On the vorticity equation

We consider the 2 dimensional vorticity equation

$$
\begin{equation*}
\partial_{t} \omega=\Delta \omega-u \cdot \nabla \omega, \quad \omega(0)=\omega_{0} \tag{0.1}
\end{equation*}
$$

on the vorticity function $\omega: \mathbb{R}_{+} \times \mathbb{R}^{2} \rightarrow \mathbb{R},(t, x) \mapsto \omega_{t}(x)=\omega(t, x)$, where the velocity vector field $u: \mathbb{R}_{+} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined through the Biot-Savart formula

$$
\begin{equation*}
u:=K * \omega, \quad K(x):=\frac{1}{2 \pi} \frac{x^{\perp}}{|x|^{2}}, \quad x^{\perp}:=\left(-x_{2}, x_{1}\right) . \tag{0.2}
\end{equation*}
$$

Parts I and II are mostly independent. I believe that part A and D (except question (17)) are the simplest ones.

Part I - Existence

A. Local in time existence

In this part, we aim to establish the existence (and uniqueness) of a (mild) solution to the vorticity equation (0.1) for any $\omega_{0} \in L^{1}\left(\mathbb{R}^{2}\right)$ on a small interval of time $[0, T]$. We write the vorticity equation into its mild formulation

$$
\begin{equation*}
\omega_{t}=e^{\Delta t} \omega_{0}+\int_{0}^{t} e^{\Delta(t-s)}\left(-u_{s} \cdot \nabla \omega_{s}\right) d s \tag{0.2}
\end{equation*}
$$

where $e^{\Delta t}$ stands for the heat semigroup.
(1) We recall the Young inequality for convolution product

$$
\|g * f\|_{L^{c}} \leq\|g\|_{L^{b}}\|f\|_{L^{a}}, \quad \frac{1}{c}=\frac{1}{b}+\frac{1}{a}-1
$$

for any $f \in L^{a}, g \in L^{b}, 1 / b+1 / a>1$. Establish the estimates

$$
\left\|e^{\Delta t} f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leq \frac{C}{t^{\frac{1}{q}-\frac{1}{p}}}\|f\|_{L^{q}\left(\mathbb{R}^{2}\right)}
$$

and

$$
\left\|\nabla e^{\Delta t} f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leq \frac{C}{t^{\frac{1}{2}+\frac{1}{q}-\frac{1}{p}}}\|f\|_{L^{q}\left(\mathbb{R}^{2}\right)}
$$

for any $f \in L^{q}\left(\mathbb{R}^{2}\right)$ and $1 \leq q \leq p \leq \infty$. Deduce that for any $p \in(1, \infty]$ and $\omega_{0} \in L^{q}$, $p>q \geq 1$, there holds

$$
t^{1-\frac{1}{p}}\left\|e^{\Delta t} \omega_{0}\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \rightarrow 0, \quad \text { as } \quad t \rightarrow 0
$$

with an estimate which only depends on $\left\|\omega_{0}\right\|_{L^{q}}$ when $q>1$. (Hint. First consider the case $q>1$. For the case $q=1$, introduce the splitting $\left.\omega_{0}=\omega_{0} \mathbf{1}_{\left|\omega_{0}\right| \leq n}+\omega_{0} \mathbf{1}_{\left|\omega_{0}\right|>n}\right)$.
We define

$$
\|f\|_{p, T}:=\sup _{s \in(0, T)} s^{1-\frac{1}{p}}\left\|f_{t}\right\|_{L^{p}}
$$

and the Banach space

$$
X_{p, T}:=\left\{f \in L_{\mathrm{loc}}^{\infty}\left((0, T] ; L^{p}\left(\mathbb{R}^{2}\right)\right) ;\|f\|_{p, T}<\infty\right\}
$$

(2) We define

$$
\mathcal{Q}_{t}(f, g):=\int_{0}^{t} e^{\Delta(t-s)}\left(-K * f_{s} \cdot \nabla g_{s}\right) d s, \quad \mathcal{Q}_{t}(\omega):=\mathcal{Q}_{t}(\omega, \omega)
$$

Prove that $\operatorname{div} K=0$ and then

$$
\mathcal{Q}_{t}(\omega)=-\int_{0}^{t} \operatorname{div}\left[e^{\Delta(t-s)}\left(K * \omega_{s} \omega_{s}\right)\right] d s
$$

