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Problem 1 - The heat equation in the half-line.

In this problem, we consider the heat equation in the half-line{
∂tf = ∂2xxf in (0,∞)× R+,

f(0) = f0 on R+,
(0.1)

with Neumann condition
∂xf(t, 0) = 0 on (0,∞), (0.2)

or Dirichlet condition
f(t, 0) = 0 on (0,∞), (0.3)

and we investigate the long time behaviour of the solutions. The aim of the problem is to
recover the classical decay estimate in the case of the Neumann problem (0.1)-(0.2) and to
show that this estimate may be improved in the case of the Dirichlet problem (0.1)-(0.3).

Question 1

For f ∈ L2(R+), we denote f̄(x) = f(x) if x > 0, f̄(x) = f(−x) if x < 0. Observe that
for f ∈ C1(R+) there is equivalence between f ′(0) = 0 and f̄ ∈ C1(R). Show that if
f ∈ C([0, T );L2(R+)) ∩ L2(0, T ;H1(R+)) is a solution to (0.1)-(0.2) in the sense

d

dt

∫ ∞

0

fφ = −
∫ ∞

0

∂xf ∂xφ, ∀φ ∈ H1(R+),

then f̄ ∈ C([0, T );L2(R)) ∩ L2(0, T ;H1(R)) is a solution to the heat equation on the real
line in the sense

d

dt

∫
R
f̄φ = −

∫
R
∂xf̄ ∂xφ, ∀φ ∈ H1(R).

Deduce that if f0 ∈ L1(R+), there exists at least one solution f to (0.1)-(0.2) and this one
satisfies

∥f(t, ·)∥2L2 ≤
C

t1/2
∥f0∥2L1 , ∀ t > 0.
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Question 2

Prove that a solution f to the Dirichlet problem (0.1)-(0.3) satisfies (at least formally)

d

dt

∫ ∞

0

|f |dx ≤ 0,

d

dt

∫ ∞

0

fxdx = 0,
d

dt

∫ ∞

0

|f |xdx ≤ 0,

d

dt

∫ ∞

0

f 2dx = −
∫ ∞

0

(∂xf)
2,

d

dt

∫ ∞

0

f 2
−dx = −

∫ ∞

0

(∂xf−)
2.

Again formally, establish that if f0 ≥ 0, the associated solution satisfies f ≥ 0.

Question 3

For f ∈ C(R+), we denote f̃(x) = f(x) if x > 0, f̃(x) = −f(−x) if x < 0. Show that if
f ∈ C([0, T );L2(R+)) ∩ L2(0, T ;H1

0 (R+)) is a solution to (0.1)-(0.3) in the sense

d

dt

∫ ∞

0

fφ = −
∫ ∞

0

∂xf∂xφ, ∀φ ∈ H1
0 (R+),

then f̃ ∈ C([0, T );L2(R)) ∩ L2(0, T ;H1(R)) is a solution to the heat equation on the real
line in the sense

d

dt

∫
R
f̃φ = −

∫
R
∂xf̃∂xφ, ∀φ ∈ H1(R). (0.4)

Reciprocally, deduce that if f̃ ∈ C([0, T );L2(R))∩L2(0, T ;H1(R)) is an odd solution to the

heat equation on the real line in the sense that it satisfies (0.4) and f̃(t, x) = f̃(t,−x) for

any t ∈ (0, T ) and a.e. x ∈ R+, then the restriction f := f̃ |R+ is a solution to the Dirichlet
problem (0.1)-(0.3). Deduce that if f0 ∈ L2(R+), there exists at least one solution f to
(0.1)-(0.3).

Question 4 (improved Nash inequality)

We denote by L1
1 the Lebesgue space endowed with the norm ∥g∥L1

1
:= ∥(1+ |x|)g∥L1 . Show

that there exists a constant CiN > 0 such that for any g ∈ L1
1(R)∩H1(R) with zero mean,

there holds
∥g∥5/3L2 ≤ CiN∥g∥2/3L1

1
∥g′∥L2 .

