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On the Landau equation

1 Part I - Equations and physical properties.
We recall the nonlinear Landau equation
0 F(t,v) = Q(F,F)(t,v), F(0,v)= Fy(v), (1.1)

on the density function F' = F(t,v) > 0,t > 0, v € R%, d > 2, where the Landau kernel is
defined by the formula

QU0 = { [ oo =) () 220 - 501 3 0)) o}

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The
matrix a = (a;;) is defined by

A N ya
a(z) = |2*1(2), Ii(2) =6 — 455, 4= !7k| v e [-3,2], (1.2)

so that II is the is the orthogonal projection on the hyperplan z* := {y € R% y -z = 0}.

(1) We recall that a(z)z = 0 for any z € R? and a(2)é€ > 0 for any 2, € R? (with the use
of the bilinear form notation auv = v au = v - au, v* denoting the line vector transpose of
the column vector v). Deduce that

1 —|v|?/2
Q(M,M)=0, where M(v):= W@ [ol*/2,

Introducing the change of unknown F' = M + Mh, show (formally) that F is a solution to
the Landau equation (1.1) if, and only if, & is a solution to the rescaled Landau equation

Oh = Lh+C(h,h), h(0,v) = ho(v), (1.3)
where

C(fg) = Mo
Lh := C(1,h),

MM a; (f*ajg - fa*j9*> dv*},

R4

and we use the shorthands 0; = 8%, h* = h(v*), Oy;h* = (0;h)(v*).



We will also consider the linearized Landau equation

Oth = Lh, h(0,v) = ho(v), (1.4)
(2) For any nice functions f, g, ¢ : R — R, prove that

1
[etaema=3 [ [1aras9.g - 990 - .7 dude
where V. h* = (Vh)(v*). Deduce that

/C(f, g)p Mdv =0, forp=1,v; [v|?
and
Dy(h) = — / (Lh)h My
= %/ MM*a (V.h* —Vh)(V.h* — Vh)dvodv*,

where v € [—3,2] is defined in (1.2).

(3) We define the scalar product

(g,h) := /ghM dv

and the associated Hilbert space
L*(M) := {h : RY = R measurable; ||h|]> = (h,h) < 0o}.

With the notation

we define the subspace
Lo(M) := {h € LX(M); (h) = (hv;) = (hlv]*) =0, Vi}.
Prove that, at least formally, any solution A to the linearized Landau equation (1.4) satisfies
h(t,") € L3(M), Yt>0, if ho€ Li(M),
and 14

5 I = =D (A, V=0



2 A Poincaré like inequality (when v = 0)

We assume v = 0. In this section, we fix h € L3(M). The following algebraic computations
are not really difficult but probably a bit heavy. Do not hesitate in accepting (2.6) and
carrying on.

(4) Prove that

Dyh) = 5 /R YTl — u @ u]Y MM dvdv”,

with the notations Y := Vh — V,h*, u = v — v*, h* = h(v*), V.h* = (Vh)(v*). Using the
symmetries and the notation h; := 0;h, prove next that

Do(h) = (Bij + C)),

.3

with
Ciy = /(vZ — v} )(v; — v} )(hih} — hihy) M M*dvdv®.
(5) For any 4,j = 1,...,d, with the notation
Tij = Tij(h) := (viv;h), (2.5)
prove that
(1) =1, (v) =) =0, (vivy) =0di;, (vih;) =T
(6) Expanding and using symetries, deduce that
Bij = ((v] +1)h3) + 2T7.
(7) With the same type of arguments, prove that
Cij = —(vjuihil; + 0i;h7) — T — TiTy;.

ZTu‘ZO

(8) Observing that

and
> (R = vjvihiby) = |v*[TI(v)VA|?,
ij
deduce that
Dy(h) = (d—1)/yVh|2M+/|U\2|H(U)Vh|2M+Z:Q§. (2.6)
ij
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(9) We introduce the anisotropic gradient %Uh of a function h by
Voh = ()Y, h 4 ]H0)Voh,  [v] = (14 [v]?)Y2,
with I+ (v) := I — II(v) and the related Sobolev norm
1R1Z, == o] VAl? + [0+ A 2,

Deduce from (2.6) that
Do(h) = [VR|* = ||l

Also prove that there exists a constant A > 0 such that

Do(h) = |VR|* = Al -

(2.7)

