Exam, January 18, 2023

Problem 1 - The heat equation in the half-line.

In this problem, we consider the heat equation in the half-line

$$
\left\{\begin{array}{l}
\partial_{t} f=\partial_{x x}^{2} f \text { in }(0, \infty) \times \mathbb{R}_{+} \tag{0.1}\\
f(0)=f_{0} \text { on } \mathbb{R}_{+}
\end{array}\right.
$$

with Neumann condition

$$
\begin{equation*}
\partial_{x} f(t, 0)=0 \quad \text { on } \quad(0, \infty), \tag{0.2}
\end{equation*}
$$

or Dirichlet condition

$$
\begin{equation*}
f(t, 0)=0 \quad \text { on } \quad(0, \infty) \tag{0.3}
\end{equation*}
$$

and we investigate the long time behaviour of the solutions. The aim of the problem is to recover the classical decay estimate in the case of the Neumann problem (0.1)-(0.2) and to show that this estimate may be improved in the case of the Dirichlet problem (0.1)-(0.3).

Question 1

For $f \in L^{2}\left(\mathbb{R}_{+}\right)$, we denote $\bar{f}(x)=f(x)$ if $x>0, \bar{f}(x)=f(-x)$ if $x<0$. Observe that for $f \in C^{1}\left(\mathbb{R}_{+}\right)$there is equivalence between $f^{\prime}(0)=0$ and $\bar{f} \in C^{1}(\mathbb{R})$. Show that if $f \in C\left([0, T) ; L^{2}\left(\mathbb{R}_{+}\right)\right) \cap L^{2}\left(0, T ; H^{1}\left(\mathbb{R}_{+}\right)\right)$is a solution to (0.1)-(0.2) in the sense

$$
\frac{d}{d t} \int_{0}^{\infty} f \varphi=-\int_{0}^{\infty} \partial_{x} f \partial_{x} \varphi, \quad \forall \varphi \in H^{1}\left(\mathbb{R}_{+}\right)
$$

then $\bar{f} \in C\left([0, T) ; L^{2}(\mathbb{R})\right) \cap L^{2}\left(0, T ; H^{1}(\mathbb{R})\right)$ is a solution to the heat equation on the real line in the sense

$$
\frac{d}{d t} \int_{\mathbb{R}} \bar{f} \varphi=-\int_{\mathbb{R}} \partial_{x} \bar{f} \partial_{x} \varphi, \quad \forall \varphi \in H^{1}(\mathbb{R})
$$

Deduce that if $f_{0} \in L^{1}\left(\mathbb{R}_{+}\right)$, there exists at least one solution f to (0.1)-(0.2) and this one satisfies

$$
\|f(t, \cdot)\|_{L^{2}}^{2} \leq \frac{C}{t^{1 / 2}}\left\|f_{0}\right\|_{L^{1}}^{2}, \quad \forall t>0
$$

Question 2

Prove that a solution f to the Dirichlet problem (0.1)-(0.3) satisfies (at least formally)

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{\infty}|f| d x \leq 0 \\
& \frac{d}{d t} \int_{0}^{\infty} f x d x=0, \quad \frac{d}{d t} \int_{0}^{\infty}|f| x d x \leq 0 \\
& \frac{d}{d t} \int_{0}^{\infty} f^{2} d x=-\int_{0}^{\infty}\left(\partial_{x} f\right)^{2} \\
& \frac{d}{d t} \int_{0}^{\infty} f_{-}^{2} d x=-\int_{0}^{\infty}\left(\partial_{x} f_{-}\right)^{2}
\end{aligned}
$$

Again formally, establish that if $f_{0} \geq 0$, the associated solution satisfies $f \geq 0$.

Question 3

For $f \in C\left(\mathbb{R}_{+}\right)$, we denote $\tilde{f}(x)=f(x)$ if $x>0, \tilde{f}(x)=-f(-x)$ if $x<0$. Show that if $f \in C\left([0, T) ; L^{2}\left(\mathbb{R}_{+}\right)\right) \cap L^{2}\left(0, T ; H_{0}^{1}\left(\mathbb{R}_{+}\right)\right)$is a solution to (0.1)-(0.3) in the sense

$$
\frac{d}{d t} \int_{0}^{\infty} f \varphi=-\int_{0}^{\infty} \partial_{x} f \partial_{x} \varphi, \quad \forall \varphi \in H_{0}^{1}\left(\mathbb{R}_{+}\right)
$$

then $\tilde{f} \in C\left([0, T) ; L^{2}(\mathbb{R})\right) \cap L^{2}\left(0, T ; H^{1}(\mathbb{R})\right)$ is a solution to the heat equation on the real line in the sense

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathbb{R}} \widetilde{f} \varphi=-\int_{\mathbb{R}} \partial_{x} \widetilde{f} \partial_{x} \varphi, \quad \forall \varphi \in H^{1}(\mathbb{R}) \tag{0.4}
\end{equation*}
$$

Reciprocally, deduce that if $\widetilde{f} \in C\left([0, T) ; L^{2}(\mathbb{R})\right) \cap L^{2}\left(0, T ; H^{1}(\mathbb{R})\right)$ is an odd solution to the heat equation on the real line in the sense that it satisfies (0.4) and $\widetilde{f}(t, x)=\widetilde{f}(t,-x)$ for any $t \in(0, T)$ and a.e. $x \in \mathbb{R}_{+}$, then the restriction $f:=\widetilde{f}_{\mid \mathbb{R}+}$ is a solution to the Dirichlet problem (0.1)-(0.3). Deduce that if $f_{0} \in L^{2}\left(\mathbb{R}_{+}\right)$, there exists at least one solution f to (0.1)-(0.3).

