On the Landau equation

1 Part I - Equations and physical properties.

We recall the nonlinear Landau equation

$$\partial_t F(t,v) = Q(F,F)(t,v), \quad F(0,v) = F_0(v),$$
(1.1)

on the density function $F = F(t, v) \ge 0, t \ge 0, v \in \mathbb{R}^d, d \ge 2$, where the Landau kernel is defined by the formula

$$Q(f,g)(v) := \frac{\partial}{\partial v_i} \Big\{ \int_{\mathbb{R}^d} a_{ij}(v-v^*) \Big(f(v^*) \frac{\partial g}{\partial v_j}(v) - f(v) \frac{\partial g}{\partial v_j}(v^*) \Big) \, dv^* \Big\}.$$

Here and the sequel we use Einstein's convention of sommation of repeated indices. The matrix $a = (a_{ij})$ is defined by

$$a(z) = |z|^{2+\gamma} \Pi(z), \quad \Pi_{ij}(z) := \delta_{ij} - \hat{z}_i \hat{z}_j, \quad \hat{z}_k := \frac{z_k}{|z|}, \quad \gamma \in [-3, 2], \tag{1.2}$$

so that Π is the is the orthogonal projection on the hyperplan $z^{\perp} := \{ y \in \mathbb{R}^d; y \cdot z = 0 \}.$

(1) We recall that a(z)z = 0 for any $z \in \mathbb{R}^d$ and $a(z)\xi\xi \ge 0$ for any $z, \xi \in \mathbb{R}^d$ (with the use of the bilinear form notation $auv = v^T au = v \cdot au$, v^T denoting the line vector transpose of the column vector v). Deduce that

$$Q(M,M) = 0$$
, where $M(v) := \frac{1}{(2\pi)^{d/2}} e^{-|v|^2/2}$.

Introducing the change of unknown F = M + Mh, show (formally) that F is a solution to the Landau equation (1.1) if, and only if, h is a solution to the rescaled Landau equation

$$\partial_t h = Lh + \mathcal{C}(h, h), \quad h(0, v) = h_0(v), \tag{1.3}$$

where

$$\mathcal{C}(f,g) := M^{-1}\partial_i \Big\{ \int_{\mathbb{R}^d} M M^* a_{ij} \Big(f^* \partial_j g - f \partial_{*j} g^* \Big) dv^* \Big\},$$

$$Lh := \mathcal{C}(1,h),$$

and we use the shorthands $\partial_i = \frac{\partial}{\partial v_i}, h^* = h(v^*), \ \partial_{*j}h^* = (\partial_j h)(v^*).$

We will also consider the linearized Landau equation

$$\partial_t h = Lh, \quad h(0,v) = h_0(v), \tag{1.4}$$

(2) For any nice functions $f,g,\varphi:\mathbb{R}^d\to\mathbb{R},$ prove that

$$\int \mathcal{C}(f,g)\varphi \, Mdv = \frac{1}{2} \iint MM^*a(f\nabla_*g^* - f^*\nabla g)(\nabla\varphi - \nabla_*\varphi^*) \, dvdv^*$$

where $\nabla_* h^* = (\nabla h)(v^*)$. Deduce that

$$\int \mathcal{C}(f,g)\varphi \, M dv = 0, \quad \text{for } \varphi = 1, v_i, |v|^2,$$

and

$$D_{\gamma}(h) := -\int (Lh)h \, Mdv$$

= $\frac{1}{2} \int \int MM^*a \, (\nabla_*h^* - \nabla h) (\nabla_*h^* - \nabla h) \, dv dv^*,$

where $\gamma \in [-3, 2]$ is defined in (1.2).

