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On the vorticity equation

We consider the 2 dimensional vorticity equation

∂tω = ∆ω − u · ∇ω, ω(0) = ω0, (0.1)

on the vorticity function ω : R+ × R2 → R, (t, x) 7→ ωt(x) = ω(t, x), where the velocity
vector field u : R+ × R2 → R2 is defined through the Biot-Savart formula

u := K ∗ ω, K(x) :=
1

2π

x⊥

|x|2
, x⊥ := (−x2, x1). (0.2)

Parts I and II are mostly independent. I believe that part A and D (except question (17))
are the simplest ones.

Part I - Existence

A. Local in time existence

In this part, we aim to establish the existence (and uniqueness) of a (mild) solution to the
vorticity equation (0.1) for any ω0 ∈ L1(R2) on a small interval of time [0, T ]. We write the
vorticity equation into its mild formulation

ωt = e∆tω0 +

∫ t

0

e∆(t−s)(−us · ∇ωs) ds, (0.2)

where e∆t stands for the heat semigroup.

(1) We recall the Young inequality for convolution product

‖g ∗ f‖Lc ≤ ‖g‖Lb‖f‖La ,
1

c
=

1

b
+

1

a
− 1,

for any f ∈ La, g ∈ Lb, 1/b+ 1/a > 1. Establish the estimates

‖e∆tf‖Lp(R2) ≤
C

t
1
q
− 1
p

‖f‖Lq(R2)

and

‖∇e∆tf‖Lp(R2) ≤
C

t
1
2

+ 1
q
− 1
p

‖f‖Lq(R2),

for any f ∈ Lq(R2) and 1 ≤ q ≤ p ≤ ∞. Deduce that for any p ∈ (1,∞] and ω0 ∈ Lq,
p > q ≥ 1, there holds

t1−
1
p‖e∆tω0‖Lp(R2) → 0, as t→ 0,
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with an estimate which only depends on ‖ω0‖Lq when q > 1. (Hint. First consider the case
q > 1. For the case q = 1, introduce the splitting ω0 = ω01|ω0|≤n + ω01|ω0|>n).

We define
‖f‖p,T := sup

s∈(0,T )

s1− 1
p‖ft‖Lp

and the Banach space

Xp,T := {f ∈ L∞loc((0, T ];Lp(R2)); ‖f‖p,T <∞}.

(2) We define

Qt(f, g) :=

∫ t

0

e∆(t−s)(−K ∗ fs · ∇gs) ds, Qt(ω) := Qt(ω, ω).

Prove that divK = 0 and then

Qt(ω) = −
∫ t

0

div[e∆(t−s)(K ∗ ωs ωs)] ds.

We recall that for any q ∈ (1, 2), the following (HLS) inequality holds true

‖ 1

|x|
∗ g‖Lβ(R2) ≤ C ‖g‖Lq(R2),

1

β
=

1

q
− 1

2
, C = C(q). (0.3)

Establish that for any p ∈ (1, 2), there exists a constant Cp ≥ 1 such that

∀T > 0, ∀ω ∈ Xp,T , ‖Q(ω)‖p,T ≤ Cp‖ω‖2
p,T .

(3) For f ∈ Xp,T , we define
gt := e∆tω0 +Qt(f),

and F : f → g. We fix B > 0 small enough such that α := 2CpB < 1. Prove that for T > 0
small enough, F : B → B, where

B := {f ∈ Xp,T ; ‖f‖p,T ≤ B}.

Deduce that F is a contraction of constant α. Conclude that there exists a unique ω ∈ Xp,T

solution to the mild formulation (0.2) to the vorticity equation. Observe that we can take
T = T (‖ω0‖Lp) if p > 1.

B. More estimates

(4) For ω0 ∈ L1, denote ωn0 := ω01|ω0|≤n and next ωn ∈ X4/3,T the associated mild solution
construct in question (3) (observe that T can chosen independent of n). Prove that

ωt − ωnt = e∆t(ω0 − ωn0 ) +Qt(ω, ω − ωn) +Qt(ω − ωn, ωn)

and deduce

(1− α)‖ω − ωn‖4/3,T ≤ ‖e∆t(ω0 − ωn0 )‖4/3,T → 0, as n→∞.
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(5) Prove that
‖Qt(f, g)‖L1 ≤ C‖f‖4/3,t‖g‖4/3,t, ∀ t > 0.

Deduce that ω ∈ X1,T and next ‖ω − ωn‖1,T → 0 as n→∞.