We recall that for any $q \in(1,2)$, the following (HLS) inequality holds true

$$
\begin{equation*}
\left\|\frac{1}{|x|} * g\right\|_{L^{\beta}\left(\mathbb{R}^{2}\right)} \leq C\|g\|_{L^{q}\left(\mathbb{R}^{2}\right)}, \quad \frac{1}{\beta}=\frac{1}{q}-\frac{1}{2}, \quad C=C(q) . \tag{0.3}
\end{equation*}
$$

Establish that for any $p \in(1,2)$, there exists a constant $C_{p} \geq 1$ such that

$$
\forall T>0, \forall \omega \in X_{p, T}, \quad\|\mathcal{Q}(\omega)\|_{p, T} \leq C_{p}\|\omega\|_{p, T}^{2}
$$

(3) For $f \in X_{p, T}$, we define

$$
g_{t}:=e^{\Delta t} \omega_{0}+\mathcal{Q}_{t}(f)
$$

and $F: f \rightarrow g$. We fix $B>0$ small enough such that $\alpha:=2 C_{p} B<1$. Prove that for $T>0$ small enough, $F: \mathcal{B} \rightarrow \mathcal{B}$, where

$$
\mathcal{B}:=\left\{f \in X_{p, T} ;\|f\|_{p, T} \leq B\right\} .
$$

Deduce that F is a contraction of constant α. Conclude that there exists a unique $\omega \in X_{p, T}$ solution to the mild formulation (0.2) to the vorticity equation. Observe that we can take $T=T\left(\left\|\omega_{0}\right\|_{L^{p}}\right)$ if $p>1$.

B. More estimates

(4) For $\omega_{0} \in L^{1}$, denote $\omega_{0}^{n}:=\omega_{0} \mathbf{1}_{\left|\omega_{0}\right| \leq n}$ and next $\omega^{n} \in X_{4 / 3, T}$ the associated mild solution construct in question (3) (observe that T can chosen independent of n). Prove that

$$
\omega_{t}-\omega_{t}^{n}=e^{\Delta t}\left(\omega_{0}-\omega_{0}^{n}\right)+\mathcal{Q}_{t}\left(\omega, \omega-\omega^{n}\right)+\mathcal{Q}_{t}\left(\omega-\omega^{n}, \omega^{n}\right)
$$

and deduce

$$
(1-\alpha)\left\|\omega-\omega^{n}\right\|_{4 / 3, T} \leq\left\|e^{\Delta t}\left(\omega_{0}-\omega_{0}^{n}\right)\right\|_{4 / 3, T} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

(5) Prove that

$$
\left\|\mathcal{Q}_{t}(f, g)\right\|_{L^{1}} \leq C\|f\|_{4 / 3, t}\|g\|_{4 / 3, t}, \quad \forall t>0
$$

Deduce that $\omega \in X_{1, T}$ and next $\left\|\omega-\omega^{n}\right\|_{1, T} \rightarrow 0$ as $n \rightarrow \infty$.
(6) Prove that

$$
\sup _{t \in[0, T]}\left\|\mathcal{Q}_{t}(f, g)\right\|_{L^{p}} \leq C T^{1-1 / p}\|f\|_{L^{\infty}\left(0, T ; L^{p}\right)}\|g\|_{L^{\infty}\left(0, T ; L^{p}\right)}
$$

Deduce that $\omega \in L^{\infty}\left(0, T ; L^{p}\right)$ if $\omega_{0} \in L^{p}, 1<p<\infty$.
(7) Prove that

$$
t \mapsto \mathcal{Q}_{t}(\omega) \in C\left([0, T] ; L^{1}\right)
$$

when $\omega \in L^{\infty}\left(0, T ; L^{4 / 3}\right)$. With the help of (6) deduce first that $\omega \in C\left([0, T] ; L^{1}\right)$ when $\omega_{0} \in L^{1} \cap L^{4 / 3}$. With the help of (5) deduce next that $\omega \in C\left([0, T] ; L^{1}\right)$ when $\omega_{0} \in L^{1}$.
(8) Prove that ω is a weak solution to the vorticity equation (0.1). Reciprocally, prove that any weak solution $\omega \in C\left([0, T) ; L^{1}\right)$ satisfying $\|\omega\|_{4 / 3, T}<\infty$ is a mild solution.
(9) We introduce the splitting $\mathcal{Q}_{t}:=\mathcal{Q}_{t}^{1}+\mathcal{Q}_{t}^{2}$ with

$$
\mathcal{Q}_{t}^{1}(\omega):=-\int_{0}^{t / 2} \operatorname{div}\left[e^{\Delta(t-s)}\left(K * \omega_{s} \omega_{s}\right)\right] d s, \quad \mathcal{Q}_{t}^{2}(\omega):=-\int_{t / 2}^{t} \operatorname{div}\left[e^{\Delta(t-s)}\left(K * \omega_{s} \omega_{s}\right)\right] d s
$$

