On the Landau equation

1 Part I - Equations and physical properties.

We recall the nonlinear Landau equation

$$
\begin{equation*}
\partial_{t} F(t, v)=Q(F, F)(t, v), \quad F(0, v)=F_{0}(v), \tag{1.1}
\end{equation*}
$$

on the density function $F=F(t, v) \geq 0, t \geq 0, v \in \mathbb{R}^{d}, d \geq 2$, where the Landau kernel is defined by the formula

$$
Q(f, g)(v):=\frac{\partial}{\partial v_{i}}\left\{\int_{\mathbb{R}^{d}} a_{i j}\left(v-v^{*}\right)\left(f\left(v^{*}\right) \frac{\partial g}{\partial v_{j}}(v)-f(v) \frac{\partial g}{\partial v_{j}}\left(v^{*}\right)\right) d v^{*}\right\} .
$$

Here and the sequel we use Einstein's convention of sommation of repeated indices. The matrix $a=\left(a_{i j}\right)$ is defined by

$$
\begin{equation*}
a(z)=|z|^{2+\gamma} \Pi(z), \quad \Pi_{i j}(z):=\delta_{i j}-\hat{z}_{i} \hat{z}_{j}, \quad \hat{z}_{k}:=\frac{z_{k}}{|z|}, \quad \gamma \in[-3,2] \tag{1.2}
\end{equation*}
$$

so that Π is the is the orthogonal projection on the hyperplan $z^{\perp}:=\left\{y \in \mathbb{R}^{d} ; y \cdot z=0\right\}$.
(1) We recall that $a(z) z=0$ for any $z \in \mathbb{R}^{d}$ and $a(z) \xi \xi \geq 0$ for any $z, \xi \in \mathbb{R}^{d}$ (with the use of the bilinear form notation $a u v=v^{T} a u=v \cdot a u, v^{T}$ denoting the line vector transpose of the column vector v). Deduce that

$$
Q(M, M)=0, \quad \text { where } \quad M(v):=\frac{1}{(2 \pi)^{d / 2}} e^{-|v|^{2} / 2}
$$

Introducing the change of unknown $F=M+M h$, show (formally) that F is a solution to the Landau equation (1.1) if, and only if, h is a solution to the rescaled Landau equation

$$
\begin{equation*}
\partial_{t} h=L h+\mathcal{C}(h, h), \quad h(0, v)=h_{0}(v), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{C}(f, g) & :=M^{-1} \partial_{i}\left\{\int_{\mathbb{R}^{d}} M M^{*} a_{i j}\left(f^{*} \partial_{j} g-f \partial_{* j} g^{*}\right) d v^{*}\right\}, \\
L h & :=\mathcal{C}(1, h),
\end{aligned}
$$

and we use the shorthands $\partial_{i}=\frac{\partial}{\partial v_{i}}, h^{*}=h\left(v^{*}\right), \partial_{* j} h^{*}=\left(\partial_{j} h\right)\left(v^{*}\right)$.

We will also consider the linearized Landau equation

$$
\begin{equation*}
\partial_{t} h=L h, \quad h(0, v)=h_{0}(v), \tag{1.4}
\end{equation*}
$$

(2) For any nice functions $f, g, \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, prove that

$$
\int \mathcal{C}(f, g) \varphi M d v=\frac{1}{2} \iint M M^{*} a\left(f \nabla_{*} g^{*}-f^{*} \nabla g\right)\left(\nabla \varphi-\nabla_{*} \varphi^{*}\right) d v d v^{*}
$$

where $\nabla_{*} h^{*}=(\nabla h)\left(v^{*}\right)$. Deduce that

$$
\int \mathcal{C}(f, g) \varphi M d v=0, \quad \text { for } \varphi=1, v_{i},|v|^{2}
$$

and

$$
\begin{aligned}
D_{\gamma}(h) & :=-\int(L h) h M d v \\
& =\frac{1}{2} \iint M M^{*} a\left(\nabla_{*} h^{*}-\nabla h\right)\left(\nabla_{*} h^{*}-\nabla h\right) d v d v^{*}
\end{aligned}
$$

where $\gamma \in[-3,2]$ is defined in (1.2).
(3) We define the scalar product

$$
(g, h):=\int g h M d v
$$

and the associated Hilbert space

$$
L^{2}(M):=\left\{h: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { measurable; }\|h\|^{2}=(h, h)<\infty\right\}
$$

With the notation

$$
\langle g\rangle:=\int g(v) M(v) d v
$$

we define the subspace

$$
\left.L_{0}^{2}(M):=\left\{h \in L^{2}(M) ;\langle h\rangle=\left\langle h v_{i}\right\rangle=\left.\langle h| v\right|^{2}\right\rangle=0, \forall i\right\}
$$

