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On the vorticity equation

We consider the 2 dimensional vorticity equation
Ow =Aw—u-Vw, w(0)=uwy, (0.1)

on the vorticity function w : Ry x R? — R, (t,2) — wi(z) = w(t,x), where the velocity
vector field u : R, x R? — R? is defined through the Biot-Savart formula

L
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u=Kxw, K(x):= o T x = (—xe, 11). (0.2)

Parts I and II are mostly independent. I believe that part A and D (except question (17))
are the simplest ones.

Part I - Existence

A. Local in time existence

In this part, we aim to establish the existence (and uniqueness) of a (mild) solution to the
vorticity equation (0.1) for any wy € L'(R?) on a small interval of time [0, T]. We write the
vorticity equation into its mild formulation

t
wy = 2wy + / A=) (- Vw,) ds, (0.2)
0

where e®* stands for the heat semigroup.

(1) We recall the Young inequality for convolution product
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e < a, —=—+4+—-——1
g Fllze < lgllollflles <=5+~ — 1
for any f € L% g € L’ 1/b+ 1/a > 1. Establish the estimates
C
12 fll o) < = 1 flloe2)
q P
and
At ¢
Ve fller @) < =7 1/l Lo,
t2"a p

for any f € LIY(R?*) and 1 < ¢ < p < oo. Deduce that for any p € (1,00] and wy € LY,
p > q > 1, there holds

% leXwologey — 0, as t—0,



with an estimate which only depends on ||wg||z« when ¢ > 1. (Hint. First consider the case
q > 1. For the case ¢ = 1, introduce the splitting wy = woljy|<n + wol\w0\>n)-

We define

_1
1 llpr:= sup "% fil| 1o
s€(0,T)

and the Banach space

Xpr = {f € Ligc((0, T|; L"(R?)); || fllpr < 00}

(2) We define

¢
Qf.g) = [ SR 1, Vo) ds, Q) i= Q)
0
Prove that div K = 0 and then
¢
Qi(w) = —/ div[e2 ) (K % wyw,)] ds.
0

We recall that for any ¢ € (1,2), the following (HLS) inequality holds true
1 1 1 1
— 5y < C ar2, —=-—-=, C=0C(q). 0.3
| 7 *gllrewe) < Cllgllrawe) 379 2 (9) (0.3)

Establish that for any p € (1,2), there exists a constant C}, > 1 such that
VT >0, Vwe Xpr, [QW)lpr < Cyllwlly o

(3) For f € X, r, we define
gt = eAtwo + Qt(f)7

and F': f — g. We fix B > 0 small enough such that o := 2C, B < 1. Prove that for 7" > 0
small enough, F': B — B, where

B:={fc¢ Xp.T; ||f||p,T < B}.

Deduce that F' is a contraction of constant a. Conclude that there exists a unique w € X, p
solution to the mild formulation (0.2) to the vorticity equation. Observe that we can take
T =T(woll») if p > 1.

B. More estimates

(4) For wy € L', denote wf := wyljwy<n and next w™ € X, 37 the associated mild solution
construct in question (3) (observe that 7" can chosen independent of n). Prove that

w — wi = e (wp — wh) + Qi(w,w — w™) + Qs(w — W™, w™)
and deduce

(1-a)||lw-— w"||4/3,T < ||6At(w0 — w3)||4/37T — 0, as n — .
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(5) Prove that
19:(f, 9)ller < Cll fllajzellgllasze, V> 0.

Deduce that w € X; r and next |jw — w"||17 — 0 as n — oo.

(6) Prove that

o [Quf,9)lr < OT' P maion 90100
te[o,T

Deduce that w € L>(0,T; LP) if wg € LP, 1 < p < 0.

(7) Prove that
t— Qi(w) € C([0,T); LY

when w € L>=(0,T; L*3). With the help of (6) deduce first that w € C([0,7]; L') when
wo € L' N L*3. With the help of (5) deduce next that w € C([0,7]; L') when w, € L.

(8) Prove that w is a weak solution to the vorticity equation (0.1). Reciprocally, prove that
any weak solution w € C([0,7); L') satisfying ||w||4/3,r < 00 is a mild solution.

(9) We introduce the splitting Q; := Q! + Q? with

t/2 t
Qg(w) = —/ div[eA(t_s)(K * ws ws)] ds, Q?(w) = —/ div[eA(t_S)(K * Wy ws)] ds.
0 t/2

We fix ¢ € (1,2) and we denote by C' some constants which only depend on ¢. Prove that
19" (@)lloo < Cllwllge

Prove that , s
1K * flloe < OIS 22,

Hint. Introduce the splitting K(z) = K(z)1)3<a + K(2)14>4) and deduce that
|z < ||
1Q°(@)lloos < Cllwllgr®llwllsag’

Finally prove that w € X, 7 for any 1 < p < oco. (Hint. First consider the case p = o).