(3) We define the scalar product

$$(g,h) := \int ghM\,dv$$

and the associated Hilbert space

$$L^2(M) := \{h : \mathbb{R}^d \to \mathbb{R} \text{ measurable}; \|h\|^2 = (h, h) < \infty\}.$$

With the notation

$$\langle g \rangle := \int g(v) M(v) \, dv$$

we define the subspace

$$L_0^2(M) := \{ h \in L^2(M); \ \langle h \rangle = \langle h v_i \rangle = \langle h | v |^2 \rangle = 0, \ \forall i \}.$$

Prove that, at least formally, any solution h to the linearized Landau equation (1.4) satisfies

$$h(t, \cdot) \in L^2_0(M), \quad \forall t \ge 0, \quad \text{if} \quad h_0 \in L^2_0(M),$$

and

$$\frac{1}{2}\frac{d}{dt}\|h(t,\cdot)\|^2 = -D_{\gamma}(h(t,\cdot)), \quad \forall t \ge 0$$

2 A Poincaré like inequality (when $\gamma = 0$)

We assume $\gamma = 0$. In this section, we fix $h \in L^2_0(M)$. The following algebraic computations are not really difficult but probably a bit heavy. Do not hesitate in accepting (2.6) and carrying on.

(4) Prove that

$$D_0(h) = \frac{1}{2} \int_{\mathbb{R}^{2d}} Y^T[|u|^2 I - u \otimes u] Y M M^* \, dv dv^*,$$

with the notations $Y := \nabla h - \nabla_* h^*$, $u = v - v^*$, $h^* = h(v^*)$, $\nabla_* h^* = (\nabla h)(v^*)$. Using the symmetries and the notation $h_i := \partial_i h$, prove next that

$$D_0(h) = \sum_{i,j} (B_{ij} + C_{ij}),$$

with

$$B_{ij} := \int (v_i - v_i^*)^2 (h_j^2 - h_j h_j^*) M M^* dv dv^*$$

$$C_{ij} := \int (v_i - v_i^*) (v_j - v_j^*) (h_i h_j^* - h_i h_j) M M^* dv dv^*$$

(5) For any $i, j = 1, \ldots, d$, with the notation

$$T_{ij} = T_{ij}(h) := \langle v_i v_j h \rangle, \qquad (2.5)$$

prove that

$$\langle 1 \rangle = 1, \quad \langle v_j \rangle = \langle h_j \rangle = 0, \quad \langle v_i v_j \rangle = \delta_{ij}, \quad \langle v_i h_j \rangle = T_{ij}$$

(6) Expanding and using symetries, deduce that

$$B_{ij} = \langle (v_i^2 + 1)h_j^2 \rangle + 2T_{ij}^2.$$

(7) With the same type of arguments, prove that

$$C_{ij} = -\langle v_j v_i h_i h_j + \delta_{ij} h_i^2 \rangle - T_{ij}^2 - T_{ii} T_{jj}.$$

(8) Observing that

$$\sum_{i} T_{ii} = 0$$

and

$$\sum_{ij} (v_i^2 h_j^2 - v_j v_i h_i h_j) = |v|^2 |\Pi(v) \nabla h|^2,$$

deduce that

$$D_0(h) = (d-1) \int |\nabla h|^2 M + \int |v|^2 |\Pi(v)\nabla h|^2 M + \sum_{ij} T_{ij}^2.$$
 (2.6)

(9) We introduce the anisotropic gradient $\widetilde{\nabla}_v h$ of a function h by

$$\widetilde{\nabla}_v h = \Pi^{\perp}(v) \nabla_v h + [v] \Pi(v) \nabla_v h, \quad [v] := (1 + |v|^2)^{1/2}, \tag{2.7}$$

with $\Pi^{\perp}(v):=I-\Pi(v)$ and the related Sobolev norm

$$\|h\|_{*,\gamma}^2 := \|[v]^{\gamma/2} \widetilde{\nabla} h\|^2 + \|[v]^{(2+\gamma)/2} h\|^2.$$

Deduce from (2.6) that

$$D_0(h) \ge \|\nabla h\|^2 \ge \|h\|^2.$$
 (2.8)

Also prove that there exists a constant $\lambda > 0$ such that

$$D_0(h) \ge \|\nabla h\|^2 \ge \lambda \|h\|_{*,0}^2.$$
(2.9)

3 Nonlinear a priori estimate on the Landau equation and longtime behavior (when $\gamma = 0$)

We still assume $\gamma = 0$. In this section, we fix $h_0 \in L^2_0(M)$ and we come back to the rescaled Landau equation (1.3).