Question 4 (improved Nash inequality)

We denote by L_{1}^{1} the Lebesgue space endowed with the norm $\|g\|_{L_{1}^{1}}:=\|(1+|x|) g\|_{L^{1}}$. Show that there exists a constant $C_{i N}>0$ such that for any $g \in L_{1}^{1}(\mathbb{R}) \cap H^{1}(\mathbb{R})$ with zero mean, there holds

$$
\|g\|_{L^{2}}^{5 / 3} \leq C_{i N}\|g\|_{L_{1}^{1}}^{2 / 3}\left\|g^{\prime}\right\|_{L^{2}}
$$

(Hint. Use first Parseval's identity and adapt the classical Nash inequality).
Deduce that there exists a constant $C>0$ such that for any $h \in L_{1}^{1}\left(\mathbb{R}_{+}\right) \cap H^{1}\left(\mathbb{R}_{+}\right)$with $h(0)=0$, there holds

$$
\|h\|_{L^{2}}^{5 / 3} \leq C\|h\|_{L_{1}^{1}}^{2 / 3}\left\|h^{\prime}\right\|_{L^{2}}
$$

(Hint. Use the previous inequality for a well chosen g).

Question 5

Consider $f_{0} \in L_{1}^{1}\left(\mathbb{R}_{+}\right) \cap L^{2}\left(\mathbb{R}_{+}\right)$. Establish (at least formally) that the associated solution satisfies the improved decay

$$
\|f(t, \cdot)\|_{L^{2}}^{2} \leq \frac{C}{t^{3 / 2}}\left\|f_{0}\right\|_{L_{1}^{1}}^{2}, \quad \forall t>0 .
$$

Question 6

Explain briefly how to make the above result completely rigorous.

Question 7

Recover the same result for both problems (0.1)-(0.3) for any solution associated to an initial datum $f_{0} \in L_{1}^{1}\left(\mathbb{R}_{+}\right)$with zero mean by using the Fokker-Planck equation and the optimal Poincaré estimate.

Problem 2-Krein-Rutman theorem in a weakly dissipative framework

The aim of this problem is to extend the Krein-Rutman theorem to a more general framework and to apply it to an example of parabolic equation.

1 Part I - An abstract Krein-Rutman theorem.

In this part X denotes a Banach lattice (e.g. $X:=L_{m}^{p}(E, \mathscr{A}, \mu)$ associated to the measurable space $(E, \mathscr{A}, \mu):=\left(\mathbb{R}^{d}, \mathscr{B}\left(\mathbb{R}^{d}\right), \lambda\right)$ and the weight function $\left.m: E \rightarrow[1, \infty)\right), Y$ denotes a dual Banach lattice (e.g. $Y:=L_{\nu}^{p^{\prime}}, \nu:=m^{-1}$) and $S=S_{\mathcal{L}}$ is a positive continuous semigroup of bounded operators on X.
We recall that $X($ and $Y)$ is a Banach space equipped with an order \geq such that any vector $f \in X$ splits as $f=f_{+}-f_{-}$with $f_{ \pm} \in X_{+}:=\{g \in X ; g \geq 0\}$ and we may associate its absolute value $|f|:=f_{+}+f_{-}$. We finally recall that $S(t) f \geq 0$ for any $t \geq 0$ if $f \geq 0$. We denote the dual bracket between X and Y by

$$
\langle f, \psi\rangle:=\int_{E} f \psi d \mu .
$$

We further assume that
(i) there exists $\psi_{0} \in Y_{+} \backslash\{0\}$ such that $\left[S_{t} f\right]_{0} \geq[f]_{0}$ for any $f \in X_{+}$and $t \geq 0$, we denote by \mathcal{X} the vector space X endowed with the (semi)norm $\|f\|_{\mathcal{X}}=[f]_{0}:=\langle | f\left|, \psi_{0}\right\rangle$;
(ii) there exist $v \in L^{\infty}\left(\mathbb{R}_{+} ; \mathscr{B}(X)\right)$ and $0 \leq w \in L^{1}\left(\mathbb{R}_{+} ; \mathscr{B}(\mathcal{X}, X)\right)$ such that

$$
\begin{equation*}
S=v+w * S \tag{1.1}
\end{equation*}
$$

and we set

$$
\begin{equation*}
M:=\sup _{t \geq 0}\|v(t)\|_{\mathscr{B}(X)}<\infty, \quad \Theta(t):=\|w(t)\|_{\mathscr{B}(\mathcal{X}, X)} \in L^{1}\left(\mathbb{R}_{+}\right) \tag{1.2}
\end{equation*}
$$

(iii) B_{X} is weakly $\sigma(X, Y)$ sequentially compact (so that Y is separable).