(6) Prove that

sup
t∈[0,T ]

‖Qt(f, g)‖Lp ≤ CT 1−1/p‖f‖L∞(0,T ;Lp)‖g‖L∞(0,T ;Lp).

Deduce that ω ∈ L∞(0, T ;Lp) if ω0 ∈ Lp, 1 < p <∞.

(7) Prove that
t 7→ Qt(ω) ∈ C([0, T ];L1)

when ω ∈ L∞(0, T ;L4/3). With the help of (6) deduce first that ω ∈ C([0, T ];L1) when
ω0 ∈ L1 ∩ L4/3. With the help of (5) deduce next that ω ∈ C([0, T ];L1) when ω0 ∈ L1.

(8) Prove that ω is a weak solution to the vorticity equation (0.1). Reciprocally, prove that
any weak solution ω ∈ C([0, T );L1) satisfying ‖ω‖4/3,T <∞ is a mild solution.

(9) We introduce the splitting Qt := Q1
t +Q2

t with

Q1
t (ω) := −

∫ t/2

0

div[e∆(t−s)(K ∗ ωs ωs)] ds, Q2
t (ω) := −

∫ t

t/2

div[e∆(t−s)(K ∗ ωs ωs)] ds.

We fix q ∈ (1, 2) and we denote by C some constants which only depend on q. Prove that

‖Q1(ω)‖∞,t ≤ C‖ω‖q,t.

Prove that
‖K ∗ f‖L∞ ≤ C‖f‖q/2Lq ‖f‖

1−q/2
L∞ .

(Hint. Introduce the splitting K(x) = K(x)1|x|≤A +K(x)1|x|>A) and deduce that

‖Q2(ω)‖∞,t ≤ C‖ω‖1+q/2
q,t ‖ω‖1−q/2

∞,t .

Finally prove that ω ∈ Xp,T for any 1 ≤ p ≤ ∞. (Hint. First consider the case p =∞).

C. Global existence

(10) Accepting and using the Calderón-Zygmond inequality

‖∇(K ∗ f)‖Lp ≤ Cp‖f‖Lp , 1 < p <∞,

observe that K := K ∗ ω ∈ L∞(τ, T ;W 1,p) for any 1 < p <∞, 0 < τ < T , and prove that

rε := (K · ∇ω) ∗ ρε −K · ∇ωε → 0 in L1
loc, ωε := ω ∗ ρε,

for any given mollifier (ρε) on R2. Deduce that for any smooth nonnegative convex function
β such that β(0) = β′(0) = 0 and β′′ ∈ Cc(R) there holds

∂tβ(ωε) = ∆β(ωε)− |∇ωε|2β′′(ωε)−K · ∇β(ωε) + rεβ
′(ωε)
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and next ∫
β(ωt1)ϕdx ≤

∫
β(ωt0)ϕdx+

∫ t1

t0

∫
β(ωs) {∆ϕ+K · ∇ϕ} dxds,

for any ϕ ∈ C2
c (R2), ϕ ≥ 0, and any t0, t1 ∈ (0, T ), t1 > t0. Conclude that

‖ωt1‖Lp ≤ ‖ωt0‖Lp .

(11) Establish that for any ω0 ∈ L1(R2) there exists a unique weak and mild solution

ω ∈ C([0,∞);L1(R2)) ∩ C((0,∞);L∞(R2))

to the vorticity equation (0.1) such that for any p ∈ [1,∞], 0 ≤ t0 < t1 < T , there hold

‖ω‖p,T <∞ and ‖ωt1‖Lp ≤ ‖ωt0‖Lp .

Prove furthermore ω(t, ·) ≥ 0 for any t ≥ 0 if ω0 ≥ 0.

Part II - Long time behaviour.

In this part, identities and estimates have only to be formally established.

(12) Prove that if ω is a classical solution to the vorticity equation (0.1) then the rescaled
function

w(t, x) := e2tω(
e2t − 1

2
, etx)

satisfies the rescaled vorticity equation

∂tw = ∆w + div(xw)− v · ∇w, w(0) = ω0, (0.4)

where v is defined through the Biot-Savart formula (0.2), namely v := K ∗ w.