Prove that, at least formally, any solution h to the linearized Landau equation (1.4) satisfies

$$
h(t, \cdot) \in L_{0}^{2}(M), \quad \forall t \geq 0, \quad \text { if } \quad h_{0} \in L_{0}^{2}(M)
$$

and

$$
\frac{1}{2} \frac{d}{d t}\|h(t, \cdot)\|^{2}=-D_{\gamma}(h(t, \cdot)), \quad \forall t \geq 0
$$

2 A Poincaré like inequality (when $\gamma=0$)

We assume $\gamma=0$. In this section, we fix $h \in L_{0}^{2}(M)$. The following algebraic computations are not really difficult but probably a bit heavy. Do not hesitate in accepting (2.6) and carrying on.
(4) Prove that

$$
D_{0}(h)=\frac{1}{2} \int_{\mathbb{R}^{2 d}} Y^{T}\left[|u|^{2} I-u \otimes u\right] Y M M^{*} d v d v^{*}
$$

with the notations $Y:=\nabla h-\nabla_{*} h^{*}, u=v-v^{*}, h^{*}=h\left(v^{*}\right), \nabla_{*} h^{*}=(\nabla h)\left(v^{*}\right)$. Using the symmetries and the notation $h_{i}:=\partial_{i} h$, prove next that

$$
D_{0}(h)=\sum_{i, j}\left(B_{i j}+C_{i j}\right),
$$

with

$$
\begin{aligned}
B_{i j} & :=\int\left(v_{i}-v_{i}^{*}\right)^{2}\left(h_{j}^{2}-h_{j} h_{j}^{*}\right) M M^{*} d v d v^{*} \\
C_{i j} & :=\int\left(v_{i}-v_{i}^{*}\right)\left(v_{j}-v_{j}^{*}\right)\left(h_{i} h_{j}^{*}-h_{i} h_{j}\right) M M^{*} d v d v^{*}
\end{aligned}
$$

(5) For any $i, j=1, \ldots, d$, with the notation

$$
\begin{equation*}
T_{i j}=T_{i j}(h):=\left\langle v_{i} v_{j} h\right\rangle \tag{2.5}
\end{equation*}
$$

prove that

$$
\langle 1\rangle=1, \quad\left\langle v_{j}\right\rangle=\left\langle h_{j}\right\rangle=0, \quad\left\langle v_{i} v_{j}\right\rangle=\delta_{i j}, \quad\left\langle v_{i} h_{j}\right\rangle=T_{i j} .
$$

(6) Expanding and using symetries, deduce that

$$
B_{i j}=\left\langle\left(v_{i}^{2}+1\right) h_{j}^{2}\right\rangle+2 T_{i j}^{2} .
$$

(7) With the same type of arguments, prove that

$$
C_{i j}=-\left\langle v_{j} v_{i} h_{i} h_{j}+\delta_{i j} h_{i}^{2}\right\rangle-T_{i j}^{2}-T_{i i} T_{j j} .
$$

(8) Observing that

$$
\sum_{i} T_{i i}=0
$$

and

$$
\sum_{i j}\left(v_{i}^{2} h_{j}^{2}-v_{j} v_{i} h_{i} h_{j}\right)=|v|^{2}|\Pi(v) \nabla h|^{2}
$$

deduce that

$$
\begin{equation*}
D_{0}(h)=(d-1) \int|\nabla h|^{2} M+\int|v|^{2}|\Pi(v) \nabla h|^{2} M+\sum_{i j} T_{i j}^{2} . \tag{2.6}
\end{equation*}
$$

(9) We introduce the anisotropic gradient $\widetilde{\nabla}_{v} h$ of a function h by

$$
\begin{equation*}
\widetilde{\nabla}_{v} h=\Pi^{\perp}(v) \nabla_{v} h+[v] \Pi(v) \nabla_{v} h, \quad[v]:=\left(1+|v|^{2}\right)^{1 / 2} \tag{2.7}
\end{equation*}
$$

with $\Pi^{\perp}(v):=I-\Pi(v)$ and the related Sobolev norm

$$
\|h\|_{*, \gamma}^{2}:=\left\|[v]^{\gamma / 2} \widetilde{\nabla} h\right\|^{2}+\left\|[v]^{(2+\gamma) / 2} h\right\|^{2} .
$$

Deduce from (2.6) that

$$
\begin{equation*}
D_{0}(h) \geq\|\nabla h\|^{2} \geq\|h\|^{2} \tag{2.8}
\end{equation*}
$$

