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On the Landau equation

1 Part I - Equations and physical properties.

We recall the nonlinear Landau equation

∂tF (t, v) = Q(F, F )(t, v), F (0, v) = F0(v), (1.1)

on the density function F = F (t, v) ≥ 0, t ≥ 0, v ∈ Rd, d ≥ 2, where the Landau kernel is
defined by the formula

Q(f, g)(v) :=
∂

∂vi

{∫
Rd

aij(v − v∗)
(
f(v∗)

∂g

∂vj
(v)− f(v)

∂g

∂vj
(v∗)

)
dv∗
}
.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The
matrix a = (aij) is defined by

a(z) = |z|2+γΠ(z), Πij(z) := δij − ẑiẑj, ẑk :=
zk
|z|
, γ ∈ [−3, 2], (1.2)

so that Π is the is the orthogonal projection on the hyperplan z⊥ := {y ∈ Rd; y · z = 0}.
(1) We recall that a(z)z = 0 for any z ∈ Rd and a(z)ξξ ≥ 0 for any z, ξ ∈ Rd (with the use
of the bilinear form notation auv = vTau = v · au, vT denoting the line vector transpose of
the column vector v). Deduce that

Q(M,M) = 0, where M(v) :=
1

(2π)d/2
e−|v|

2/2.

Introducing the change of unknown F = M + Mh, show (formally) that F is a solution to
the Landau equation (1.1) if, and only if, h is a solution to the rescaled Landau equation

∂th = Lh+ C(h, h), h(0, v) = h0(v), (1.3)

where

C(f, g) := M−1∂i

{∫
Rd

MM∗aij

(
f ∗∂jg − f∂∗jg∗

)
dv∗
}
,

Lh := C(1, h),

and we use the shorthands ∂i = ∂
∂vi

, h∗ = h(v∗), ∂∗jh
∗ = (∂jh)(v∗).
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We will also consider the linearized Landau equation

∂th = Lh, h(0, v) = h0(v), (1.4)

(2) For any nice functions f, g, ϕ : Rd → R, prove that∫
C(f, g)ϕMdv =

1

2

∫ ∫
MM∗a(f∇∗g∗ − f ∗∇g)(∇ϕ−∇∗ϕ∗) dvdv∗,

where ∇∗h∗ = (∇h)(v∗). Deduce that∫
C(f, g)ϕMdv = 0, forϕ = 1, vi, |v|2,

and

Dγ(h) := −
∫

(Lh)hMdv

=
1

2

∫ ∫
MM∗a (∇∗h∗ −∇h)(∇∗h∗ −∇h) dvdv∗,

where γ ∈ [−3, 2] is defined in (1.2).

(3) We define the scalar product

(g, h) :=

∫
ghM dv

and the associated Hilbert space

L2(M) := {h : Rd → R measurable; ‖h‖2 = (h, h) <∞}.

With the notation

〈g〉 :=

∫
g(v)M(v) dv,

we define the subspace

L2
0(M) := {h ∈ L2(M); 〈h〉 = 〈hvi〉 = 〈h|v|2〉 = 0, ∀ i}.

Prove that, at least formally, any solution h to the linearized Landau equation (1.4) satisfies

h(t, ·) ∈ L2
0(M), ∀ t ≥ 0, if h0 ∈ L2

0(M),

and
1

2

d

dt
‖h(t, ·)‖2 = −Dγ(h(t, ·)), ∀ t ≥ 0.
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2 A Poincaré like inequality (when γ = 0)

We assume γ = 0. In this section, we fix h ∈ L2
0(M). The following algebraic computations

are not really difficult but probably a bit heavy. Do not hesitate in accepting (2.6) and
carrying on.