(10) For any nice functions $f, g, h : \mathbb{R}^d \to \mathbb{R}$, prove that

$$(\mathcal{C}(f,g),h) = -\int_{\mathbb{R}^d} \left(\bar{a}_{ij}^f \partial_j(gM) - fM\bar{b}_i^g\right) \partial_i h \, dv, \qquad (3.10)$$

with

$$\bar{a}_{ij}^{f} = a_{ij} * (Mf) = \int a_{ij}(u) M^{*} f^{*} dv^{*}$$
$$\bar{b}_{i}^{g} := b_{i} * (Mg) = \int b_{i}(u) M^{*} f^{*} dv^{*}, \quad b_{i} := \sum_{j=1}^{d} \partial_{j} a_{ij} = -(d-1)u_{i}.$$

Observe then that for $g, f \in L^2_0(M)$ and $\gamma = 0$, the coefficients simplify into

$$\bar{a}_{ij}^f = T_{ij}(f), \quad \bar{b}_i^g = 0,$$

with the notation of (2.5). Deduce that there exists a constant K > such that

$$|T_{ij}(f)| \le \frac{K}{2} ||f||_{L^2(M)}, \quad \forall f \in L^2_0(M),$$
(3.11)

and

$$|(\mathcal{C}(f,g),h)| \le K ||f||_{L^2(M)} ||\nabla g||_{L^2(M)} ||\nabla h||_{L^2(M)}, \quad \forall f,g,h \in L^2_0(M).$$
(3.12)

(11) Prove that, at least formally, any solution h to the rescaled Landau equation (1.3) satisfies

$$\frac{1}{2}\frac{d}{dt}\|h\|^{2} \leq -\|\nabla h\|^{2} + K\|\nabla h\|^{2}\|h\|.$$
(3.13)

(12) Consider $h \in C^1(\mathbb{R}_+; L^2_0(M)) \cap C(\mathbb{R}_+; H^1(M))$ which satisfies (3.13) and

 $\|h(0,\cdot)\| \le \eta < 1/K.$

Establish first that

$$\|h(t,\cdot)\| \le \eta, \quad \forall t \ge 0,$$

next that

$$||h(t, \cdot)|| \le e^{(K\eta - 1)\lambda t} ||h(0, \cdot)||, \quad \forall t \ge 0,$$

and finally that for any $\alpha \in (0, \lambda)$ there exists $C_{\alpha} > 0$ such that

$$||h(t, \cdot)|| \le C_{\alpha} e^{-\alpha t}, \quad \forall t \ge 0.$$

4 Existence of solutions (when $\gamma = 0$)

(13) We assume $h_0 \in L^2_0(M)$ and $||h_0|| \leq \eta < 1/K$. For $g \in C([0,T]; L^2_0(M))$ such that $\sup_{t>0} ||g(t,\cdot)|| \leq \eta < 1/K$, we consider the linear equation

$$\partial_t h = Lh + \mathcal{C}(g, h), \quad h(0, \cdot) = h_0. \tag{4.14}$$

Establish that there exists a variational solution $h \in C([0,T]; L_0^2(M)) \cap L^2(0,T; H^1(M))$ to equation (4.14) and this one satisfies

$$\|h(t,\cdot)\| \le \eta, \quad \forall t \ge 0,$$

and

$$(1 - K\eta) \int_0^T \|\nabla h(t, \cdot)\|^2 dt \le \frac{1}{2}\eta^2, \quad \forall T > 0.$$