We fix $q \in(1,2)$ and we denote by C some constants which only depend on q. Prove that

$$
\left\|\mathcal{Q}^{1}(\omega)\right\|_{\infty, t} \leq C\|\omega\|_{q, t}
$$

Prove that

$$
\|K * f\|_{L^{\infty}} \leq C\|f\|_{L^{q}}^{q / 2}\|f\|_{L^{\infty}}^{1-q / 2}
$$

(Hint. Introduce the splitting $K(x)=K(x) \mathbf{1}_{|x| \leq A}+K(x) \mathbf{1}_{|x|>A}$) and deduce that

$$
\left\|\mathcal{Q}^{2}(\omega)\right\|_{\infty, t} \leq C\|\omega\|_{q, t}^{1+q / 2}\|\omega\|_{\infty, t}^{1-q / 2}
$$

Finally prove that $\omega \in X_{p, T}$ for any $1 \leq p \leq \infty$. (Hint. First consider the case $p=\infty$).

C. Global existence

(10) Accepting and using the Calderón-Zygmond inequality

$$
\|\nabla(K * f)\|_{L^{p}} \leq C_{p}\|f\|_{L^{p}}, \quad 1<p<\infty
$$

observe that $\mathcal{K}:=K * \omega \in L^{\infty}\left(\tau, T ; W^{1, p}\right)$ for any $1<p<\infty, 0<\tau<T$, and prove that

$$
r_{\varepsilon}:=(\mathcal{K} \cdot \nabla \omega) * \rho_{\varepsilon}-\mathcal{K} \cdot \nabla \omega^{\varepsilon} \rightarrow 0 \text { in } L_{l o c}^{1}, \quad \omega^{\varepsilon}:=\omega * \rho_{\varepsilon},
$$

for any given mollifier $\left(\rho_{\varepsilon}\right)$ on \mathbb{R}^{2}. Deduce that for any smooth nonnegative convex function β such that $\beta(0)=\beta^{\prime}(0)=0$ and $\beta^{\prime \prime} \in C_{c}(\mathbb{R})$ there holds

$$
\partial_{t} \beta\left(\omega^{\varepsilon}\right)=\Delta \beta\left(\omega^{\varepsilon}\right)-\left|\nabla \omega^{\varepsilon}\right|^{2} \beta^{\prime \prime}\left(\omega^{\varepsilon}\right)-\mathcal{K} \cdot \nabla \beta\left(\omega^{\varepsilon}\right)+r_{\varepsilon} \beta^{\prime}\left(\omega^{\varepsilon}\right)
$$

and next

$$
\int \beta\left(\omega_{t_{1}}\right) \varphi d x \leq \int \beta\left(\omega_{t_{0}}\right) \varphi d x+\int_{t_{0}}^{t_{1}} \int \beta\left(\omega_{s}\right)\{\Delta \varphi+\mathcal{K} \cdot \nabla \varphi\} d x d s
$$

for any $\varphi \in C_{c}^{2}\left(\mathbb{R}^{2}\right), \varphi \geq 0$, and any $t_{0}, t_{1} \in(0, T), t_{1}>t_{0}$. Conclude that

$$
\left\|\omega_{t_{1}}\right\|_{L^{p}} \leq\left\|\omega_{t_{0}}\right\|_{L^{p}}
$$

(11) Establish that for any $\omega_{0} \in L^{1}\left(\mathbb{R}^{2}\right)$ there exists a unique weak and mild solution

$$
\omega \in C\left([0, \infty) ; L^{1}\left(\mathbb{R}^{2}\right)\right) \cap C\left((0, \infty) ; L^{\infty}\left(\mathbb{R}^{2}\right)\right)
$$

to the vorticity equation (0.1) such that for any $p \in[1, \infty], 0 \leq t_{0}<t_{1}<T$, there hold

$$
\|\omega\|_{p, T}<\infty \quad \text { and } \quad\left\|\omega_{t_{1}}\right\|_{L^{p}} \leq\left\|\omega_{t_{0}}\right\|_{L^{p}} .
$$

Prove furthermore $\omega(t, \cdot) \geq 0$ for any $t \geq 0$ if $\omega_{0} \geq 0$.