Also prove that there exists a constant $\lambda>0$ such that

$$
\begin{equation*}
D_{0}(h) \geq\|\widetilde{\nabla} h\|^{2} \geq \lambda\|h\|_{*, 0}^{2} . \tag{2.9}
\end{equation*}
$$

3 Nonlinear a priori estimate on the Landau equation and longtime behavior (when $\gamma=0$)

We still assume $\gamma=0$. In this section, we fix $h_{0} \in L_{0}^{2}(M)$ and we come back to the rescaled Landau equation (1.3).
(10) For any nice functions $f, g, h: \mathbb{R}^{d} \rightarrow \mathbb{R}$, prove that

$$
\begin{equation*}
(\mathcal{C}(f, g), h)=-\int_{\mathbb{R}^{d}}\left(\bar{a}_{i j}^{f} \partial_{j}(g M)-f M \bar{b}_{i}^{g}\right) \partial_{i} h d v \tag{3.10}
\end{equation*}
$$

with

$$
\begin{aligned}
\bar{a}_{i j}^{f} & =a_{i j} *(M f)=\int a_{i j}(u) M^{*} f^{*} d v^{*} \\
\bar{b}_{i}^{g} & :=b_{i} *(M g)=\int b_{i}(u) M^{*} f^{*} d v^{*}, \quad b_{i}:=\sum_{j=1}^{d} \partial_{j} a_{i j}=-(d-1) u_{i} .
\end{aligned}
$$

Observe then that for $g, f \in L_{0}^{2}(M)$ and $\gamma=0$, the coefficients simplify into

$$
\bar{a}_{i j}^{f}=T_{i j}(f), \quad \bar{b}_{i}^{g}=0,
$$

with the notation of (2.5). Deduce that there exists a constant $K>$ such that

$$
\begin{equation*}
\left|T_{i j}(f)\right| \leq \frac{K}{2}\|f\|_{L^{2}(M)}, \quad \forall f \in L_{0}^{2}(M) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
|(\mathcal{C}(f, g), h)| \leq K\|f\|_{L^{2}(M)}\|\nabla g\|_{L^{2}(M)}\|\nabla h\|_{L^{2}(M)}, \quad \forall f, g, h \in L_{0}^{2}(M) \tag{3.12}
\end{equation*}
$$

(11) Prove that, at least formally, any solution h to the rescaled Landau equation (1.3) satisfies

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|h\|^{2} \leq-\|\nabla h\|^{2}+K\|\nabla h\|^{2}\|h\| \tag{3.13}
\end{equation*}
$$

(12) Consider $h \in C^{1}\left(\mathbb{R}_{+} ; L_{0}^{2}(M)\right) \cap C\left(\mathbb{R}_{+} ; H^{1}(M)\right)$ which satisfies (3.13) and

$$
\|h(0, \cdot)\| \leq \eta<1 / K
$$

Establish first that

$$
\|h(t, \cdot)\| \leq \eta, \quad \forall t \geq 0
$$

next that

$$
\|h(t, \cdot)\| \leq e^{(K \eta-1) \lambda t}\|h(0, \cdot)\|, \quad \forall t \geq 0
$$

and finally that for any $\alpha \in(0, \lambda)$ there exists $C_{\alpha}>0$ such that

$$
\|h(t, \cdot)\| \leq C_{\alpha} e^{-\alpha t}, \quad \forall t \geq 0
$$

4 Existence of solutions (when $\gamma=0$)

(13) We assume $h_{0} \in L_{0}^{2}(M)$ and $\left\|h_{0}\right\| \leq \eta<1 / K$. For $g \in C\left([0, T] ; L_{0}^{2}(M)\right)$ such that $\sup _{t \geq 0}\|g(t, \cdot)\| \leq \eta<1 / K$, we consider the linear equation

$$
\begin{equation*}
\partial_{t} h=L h+\mathcal{C}(g, h), \quad h(0, \cdot)=h_{0} . \tag{4.14}
\end{equation*}
$$

Establish that there exists a variational solution $h \in C\left([0, T] ; L_{0}^{2}(M)\right) \cap L^{2}\left(0, T ; H^{1}(M)\right)$ to equation (4.14) and this one satisfies

$$
\|h(t, \cdot)\| \leq \eta, \quad \forall t \geq 0
$$

and

$$
(1-K \eta) \int_{0}^{T}\|\nabla h(t, \cdot)\|^{2} d t \leq \frac{1}{2} \eta^{2}, \quad \forall T>0
$$