(4) Prove that

D0(h) =
1

2

∫
R2d

Y T [|u|2I − u⊗ u]Y MM∗ dvdv∗,

with the notations Y := ∇h −∇∗h∗, u = v − v∗, h∗ = h(v∗), ∇∗h∗ = (∇h)(v∗). Using the
symmetries and the notation hi := ∂ih, prove next that

D0(h) =
∑
i,j

(Bij + Cij),

with

Bij :=

∫
(vi − v∗i )2(h2j − hjh∗j)MM∗dvdv∗

Cij :=

∫
(vi − v∗i )(vj − v∗j )(hih∗j − hihj)MM∗dvdv∗.

(5) For any i, j = 1, . . . , d, with the notation

Tij = Tij(h) := 〈vivjh〉, (2.5)

prove that

〈1〉 = 1, 〈vj〉 = 〈hj〉 = 0, 〈vivj〉 = δij, 〈vihj〉 = Tij.

(6) Expanding and using symetries, deduce that

Bij = 〈(v2i + 1)h2j〉+ 2T 2
ij.

(7) With the same type of arguments, prove that

Cij = −〈vjvihihj + δijh
2
i 〉 − T 2

ij − TiiTjj.

(8) Observing that ∑
i

Tii = 0

and ∑
ij

(v2i h
2
j − vjvihihj) = |v|2|Π(v)∇h|2,

deduce that

D0(h) = (d− 1)

∫
|∇h|2M +

∫
|v|2|Π(v)∇h|2M +

∑
ij

T 2
ij. (2.6)
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(9) We introduce the anisotropic gradient ∇̃vh of a function h by

∇̃vh = Π⊥(v)∇vh+ [v]Π(v)∇vh, [v] := (1 + |v|2)1/2, (2.7)

with Π⊥(v) := I − Π(v) and the related Sobolev norm

‖h‖2∗,γ := ‖[v]γ/2∇̃h‖2 + ‖[v](2+γ)/2 h‖2.

Deduce from (2.6) that
D0(h) ≥ ‖∇h‖2 ≥ ‖h‖2. (2.8)

Also prove that there exists a constant λ > 0 such that

D0(h) ≥ ‖∇̃h‖2 ≥ λ‖h‖2∗,0. (2.9)

3 Nonlinear a priori estimate on the Landau equation and long-
time behavior (when γ = 0)

We still assume γ = 0. In this section, we fix h0 ∈ L2
0(M) and we come back to the rescaled

Landau equation (1.3).

(10) For any nice functions f, g, h : Rd → R, prove that

(C(f, g), h) = −
∫
Rd

(
āfij∂j(gM)− fMb̄gi

)
∂ih dv, (3.10)

with

āfij = aij ∗ (Mf) =

∫
aij(u)M∗f ∗dv∗

b̄gi := bi ∗ (Mg) =

∫
bi(u)M∗f ∗dv∗, bi :=

d∑
j=1

∂jaij = −(d− 1)ui.

Observe then that for g, f ∈ L2
0(M) and γ = 0, the coefficients simplify into

āfij = Tij(f), b̄gi = 0,

with the notation of (2.5). Deduce that there exists a constant K > such that

|Tij(f)| ≤ K

2
‖f‖L2(M), ∀ f ∈ L2

0(M), (3.11)

and
|(C(f, g), h)| ≤ K‖f‖L2(M)‖∇g‖L2(M)‖∇h‖L2(M), ∀ f, g, h ∈ L2

0(M). (3.12)

(11) Prove that, at least formally, any solution h to the rescaled Landau equation (1.3)
satisfies

1

2

d

dt
‖h‖2 ≤ −‖∇h‖2 +K‖∇h‖2‖h‖. (3.13)
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(12) Consider h ∈ C1(R+;L2
0(M)) ∩ C(R+;H1(M)) which satisfies (3.13) and

‖h(0, ·)‖ ≤ η < 1/K.

Establish first that
‖h(t, ·)‖ ≤ η, ∀ t ≥ 0,

next that
‖h(t, ·)‖ ≤ e(Kη−1)λt‖h(0, ·)‖, ∀ t ≥ 0,

and finally that for any α ∈ (0, λ) there exists Cα > 0 such that

‖h(t, ·)‖ ≤ Cα e
−αt, ∀ t ≥ 0.