Part II - Long time behaviour.

In this part, identities and estimates have only to be formally established.
(12) Prove that if ω is a classical solution to the vorticity equation (0.1) then the rescaled function

$$
w(t, x):=e^{2 t} \omega\left(\frac{e^{2 t}-1}{2}, e^{t} x\right)
$$

satisfies the rescaled vorticity equation

$$
\begin{equation*}
\partial_{t} w=\Delta w+\operatorname{div}(x w)-v \cdot \nabla w, \quad w(0)=\omega_{0} \tag{0.4}
\end{equation*}
$$

where v is defined through the Biot-Savart formula (0.2), namely $v:=K * w$.
(13) Prove that

$$
\begin{aligned}
\frac{d}{d t} \int w(t, x) d x & =0 \\
\frac{d}{d t} \int w(t, x) x d x & =-\int w(t, x) x d x \\
\frac{d}{d t} \int w(t, x)|x|^{2} d x & =4 \int w(t, x) d x-2 \int w(t, x)|x|^{2} d x
\end{aligned}
$$

by using that $K(-z)=-K(z)$ in the second line and also $K(z) \cdot z=0$ in the third line. Defining

$$
X:=\left\{f \in L_{2}^{1} ; \int f=1, \int f x=0, \int f|x|^{2}=2\right\}
$$

deduce that $w(t, \cdot) \in X$ for any $t \geq 0$ if $\omega_{0} \in X$. Define the gaussian function

$$
G(x):=\frac{1}{2 \pi} e^{-|x|^{2} / 2}
$$

Observe/admit that the solution Φ to the Poisson equation $-\Delta \Phi=G$ is radially symmetric, that is $\Phi(x)=\phi(|x|)$ with $\left(r \phi^{\prime}\right)^{\prime}=r G(r)$ and find $\phi^{\prime}(r)=\left(1-e^{-r^{2} / 2}\right) /(2 \pi r)$. Conclude that

$$
K * G(x)=\frac{x^{\perp}}{|x|^{2}} \frac{1-e^{-|x|^{2} / 2}}{2 \pi}
$$

Deduce that

$$
0 \leq G \in X, \quad 0=\Delta G+\operatorname{div}(x G)-K * G \cdot \nabla G
$$

(14) Assume furthermore that $\omega_{0} \geq 0$ and thus $w(t, \cdot) \geq 0$ for any $t \geq 0$. Prove that

$$
\frac{d}{d t} H(w \mid G)=-I(w \mid G)
$$

with $H(w \mid G):=H(w)-H(G), I(w \mid G):=I(w)-I(G)$,

$$
H(f)=\int_{\mathbb{R}^{2}} f \log f d x, \quad I(f):=\int_{\mathbb{R}^{2}} \frac{|\nabla f|^{2}}{f} d x .
$$

Deduce that

$$
\|w(t)-G\|_{L^{1}} \leq C\left(\omega_{0}\right) e^{-t}, \quad \forall t \geq 0
$$

In the sequel, we do not assume $\omega_{0} \geq 0$ anymore.
(15) Consider the linear operator $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1}$ with

$$
\mathcal{L}_{0} f=\Delta f+\operatorname{div}(x f), \quad \mathcal{L}_{1} f=-K * f \cdot \nabla G-K * G \cdot \nabla f .
$$

Prove that

$$
\int(\mathcal{L} f) f G^{-1}=\int\left(\mathcal{L}_{0} f\right) f G^{-1}
$$

Deduce that the semigroup $S_{\mathcal{L}}$ satisfies the decay estimate

$$
\left\|S_{\mathcal{L}}(t) f\right\|_{H} \leq e^{-t}\|f\|_{H}, \quad \forall t \geq 0
$$

for any $f \in H:=L^{2}\left(G^{-1}\right)$ such that $\int f d x=0$.
We define $L_{k}^{p}:=\left\{f \in L^{p} ;\|f\|_{L_{k}^{p}}:=\left\|f\langle x\rangle^{k}\right\|_{L^{p}}<\infty\right\}$ and $\mathcal{H}:=L_{k}^{2}$.
(16) In all the sequel, we fix $k>2$. Prove that

$$
\begin{equation*}
\|f\|_{L^{1}} \leq C\|f\|_{\mathcal{H}} \quad \text { and } \quad\|f\|_{L^{4 / 3}} \leq C_{k}\|f\|_{\mathcal{H}} \tag{0.5}
\end{equation*}
$$

