ. Deduce
from the previous question that∫

h2wG ≤ 1

α

∫
h2 (b1BR0

− L∗W )G,

for any nice function h : Rd → R.

Question 5. Take a nice function h : Rd → R such that 〈hG〉 = 0 and denote G(Ω) := 〈G1Ω〉.
Prove that for any R ≥ R0 there exists κR ∈ (0,∞) such that∫

h2 1BR
G ≤ κR

∫
BR

|∇h|2G+
1

G(BR)

(∫
Bc

R

hG
)2

and deduce that ∫
h2 1BR

G ≤ κR
1 + λ

∫
|∇h|2W G+

G(Bc
R)

G(BR)

∫
h2wG.

Question 6. Establish finally that there exist some constants λ,K1 ∈ (0,∞) such that

2

K1

∫
h2wG ≤

∫ (
W |∇h|2 − 1

2
h2L∗W

)
G =

∫
(−Lf)fG−1W,

for all nice function h such that 〈hG〉 = 0.

Question 7. Consider a nice solution f to (2.1) associated to an initial datum f0 such that
〈f0〉 = 0. Establish that f satisfies

1

2

d

dt

∫
h2
t WG = −

∫
|∇h|2WG+

1

2

∫
h2GL∗W.

Deduce that there exists K2 ∈ (0,∞) such that f satisfies the decay estimate∫
f 2
t WG−1 dx ≤ e−K2t

∫
f 2

0 WG−1 dx, ∀ t ≥ 0.
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2 Problem II

We consider the Keller-Segel equation

∂tf = ∆f + div(Kff), (2.1)

on the unknown f = f(t, x), t ≥ 0, x ∈ R2, with

Kf := K ∗ f, K := ∇κ =
1

2π

z

|z|2
.

We complement the equation with an initial condition

f(0, x) = f0(x).

We accept that for any initial datum f0 ≥ 0 with finite mass M > 0, finite moment of order
2 and finite entropy, there exists at least one nonnegative solution f ∈ C([0, T );L1) for some
T > 0, and that any weak solution furthermore satisfies

f ∈ C1((0, T );W 1,p(R2)), ∀ p ∈ [1,∞].

Question 1. Establish that any weak solution satisfies

d

dt
‖f‖2

L2 + 2‖∇xf‖2
L2 = ‖f‖3

L3 on (0, T ).

Deduce that there exists some constant A ∈ (0,∞) such that

d

dt
‖f‖2

L2 +
1

2
‖∇xf‖2

L2 ≤ A2M on (0, T ).

Deduce next that there exists a constant cM > 0 such that

d

dt
‖f‖2

L2 + cM‖f‖4
L2 ≤ A2M on (0, T ).

and finally that exists a constant K (which only depends on cM , A2M and T ) such that

t ‖f(t, .)‖2
L2 ≤ K ∀ t ∈ (0, T ).

Question 2. Using the splitting∫
f 2 (l̃og+f)−2 ≤

∫
f≤R

f 2 (l̃og+f)−2 +

∫
f≥R

f 2 (l̃og+f)−2, ∀R ∈ (0,∞),

deduce from Question 1 that

t

∫
f 2 (l̃og+f)−2 → 0 as t→ 0.
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Question 3. Introducing the notation l̃og+g := 2 + (log g)+ and using an Hölder inequality,
prove that

‖g‖L4/3 ≤ C(H(g),M2(g))
(∫

f 2 (l̃og+g)−2
)1/4

.

Question 4. Establish that

t1/4‖f(t, .)‖L4/3 → 0 as t→ 0.

Briefly explain how to deduce the uniqueness of weak solutions to the Keller-Segel equation.
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3 Problem III -

We consider the relaxation equation

∂tf = Lf := −v · ∇f + ρfM − f in (0,∞)× R2d, (3.1)

on the unknown f = f(t, x, v), t ≥ 0, x, v ∈ Rd, with

ρf (t, x) =

∫
Rd

f(t, x, v) dv, M(v) :=
1

(2π)d/2
exp(−|v|2/2).

We complement the equation with an initial condition

f(0, x, v) = f0(x, v) in R2d. (3.2)

Question 1. A priori estimates and associated semigroup. We denote by f a nice solution
to the relaxation equation (3.1)–(3.2).

(a) Prove that f is mass conserving.

(b) Prove that
|ρg| ≤ ‖g‖L2

v(M−1/2), ∀ g = g(v) ∈ L2
v(M

−1/2)

and deduce that
‖f(t, ·)‖L2

xv(M−1/2) ≤ ‖f0‖L2
xv(M−1/2).

(c) Consider m = 〈v〉k, k > d/2. Prove that there exists a constant C ∈ (0,∞) such that

|ρg| ≤ C‖g‖Lp
v(m), ∀ g = g(v) ∈ Lpv(m), p = 1, 2,

and deduce that
‖f(t, ·)‖Lp

xv(m) ≤ eλt‖f0‖Lp
xv(m),

for a constant λ ∈ [0,∞) that we will express in function of C.

(d) What strategy can be used in order to exhibit a semigroup S(t) in Lpxv(m), p = 2, p = 1,
which provides solutions to (3.1) for initial date in Lpxv(m)? Is the semigroup positive? mass
conservative? a contraction in some spaces?

The aim of the problem is to prove that the associated semigroup SL to (3.1) is
bounded in Lp(m), p = 1, 2, without using the estimate proved in question (1b).

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.

We define
Af := ρfM, Bf = Lf −Af.

Question 2. Prove that SB satisfies a growth estimate O(e−t) in any Lpxv(m) space. Using
the Duhamel formula

SL = SB + SBA ∗ SL
prove that SL is bounded in L1

xv(m).
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Question 3. Establish that A : L1
xv(m)→ L1

xL
∞
v (m) where

‖g‖L1
xL

p
v(m) :=

∫
Rd

‖g(x, )‖Lp(m) dx.

Prove that

d

dt

∫ (∫
fp dx

)1/p

dv =

∫ (∫
(∂tf)fp−1 dx

)(∫
fp dx

)1/p−1

dv.

Deduce that SB satisfies a growth estimate O(e−t) in any L1
xL

p
v(m) space for p ∈ (1,∞), and

then in L1
xL
∞
v (m). Finally prove that SB(t)A is appropriately bounded in B(L1, L1

xL
∞
v (m))

and that SL is bounded in L1
xL
∞
v (m).

Question 4. We define u(t) := ASB(t). Establish that

(u(t)f0)(x, v) = M(v)e−t
∫
Rd

f0(x− v∗t, v∗) dv∗.

Deduce that

‖u(t)f0‖L∞xv(m) ≤ C
e−t

td
‖f0‖L1

xL
∞
v (m).

Question 5. Establish that there exists some constants n ≥ 1 and C ∈ [1,∞) such that

‖u(∗n)(t)‖L1
xv(m)→L∞xv(m) ≤ C e−t/2.

Deduce that SL is bounded in L∞xv(m).

Question 6. How to prove that SL is bounded in L2
xv(m) in a similar way? How to shorten

the proof of that last result by using question (1b)? Same question for the space L∞xv(m).
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