(13) Prove that

d

dt

∫
w(t, x) dx = 0,

d

dt

∫
w(t, x)x dx = −

∫
w(t, x)x dx,

d

dt

∫
w(t, x) |x|2 dx = 4

∫
w(t, x) dx− 2

∫
w(t, x) |x|2 dx,

by using that K(−z) = −K(z) in the second line and also K(z) · z = 0 in the third line.
Defining

X :=
{
f ∈ L1

2;

∫
f = 1,

∫
fx = 0,

∫
f |x|2 = 2

}
,

deduce that w(t, ·) ∈ X for any t ≥ 0 if ω0 ∈ X. Define the gaussian function

G(x) :=
1

2π
e−|x|

2/2.
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Observe/admit that the solution Φ to the Poisson equation −∆Φ = G is radially symmetric,

that is Φ(x) = φ(|x|) with (rφ′)′ = rG(r) and find φ′(r) = (1− e−r2/2)/(2πr). Conclude that

K ∗G(x) =
x⊥

|x|2
1− e−|x|2/2

2π
.

Deduce that
0 ≤ G ∈ X, 0 = ∆G+ div(xG)−K ∗G · ∇G.

(14) Assume furthermore that ω0 ≥ 0 and thus w(t, ·) ≥ 0 for any t ≥ 0. Prove that

d

dt
H(w|G) = −I(w|G),

with H(w|G) := H(w)−H(G), I(w|G) := I(w)− I(G),

H(f) =

∫
R2

f log f dx, I(f) :=

∫
R2

|∇f |2

f
dx.

Deduce that
‖w(t)−G‖L1 ≤ C(ω0)e−t, ∀ t ≥ 0.

In the sequel, we do not assume ω0 ≥ 0 anymore.

(15) Consider the linear operator L = L0 + L1 with

L0f = ∆f + div(xf), L1f = −K ∗ f · ∇G−K ∗G · ∇f.

Prove that ∫
(Lf)fG−1 =

∫
(L0f)fG−1.

Deduce that the semigroup SL satisfies the decay estimate

‖SL(t)f‖H ≤ e−t‖f‖H , ∀ t ≥ 0,

for any f ∈ H := L2(G−1) such that
∫
fdx = 0.

We define Lpk := {f ∈ Lp; ‖f‖Lpk := ‖f〈x〉k‖Lp <∞} and H := L2
k.

(16) In all the sequel, we fix k > 2. Prove that

‖f‖L1 ≤ C‖f‖H and ‖f‖L4/3 ≤ Ck‖f‖H, (0.5)

We thus may define H0 := {f ∈ H;
∫
f = 0}.

(17) Establish that∫
(Lf)f〈x〉2k = −

∫
|∇f |2〈x〉2k−

∫
f 2〈x〉2k

[
(k−1)− k

〈x〉2
+

∆〈x〉2k

2〈x〉2k
]
−
∫
f(K∗f)·∇G〈x〉2k.
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Using (0.5) and the HLS inequality (0.3), deduce that for any a ∈ (1− k, 0), there exists Ca
such that ∫

(Lf)f〈x〉2k ≤ a

∫
f 2〈x〉2k + Ca

∫
f 2.

Defining
Bf := Lf −MχRf,

with χR(x) = χ(x/R), χ ∈ D(R2), 1B(0,1) ≤ χ ≤ 1B(0,2), prove that for any a ∈ (k − 1, 0),
there exist R,M > 0 large enough such that

‖SB(t)f‖H ≤ eat‖f‖H, ∀ t ≥ 0, ∀ f ∈ H.

In the sequel, we fix a ∈ (1 − k,−1) and the above associated constants R,M > 0 and
operator B. Establish that the semigroup SL satisfies the (same) decay estimate (as in H)

‖SL(t)f‖H ≤ Ce−t‖f‖H, ∀ t ≥ 0,

for any f ∈ H0.

(18) We come back to the rescaled vorticity equation (0.4) and we introduce the variation
f := w−G around the steady state G for an initial datum f0 ∈ H0. Establish that f satisfies
the mild equation

ft = SL(t)f0 +

∫ t

0

div[SL(t− s)[(K ∗ fs)fs]] ds.

Prove that

‖∇SL(τ)f‖H ≤
Ceaτ

τ 2/3
‖f‖

L
3/2
k
, ∀ τ > 0, ∀ f ∈ L3/2

k ,

∫
f = 0,

and deduce by duality (do not really try !) that

‖Π⊥SL(τ)∇f‖H ≤
Ceaτ

τ 2/3
‖f‖

L
3/2
k
, ∀ τ > 0, ∀ f ∈ L3/2

k ,

where Π⊥f := f −G
∫
f .

(19) Deduce that u(t) := ‖ft‖H satisfies the integral inequality

u(t) ≤ C1e
−tu(0) + C2

∫ t

0

e−(t−s)

(t− s)2/3
u(s)2 ds, ∀ t > 0.

Conclude that for ‖w0 −G‖H small enough, there holds

‖w(t)−G‖H ≤ Ce−t, ∀ t ≥ 0.
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