(Hint. Use first Parseval’s identity and adapt the classical Nash inequality).
Deduce that there exists a constant C > 0 such that for any h ∈ L1

1(R+) ∩ H1(R+) with
h(0) = 0, there holds

∥h∥5/3L2 ≤ C∥h∥2/3
L1
1
∥h′∥L2 .

(Hint. Use the previous inequality for a well chosen g).
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Question 5

Consider f0 ∈ L1
1(R+) ∩ L2(R+). Establish (at least formally) that the associated solution

satisfies the improved decay

∥f(t, ·)∥2L2 ≤
C

t3/2
∥f0∥2L1

1
, ∀ t > 0.

Question 6

Explain briefly how to make the above result completely rigorous.

Question 7

Recover the same result for both problems (0.1)-(0.3) for any solution associated to an initial
datum f0 ∈ L1

1(R+) with zero mean by using the Fokker-Planck equation and the optimal
Poincaré estimate.
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Problem 2 - Krein-Rutman theorem in a weakly dissipative frame-
work

The aim of this problem is to extend the Krein-Rutman theorem to a more general framework
and to apply it to an example of parabolic equation.

1 Part I - An abstract Krein-Rutman theorem.

In this part X denotes a Banach lattice (e.g. X := Lp
m(E,A , µ) associated to the measurable

space (E,A , µ) := (Rd,B(Rd), λ) and the weight function m : E → [1,∞)), Y denotes a
dual Banach lattice (e.g. Y := Lp′

ν , ν := m−1) and S = SL is a positive continuous semigroup
of bounded operators on X.
We recall that X (and Y ) is a Banach space equipped with an order ≥ such that any vector
f ∈ X splits as f = f+ − f− with f± ∈ X+ := {g ∈ X; g ≥ 0} and we may associate its
absolute value |f | := f+ + f−. We finally recall that S(t)f ≥ 0 for any t ≥ 0 if f ≥ 0. We
denote the dual bracket between X and Y by

⟨f, ψ⟩ :=
∫
E

fψdµ.

We further assume that

(i) there exists ψ0 ∈ Y+\{0} such that [Stf ]0 ≥ [f ]0 for any f ∈ X+ and t ≥ 0, we denote
by X the vector space X endowed with the (semi)norm ∥f∥X = [f ]0 := ⟨|f |, ψ0⟩;

(ii) there exist v ∈ L∞(R+;B(X)) and 0 ≤ w ∈ L1(R+;B(X , X)) such that

S = v + w ∗ S, (1.1)

and we set

M := sup
t≥0

∥v(t)∥B(X) <∞, Θ(t) := ∥w(t)∥B(X ,X) ∈ L1(R+). (1.2)

(iii) BX is weakly σ(X, Y ) sequentially compact (so that Y is separable).

We define the positive number

R := max(2∥Θ∥L1 , ∥g0∥),

for some g0 ∈ X+ such that [g0]0 = 1, the set

C := {f ∈ X+; [f ]0 = 1, ∥f∥ ≤ R},

as well as the function λ and its supremum λ∗ by

λ(t) := inf
f∈C

[S(t)f ]0, ∀ t ≥ 0, λ∗ := sup
t≥0

λ(t).
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Question 8

Show that C is nonempty convex and weakly compact. Show that

[Stf ]0 ≥ [Ssf ]0, ∀ t ≥ s ≥ 0, ∀ f ≥ 0,

and that λ is an increasing function.

Question 9

We assume λ∗ > 2M . Choosing T0 > 0 such that

∀ f ∈ C, [ST0f ]0 ≥ 2M

(why is it possible?), we define

ΦT0f :=
ST0f

[ST0f ]0
, ∀ f ∈ C.

Show that ΦT0 : C → C and next that there exists fT0 ∈ X such that

fT0 ≥ 0, [fT0 ]0 = 1, ST0fT0 = eλ1T0fT0 .

Conclude that there exists (λ1, f1) ∈ R×X such that

λ1 > 0, f1 ∈ X+\{0}, Lf1 = λ1f1.