We thus may define $\mathcal{H}_{0}:=\left\{f \in \mathcal{H} ; \int f=0\right\}$.
(17) Establish that

$$
\int(\mathcal{L} f) f\langle x\rangle^{2 k}=-\int|\nabla f|^{2}\langle x\rangle^{2 k}-\int f^{2}\langle x\rangle^{2 k}\left[(k-1)-\frac{k}{\langle x\rangle^{2}}+\frac{\Delta\langle x\rangle^{2 k}}{2\langle x\rangle^{2 k}}\right]-\int f(K * f) \cdot \nabla G\langle x\rangle^{2 k}
$$

Using (0.5) and the HLS inequality (0.3), deduce that for any $a \in(1-k, 0)$, there exists C_{a} such that

$$
\int(\mathcal{L} f) f\langle x\rangle^{2 k} \leq a \int f^{2}\langle x\rangle^{2 k}+C_{a} \int f^{2}
$$

Defining

$$
\mathcal{B} f:=\mathcal{L} f-M \chi_{R} f,
$$

with $\chi_{R}(x)=\chi(x / R), \chi \in \mathcal{D}\left(\mathbb{R}^{2}\right), \mathbf{1}_{B(0,1)} \leq \chi \leq \mathbf{1}_{B(0,2)}$, prove that for any $a \in(k-1,0)$, there exist $R, M>0$ large enough such that

$$
\left\|S_{\mathcal{B}}(t) f\right\|_{\mathcal{H}} \leq e^{a t}\|f\|_{\mathcal{H}}, \quad \forall t \geq 0, \quad \forall f \in \mathcal{H} .
$$

In the sequel, we fix $a \in(1-k,-1)$ and the above associated constants $R, M>0$ and operator \mathcal{B}. Establish that the semigroup $S_{\mathcal{L}}$ satisfies the (same) decay estimate (as in H)

$$
\left\|S_{\mathcal{L}}(t) f\right\|_{\mathcal{H}} \leq C e^{-t}\|f\|_{\mathcal{H}}, \quad \forall t \geq 0
$$

for any $f \in \mathcal{H}_{0}$.
(18) We come back to the rescaled vorticity equation (0.4) and we introduce the variation $f:=w-G$ around the steady state G for an initial datum $f_{0} \in \mathcal{H}_{0}$. Establish that f satisfies the mild equation

$$
f_{t}=S_{\mathcal{L}}(t) f_{0}+\int_{0}^{t} \operatorname{div}\left[S_{\mathcal{L}}(t-s)\left[\left(K * f_{s}\right) f_{s}\right]\right] d s
$$

Prove that

$$
\left\|\nabla S_{\mathcal{L}}(\tau) f\right\|_{\mathcal{H}} \leq \frac{C e^{a \tau}}{\tau^{2 / 3}}\|f\|_{L_{k}^{3 / 2}}, \quad \forall \tau>0, \quad \forall f \in L_{k}^{3 / 2}, \quad \int f=0
$$

and deduce by duality (do not really try !) that

$$
\left\|\Pi^{\perp} S_{\mathcal{L}}(\tau) \nabla f\right\|_{\mathcal{H}} \leq \frac{C e^{a \tau}}{\tau^{2 / 3}}\|f\|_{L_{k}^{3 / 2}}, \quad \forall \tau>0, \quad \forall f \in L_{k}^{3 / 2}
$$

where $\Pi^{\perp} f:=f-G \int f$.
(19) Deduce that $u(t):=\left\|f_{t}\right\|_{\mathcal{H}}$ satisfies the integral inequality

$$
u(t) \leq C_{1} e^{-t} u(0)+C_{2} \int_{0}^{t} \frac{e^{-(t-s)}}{(t-s)^{2 / 3}} u(s)^{2} d s, \quad \forall t>0
$$

Conclude that for $\left\|w_{0}-G\right\|_{\mathcal{H}}$ small enough, there holds

$$
\|w(t)-G\|_{\mathcal{H}} \leq C e^{-t}, \quad \forall t \geq 0
$$