(2.8)

(2.9)

3 Nonlinear a priori estimate on the Landau equation and long-

time behavior (when v = 0)

We still assume v = 0. In this section, we fix hy € LZ(M) and we come back to the rescaled

Landau equation (1.3).
(10) For any nice functions f, g, h : R? — R, prove that

_ —f 79
(C(f.g),h) = —/Rd (al.jaj(gM) - bei)(?ihdv,
with

dzfj = a;x(Mf)= /aij(u)M*f*dv*

d
j=1

Observe then that for g, f € L2(M) and v = 0, the coefficients simplify into
al; = Ty(f), ¥ =0,
with the notation of (2.5). Deduce that there exists a constant K > such that
K 2
(Al < Sz, YV f € Ly(M),

and
1C(f,9) W) < K fll 2 IVl 2an IV Rl 2any, - ¥ fr 9,0 € L(M).

(3.10)

(3.11)

(3.12)

(11) Prove that, at least formally, any solution h to the rescaled Landau equation (1.3)

satisfies
1d

5 g 1P < =IVRIP + K[ VAP [A]l

(3.13)



(12) Consider h € CY(Ry; LE(M)) N C(R,; H'(M)) which satisfies (3.13) and
1200, ) <n < 1/K.

Establish first that
|A(t, )| <n, Vt>0,

next that
[n(t, )| < e DX R0, )], Vi >0,

and finally that for any o € (0, A) there exists C, > 0 such that
[h(t, )| < Cae ™, Yi>0.

4 Existence of solutions (when v = 0)

(13) We assume hg € L3(M) and ||ho| < n < 1/K. For g € C([0,T]; L(M)) such that
sup;s |lg(t,-)|| <n < 1/K, we consider the linear equation

O,h = Lh+C(g,h), h(0,-) = ho. (4.14)

Establish that there exists a variational solution h € C([0,T]; L3(M)) N L?(0,T; H'(M)) to
equation (4.14) and this one satisfies

[a(t, )l <n, VE=0,

and .
1
(1= Kn) [ IVhE I bt < G, VT >0
0

(14) For g; as in question (12) and h; the associated solution to equation (4.14), prove that
h* := hy — hy satisfies

1d

2dt
with g := ¢go — g1. Deduce that there exists K’ > 0 such that

IRF]* < (K = DIVEP + K|l @IV Rl VR,

T
ﬁ)bljg;llhﬁ(t,‘)||2 < K//O g (&, IV R ()] dt.

Deduce next that the mapping g — h defined by (4.14) is a contraction for > 0 small
enough.

(15) Conclude to the existence and uniqueness of a solution h € C'([0, T); LA(M))NL*(0, T; H*(M)),
VT > 0, which satisfies (3.13).



5 The case v € (0,2]
In this part, we assume v € (0, 2].
(16) We fix h € L3(M). Prove that for any R € (0,1),
D, (h) > R"Dy(h) — er(h),
with
Ry

er(h) = 2 o L<rY |’ — u ® u]Y M M, dvdv.

Deduce
Dy (h) > 2|[VR|7201/2((d = 1) R — R7*?)

for any R € (0,1), and next that there exists K7 > 0 such that
D (h) = Kul|hllZ2ar)-
Prove (or accept!) that
Dy(h) = Cy||hl1Z,, = Ca bl 20
The two last inequalities together, deduce that there exists A > 0 such that
D,(h) > A2,
(17) Recalling that a(u)u = 0, establish that

< (M P = | [[agio;frarrae] < €l 2]

oy 1| = | [ aei ] < Colol )1

Introducing the splitting Vg = Vllg + Vtg and VA = VIh 4 V*h in formula (3.10) with
VIf=TI(v)Vf, V1 f =TI+ (v)Vf, so that

011 = (V41 = 1 V).

[l
prove (or accept!) that

(C(f,9), W) < Kl fllzanllgllsaIBllsns Y g, € Lg(M). (5.15)

(18) For i > 0 small enough and any hy € Lg(M) such that ||h||,2(a) < 7, prove the existence
and uniqueness of a solution h € C'(Ry; L3(M)) which satisfies

sup [|A(t, )| + / Vh(t, )2, dt <7
t>0 0

and for o, C' > 0
AL, )| < Ce, VYi>0.