C. Global existence
(10) Accepting and using the Calderén-Zygmond inequality
IV(E s f)llr < Cpll flle, 1 <p < o0,
observe that K := K xw € L®(7,T; W'P) for any 1 < p < 00, 0 < 7 < T, and prove that
re = (K -Vw)*p. — K-V =0 in L., w :=uwsop.,

for any given mollifier (p.) on R?. Deduce that for any smooth nonnegative convex function
B such that 5(0) = '(0) =0 and " € C.(R) there holds

0,8(w") = AB(wF) — [Vw 8" (w) = K- VB(wF) + 7' (w)
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and next

/ﬁ(wtl)go dr < /5(wt0)g0 dx + /totl/ﬁ(ws) {Ap+ K- Vp}duds,

for any ¢ € C?(R?), ¢ > 0, and any tg,t; € (0,T), t; > to. Conclude that

i [[ze <l | zo-

(11) Establish that for any wy € L'(R?) there exists a unique weak and mild solution
w € C([0,00); L'(R?)) N C((0, 00); L= (R?))
to the vorticity equation (0.1) such that for any p € [1,00], 0 < t5 < t; < T, there hold
lwllpr < oo and lw, || < lws || e

Prove furthermore w(t,-) > 0 for any ¢ > 0 if wy > 0.

Part 1II - Long time behaviour.

In this part, identities and estimates have only to be formally established.

(12) Prove that if w is a classical solution to the vorticity equation (0.1) then the rescaled
function

2t
—1
w(t,z) = 62%)(6 ,e')
satisfies the rescaled vorticity equation
Ow = Aw + div(zw) — v - Vw, w(0) = wy, (0.4)

where v is defined through the Biot-Savart formula (0.2), namely v := K * w.
(13) Prove that

w(t,z)de =

—/ (t,x) xzdx /wtmxdx

dt w(t, z) |z do 4/w x—2/w(t,x) |z|? da,

by using that K(—z) = —K(z) in the second line and also K(z) - z = 0 in the third line.

Defining
feL /f—l/fx—O/f|x|2—2

deduce that w(t, ) € X for any t > 0 if wy € X. Define the gaussian function

1 2
G(x) := %e’u' 2,
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Observe/admit that the solution ® to the Poisson equation —A® = @G is radially symmetric,
that is ®(x) = ¢(|z|) with (r¢’) = rG(r) and find ¢/(r) = (1 —e /%) /(27r). Conclude that
ot 1 — e leP/2

| |2 27

K«+«G(x)=

Deduce that
0<GeX, 0=AG+div(zG)— K *G-VG.

(14) Assume furthermore that wy > 0 and thus w(t,-) > 0 for any ¢ > 0. Prove that

d
dt

with H(w|G) :== H(w) — H(G), I(w|G) := I(w) — I(G),

H(w|G) = =1(w]|G),

Az

H(f) = [ flogfde, I(f):= /

Deduce that
Jw(t) — Gl < Clwp)e™, Vit >0.

In the sequel, we do not assume wy > 0 anymore.

(15) Consider the linear operator £ = Ly + £, with
Lof =Af+div(zf), Lif=-K=xf-VG—KxG-V/.

Prove that
Jenie = [weanse
Deduce that the semigroup S, satisfies the decay estimate
ISc@) fllr < eIl fllu, Vt=0,
for any f € H := L*(G™') such that [ fdx =0.
We define L := {f € LP; || fl|rr := | f{x)k||» < oo} and H := L2.
(16) In all the sequel, we fix k > 2. Prove that
[fller < Cllfllse and || fl|pas < Crll fllae, (0.5)

We thus may define Ho := {f € H; [ f =0}
(17) Establish that

[iense = - [wspw- [ e-n-Le 200 - [ e vap




Using (0.5) and the HLS inequality (0.3), deduce that for any a € (1 — k,0), there exists C,

such that
Jensw® <a [ pepc, [
Defining
Bf:=Lf— Mxrf,

with xg(z) = x(z/R), x € D(R?), 10,1 < x < 1p(2), prove that for any a € (k —1,0),
there exist R, M > 0 large enough such that

1S5(t) flle < eIl fllw, VE=0,VfeH.

In the sequel, we fix a € (1 — k,—1) and the above associated constants R, M > 0 and
operator B. Establish that the semigroup S, satisfies the (same) decay estimate (as in H)

for any f € H,.

(18) We come back to the rescaled vorticity equation (0.4) and we introduce the variation
f := w—G around the steady state G for an initial datum f, € Hy. Establish that f satisfies
the mild equation

fe=Sc(t)fo+ /Ot div[Se(t — $)[(K = fs) fs]] ds.

Prove that
Ce™ 3/2
||VS£(T)f||H§m||f||Lz/z, Vr>0,VfelL/!" [ f=0,
and deduce by duality (do not really try !) that
M-S (M) V fllw < S Vr>0,VfelL?
MESe(M)V e < —5 I fll g, V7 >0,V f e L™,

where [T f := f — G [ f.
(19) Deduce that u(t) := || fi||3 satisfies the integral inequality
6_(t_5)

t
—t 2

Conclude that for ||wy — G||3 small enough, there holds
|lw(t) — G|y < Ce™, Vt>0.