4 Existence of solutions (when γ = 0)

(13) We assume h0 ∈ L2
0(M) and ‖h0‖ ≤ η < 1/K. For g ∈ C([0, T ];L2

0(M)) such that
supt≥0 ‖g(t, ·)‖ ≤ η < 1/K, we consider the linear equation

∂th = Lh+ C(g, h), h(0, ·) = h0. (4.14)

Establish that there exists a variational solution h ∈ C([0, T ];L2
0(M)) ∩ L2(0, T ;H1(M)) to

equation (4.14) and this one satisfies

‖h(t, ·)‖ ≤ η, ∀ t ≥ 0,

and

(1−Kη)

∫ T

0

‖∇h(t, ·)‖2 dt ≤ 1

2
η2, ∀T > 0.

(14) For gi as in question (12) and hi the associated solution to equation (4.14), prove that
h] := h2 − h1 satisfies

1

2

d

dt
‖h]‖2 ≤ (Kη − 1)‖∇h]‖2 +K‖g]‖‖∇h1‖‖∇h]‖,

with g := g2 − g1. Deduce that there exists K ′ > 0 such that

sup
[0,T ]

‖h](t, .)‖2 ≤ K ′
∫ T

0

‖g](t, .)‖2‖∇h1(t, .)‖2dt.

Deduce next that the mapping g 7→ h defined by (4.14) is a contraction for η > 0 small
enough.

(15) Conclude to the existence and uniqueness of a solution h ∈ C([0, T ];L2
0(M))∩L2(0, T ;H1(M)),

∀T > 0, which satisfies (3.13).
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5 The case γ ∈ (0, 2]

In this part, we assume γ ∈ (0, 2].

(16) We fix h ∈ L2
0(M). Prove that for any R ∈ (0, 1),

Dγ(h) ≥ RγD0(h)− εR(h),

with

εR(h) :=
Rγ

2

∫
R2d

1|u|≤RY
T [|u|2I − u⊗ u]Y MM∗ dvdv∗

Deduce
Dγ(h) ≥ 2‖∇h‖2L2(M1/2)((d− 1)Rγ −Rγ+2)

for any R ∈ (0, 1), and next that there exists K1 > 0 such that

Dγ(h) ≥ K1‖h‖2L2(M).

Prove (or accept!) that

Dγ(h) ≥ C1 ‖h‖2∗,γ − C2 ‖h‖2L2(M).

The two last inequalities together, deduce that there exists λ > 0 such that

Dγ(h) ≥ λ ‖h‖2∗,γ.

(17) Recalling that a(u)u = 0, establish that

|aij ∗ (Mf)vivj| =
∣∣∣∫ aijv

∗
i v
∗
j f
∗M∗dv∗

∣∣∣ ≤ C1[v]γ+2‖f‖

|aij ∗ (Mf)vi| =
∣∣∣∫ aijv

∗
i f
∗M∗dv∗

∣∣∣ ≤ C2[v]γ+2‖f‖.

Introducing the splitting ∇g = ∇‖g + ∇⊥g and ∇h = ∇‖h + ∇⊥h in formula (3.10) with
∇‖f = Π(v)∇f , ∇⊥f = Π⊥(v)∇f , so that

∂⊥i f := (∇⊥f)i =
vi
|v|

( v
|v|
· ∇f

)
,

prove (or accept!) that

|(C(f, g), h)| ≤ K‖f‖L2(M)‖g‖∗,γ‖h‖∗,γ, ∀ f, g, h ∈ L2
0(M). (5.15)

(18) For η > 0 small enough and any h0 ∈ L2
0(M) such that ‖h‖L2(M) ≤ η, prove the existence

and uniqueness of a solution h ∈ C1(R+;L2
0(M)) which satisfies

sup
t≥0
‖h(t, .)‖2 +

∫ ∞
0

‖h(t, .)‖2∗,γ dt ≤ η

and for α,C > 0
‖h(t, ·)‖ ≤ C e−αt, ∀ t ≥ 0.
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