(14) For g_i as in question (12) and h_i the associated solution to equation (4.14), prove that $h^{\sharp} := h_2 - h_1$ satisfies

$$\frac{1}{2}\frac{d}{dt}\|h^{\sharp}\|^{2} \leq (K\eta - 1)\|\nabla h^{\sharp}\|^{2} + K\|g^{\sharp}\|\|\nabla h_{1}\|\|\nabla h^{\sharp}\|,$$

with $g := g_2 - g_1$. Deduce that there exists K' > 0 such that

$$\sup_{[0,T]} \|h^{\sharp}(t,.)\|^{2} \leq K' \int_{0}^{T} \|g^{\sharp}(t,.)\|^{2} \|\nabla h_{1}(t,.)\|^{2} dt.$$

Deduce next that the mapping $g \mapsto h$ defined by (4.14) is a contraction for $\eta > 0$ small enough.

(15) Conclude to the existence and uniqueness of a solution $h \in C([0,T]; L_0^2(M)) \cap L^2(0,T; H^1(M)), \forall T > 0$, which satisfies (3.13).

5 The case $\gamma \in (0, 2]$

In this part, we assume $\gamma \in (0, 2]$.

(16) We fix $h \in L^2_0(M)$. Prove that for any $R \in (0, 1)$,

$$D_{\gamma}(h) \ge R^{\gamma} D_0(h) - \varepsilon_R(h),$$

with

$$\varepsilon_R(h) := \frac{R^{\gamma}}{2} \int_{\mathbb{R}^{2d}} \mathbf{1}_{|u| \le R} Y^T[|u|^2 I - u \otimes u] Y M M_* dv dv_*$$

Deduce

$$D_{\gamma}(h) \ge 2 \|\nabla h\|_{L^{2}(M^{1/2})}^{2}((d-1)R^{\gamma} - R^{\gamma+2})$$

for any $R \in (0, 1)$, and next that there exists $K_1 > 0$ such that

$$D_{\gamma}(h) \ge K_1 ||h||_{L^2(M)}^2.$$

Prove (or accept!) that

$$D_{\gamma}(h) \ge C_1 \|h\|_{*,\gamma}^2 - C_2 \|h\|_{L^2(M)}^2.$$

The two last inequalities together, deduce that there exists $\lambda > 0$ such that

$$D_{\gamma}(h) \ge \lambda \, \|h\|_{*,\gamma}^2.$$

(17) Recalling that a(u)u = 0, establish that

$$|a_{ij} * (Mf)v_i v_j| = \left| \int a_{ij} v_i^* v_j^* f^* M^* dv^* \right| \le C_1 [v]^{\gamma+2} ||f|$$

$$|a_{ij} * (Mf)v_i| = \left| \int a_{ij} v_i^* f^* M^* dv^* \right| \le C_2 [v]^{\gamma+2} ||f||.$$

Introducing the splitting $\nabla g = \nabla^{\parallel} g + \nabla^{\perp} g$ and $\nabla h = \nabla^{\parallel} h + \nabla^{\perp} h$ in formula (3.10) with $\nabla^{\parallel} f = \Pi(v) \nabla f$, $\nabla^{\perp} f = \Pi^{\perp}(v) \nabla f$, so that

$$\partial_i^{\perp} f := (\nabla^{\perp} f)_i = \frac{v_i}{|v|} \Big(\frac{v}{|v|} \cdot \nabla f \Big),$$

prove (or accept!) that

$$(\mathcal{C}(f,g),h)| \le K \|f\|_{L^2(M)} \|g\|_{*,\gamma} \|h\|_{*,\gamma}, \quad \forall f,g,h \in L^2_0(M).$$
(5.15)

(18) For $\eta > 0$ small enough and any $h_0 \in L^2_0(M)$ such that $\|h\|_{L^2(M)} \leq \eta$, prove the existence and uniqueness of a solution $h \in C^1(\mathbb{R}_+; L^2_0(M))$ which satisfies

$$\sup_{t \ge 0} \|h(t,.)\|^2 + \int_0^\infty \|h(t,.)\|_{*,\gamma}^2 \, dt \le \eta$$

and for $\alpha, C > 0$

$$||h(t,\cdot)|| \le C e^{-\alpha t}, \quad \forall t \ge 0.$$