From now on in this part, we assume λ∗ ≤ 2M .

Question 10

Prove that there exists f0 ∈ C such that

∀ t ≥ 0, [S(t)f0]0 ≤ 2M. (1.3)

(Hint. Start observing that for any n ≥ 1, there exists fn ∈ C such that [S(n)fn]0 ≤ 2M).

Taking advantage of the splitting structure (1.1) of the semigroup S, for any T > 0, we
introduce the associated Cesàro means

UT :=
1

T

∫ T

0

S(t) dt, VT :=
1

T

∫ T

0

v(t) dt, WT :=
1

T

∫ T

0

(w ∗ S)(t) dt.

Question 11

Establish that
∥VT∥B(X) ≤M

and

∥WTf0∥ ≤ ∥Θ∥L1 [UTf0]0.

(Hint. For the second inequality, use the Fubini theorem). Deduce that

1 ≤ [STf0]0 ≤ 2M and ∥UTf0∥ ≤M∥f0∥+ 2M∥Θ∥L1 .
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Question 12

Deduce that there exist Tk → +∞ and f1 ∈ X such that UTk
f ⇀ f1 and f1 satisfies

f1 ∈ X+\{0}, Lf1 = λ1f1, with λ1 = 0.

Summarize the result established under assumptions (i), (ii) and (iii).

2 Part II - The Krein-Rutman theorem for a parabolic equation.

We consider the parabolic equation

∂tf = Lf := ∆f + div(bf) + cf in (0,∞)× Rd, (2.1)

with

b =
1

γ
∇⟨x⟩γ, γ ∈ (0, 1), 0 ≤ ⟨x⟩c ∈ L∞.

We define the multiplication operator A and the elliptic operator B by

A :=MχR, B := L −A,

for M,R > 0 and χR(x) := χ(x/R) with χ ∈ D(Rd), 1B1 ≤ χ ≤ 1B2 .

Question 13

Recall why the parabolic equation (2.1) has a solution and generates a positive semigroup in
L2
m for any weight function m, we choose m increasing enough in such a way that L2

m ⊂ L1.
Exhibit ψ0 ∈ L∞ ∩ C2 such that

L∗ψ0 ≥ 0.

Deduce that S satisfies property (i) stated at the beginning of Part I.

Question 14

We consider the family of weight functions m := ⟨x⟩k, for some k > 0 large enough to be
specified. Prove that we may find M,R > 0 large enough such that∫

(Bf)⟨x⟩kdx ≤ −ck
∫
f⟨x⟩k+γ−2dx

for some ck > 0 and for any k > 0 and any nice function f ≥ 0. Prove similarly that∫
(Bf)f⟨x⟩2kdx ≤ −ck

∫
|∇f |2⟨x⟩2kdx− ck

∫
f 2⟨x⟩2k+γ−2 dx

for any nice function f and any k > 0 large enough (at least k > d/2). Deduce that

(a) SB ∈ L∞
t (B(L2

m)) and SB ∈ L∞
t (B(L1

m)).
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Question 15

Establish that if 0 ≤ u ∈ C1(R+) satisfies

u′ ≤ −cu1+1/α, c, α > 0,

there exists C := C(c, α) > 0 such that

u(t) ≤ C/tα, ∀ t > 0.

Prove successively that if ℓ > k > 0 there exists α = α(k, ℓ) > 0 such that

∥SB(t)∥L1
ℓ→L1

k
≤ C/⟨t⟩α,

∥SB(t)∥L2
ℓ→L2

k
≤ C/⟨t⟩α,

∥SB(t)∥L1
ℓ→L2

k
≤ C/td/4.

Question 16

For N := [d/4] + 1 and m chosen conveniently, deduce that

(b) SBA ∈ L1
t (B(L2

m));

(c) (SBA)(∗N) ∈ L1
t (B(L1, L2

m)).

Question 17

Conclude that there exists f1 ∈ H1
m and λ1 ≥ 0 such that

Lf1 = λ1f1, f1 ≥ 0, f1 ̸≡ 0.
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