(14) For g_{i} as in question (12) and h_{i} the associated solution to equation (4.14), prove that $h^{\sharp}:=h_{2}-h_{1}$ satisfies

$$
\frac{1}{2} \frac{d}{d t}\left\|h^{\sharp}\right\|^{2} \leq(K \eta-1)\left\|\nabla h^{\sharp}\right\|^{2}+K\left\|g^{\sharp}\right\|\left\|\nabla h_{1}\right\|\left\|\nabla h^{\sharp}\right\|,
$$

with $g:=g_{2}-g_{1}$. Deduce that there exists $K^{\prime}>0$ such that

$$
\sup _{[0, T]}\left\|h^{\sharp}(t, .)\right\|^{2} \leq K^{\prime} \int_{0}^{T}\left\|g^{\sharp}(t, .)\right\|^{2}\left\|\nabla h_{1}(t, .)\right\|^{2} d t .
$$

Deduce next that the mapping $g \mapsto h$ defined by (4.14) is a contraction for $\eta>0$ small enough.
(15) Conclude to the existence and uniqueness of a solution $h \in C\left([0, T] ; L_{0}^{2}(M)\right) \cap L^{2}\left(0, T ; H^{1}(M)\right)$, $\forall T>0$, which satisfies (3.13).

5 The case $\gamma \in(0,2]$

In this part, we assume $\gamma \in(0,2]$.
(16) We fix $h \in L_{0}^{2}(M)$. Prove that for any $R \in(0,1)$,

$$
D_{\gamma}(h) \geq R^{\gamma} D_{0}(h)-\varepsilon_{R}(h),
$$

with

$$
\varepsilon_{R}(h):=\frac{R^{\gamma}}{2} \int_{\mathbb{R}^{2 d}} \mathbf{1}_{|u| \leq R} Y^{T}\left[|u|^{2} I-u \otimes u\right] Y M M_{*} d v d v_{*}
$$

Deduce

$$
D_{\gamma}(h) \geq 2\|\nabla h\|_{L^{2}\left(M^{1 / 2}\right)}^{2}\left((d-1) R^{\gamma}-R^{\gamma+2}\right)
$$

for any $R \in(0,1)$, and next that there exists $K_{1}>0$ such that

$$
D_{\gamma}(h) \geq K_{1}\|h\|_{L^{2}(M)}^{2} .
$$

Prove (or accept!) that

$$
D_{\gamma}(h) \geq C_{1}\|h\|_{*, \gamma}^{2}-C_{2}\|h\|_{L^{2}(M)}^{2} .
$$

The two last inequalities together, deduce that there exists $\lambda>0$ such that

$$
D_{\gamma}(h) \geq \lambda\|h\|_{*, \gamma}^{2} .
$$

(17) Recalling that $a(u) u=0$, establish that

$$
\begin{aligned}
\left|a_{i j} *(M f) v_{i} v_{j}\right| & =\left|\int a_{i j} v_{i}^{*} v_{j}^{*} f^{*} M^{*} d v^{*}\right| \leq C_{1}[v]^{\gamma+2}\|f\| \\
\left|a_{i j} *(M f) v_{i}\right| & =\left|\int a_{i j} v_{i}^{*} f^{*} M^{*} d v^{*}\right| \leq C_{2}[v]^{\gamma+2}\|f\| .
\end{aligned}
$$

Introducing the splitting $\nabla g=\nabla^{\|} g+\nabla^{\perp} g$ and $\nabla h=\nabla^{\|} h+\nabla^{\perp} h$ in formula (3.10) with $\nabla^{\|} f=\Pi(v) \nabla f, \nabla^{\perp} f=\Pi^{\perp}(v) \nabla f$, so that

$$
\partial_{i}^{\perp} f:=\left(\nabla^{\perp} f\right)_{i}=\frac{v_{i}}{|v|}\left(\frac{v}{|v|} \cdot \nabla f\right),
$$

prove (or accept!) that

$$
\begin{equation*}
|(\mathcal{C}(f, g), h)| \leq K\|f\|_{L^{2}(M)}\|g\|_{*, \gamma}\|h\|_{*, \gamma}, \quad \forall f, g, h \in L_{0}^{2}(M) . \tag{5.15}
\end{equation*}
$$

(18) For $\eta>0$ small enough and any $h_{0} \in L_{0}^{2}(M)$ such that $\|h\|_{L^{2}(M)} \leq \eta$, prove the existence and uniqueness of a solution $h \in C^{1}\left(\mathbb{R}_{+} ; L_{0}^{2}(M)\right)$ which satisfies

$$
\sup _{t \geq 0}\|h(t, .)\|^{2}+\int_{0}^{\infty}\|h(t, .)\|_{*, \gamma}^{2} d t \leq \eta
$$

and for $\alpha, C>0$

$$
\|h(t, \cdot)\| \leq C e^{-\alpha t}, \quad \forall t \geq 0
$$