We define the positive number

$$
R:=\max \left(2\|\Theta\|_{L^{1}},\left\|g_{0}\right\|\right),
$$

for some $g_{0} \in X_{+}$such that $\left[g_{0}\right]_{0}=1$, the set

$$
\mathcal{C}:=\left\{f \in X_{+} ;[f]_{0}=1,\|f\| \leq R\right\}
$$

as well as the function λ and its supremum λ^{*} by

$$
\lambda(t):=\inf _{f \in \mathcal{C}}[S(t) f]_{0}, \quad \forall t \geq 0, \quad \lambda^{*}:=\sup _{t \geq 0} \lambda(t) .
$$

Question 8

Show that \mathcal{C} is nonempty convex and weakly compact. Show that

$$
\left[S_{t} f\right]_{0} \geq\left[S_{s} f\right]_{0}, \quad \forall t \geq s \geq 0, \quad \forall f \geq 0
$$

and that λ is an increasing function.

Question 9

We assume $\lambda^{*}>2 M$. Choosing $T_{0}>0$ such that

$$
\forall f \in \mathcal{C}, \quad\left[S_{T_{0}} f\right]_{0} \geq 2 M
$$

(why is it possible?), we define

$$
\Phi_{T_{0}} f:=\frac{S_{T_{0}} f}{\left[S_{T_{0}} f\right]_{0}}, \quad \forall f \in \mathcal{C}
$$

Show that $\Phi_{T_{0}}: \mathcal{C} \rightarrow \mathcal{C}$ and next that there exists $f_{T_{0}} \in X$ such that

$$
f_{T_{0}} \geq 0, \quad\left[f_{T_{0}}\right]_{0}=1, \quad S_{T_{0}} f_{T_{0}}=e^{\lambda_{1} T_{0}} f_{T_{0}}
$$

Conclude that there exists $\left(\lambda_{1}, f_{1}\right) \in \mathbb{R} \times X$ such that

$$
\lambda_{1}>0, \quad f_{1} \in X_{+} \backslash\{0\}, \quad \mathcal{L} f_{1}=\lambda_{1} f_{1} .
$$

From now on in this part, we assume $\lambda^{*} \leq 2 M$.

Question 10

Prove that there exists $f_{0} \in \mathcal{C}$ such that

$$
\begin{equation*}
\forall t \geq 0, \quad\left[S(t) f_{0}\right]_{0} \leq 2 M \tag{1.3}
\end{equation*}
$$

(Hint. Start observing that for any $n \geq 1$, there exists $f_{n} \in \mathcal{C}$ such that $\left.\left[S(n) f_{n}\right]_{0} \leq 2 M\right)$.
Taking advantage of the splitting structure (1.1) of the semigroup S, for any $T>0$, we introduce the associated Cesàro means

$$
U_{T}:=\frac{1}{T} \int_{0}^{T} S(t) d t, \quad V_{T}:=\frac{1}{T} \int_{0}^{T} v(t) d t, \quad W_{T}:=\frac{1}{T} \int_{0}^{T}(w * S)(t) d t
$$

Question 11

Establish that

$$
\left\|V_{T}\right\|_{\mathscr{B}(X)} \leq M
$$

and

$$
\left\|W_{T} f_{0}\right\| \leq\|\Theta\|_{L^{1}}\left[U_{T} f_{0}\right]_{0} .
$$

(Hint. For the second inequality, use the Fubini theorem). Deduce that

$$
1 \leq\left[S_{T} f_{0}\right]_{0} \leq 2 M \quad \text { and } \quad\left\|U_{T} f_{0}\right\| \leq M\left\|f_{0}\right\|+2 M\|\Theta\|_{L^{1}}
$$

Question 12

Deduce that there exist $T_{k} \rightarrow+\infty$ and $f_{1} \in X$ such that $U_{T_{k}} f \rightharpoonup f_{1}$ and f_{1} satisfies

$$
f_{1} \in X_{+} \backslash\{0\}, \quad \mathcal{L} f_{1}=\lambda_{1} f_{1}, \quad \text { with } \quad \lambda_{1}=0
$$

Summarize the result established under assumptions (i), (ii) and (iii).

2 Part II - The Krein-Rutman theorem for a parabolic equation.

We consider the parabolic equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=\Delta f+\operatorname{div}(b f)+c f \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{d} \tag{2.1}
\end{equation*}
$$

with

$$
b=\frac{1}{\gamma} \nabla\langle x\rangle^{\gamma}, \gamma \in(0,1), \quad 0 \leq\langle x\rangle c \in L^{\infty} .
$$

We define the multiplication operator \mathcal{A} and the elliptic operator \mathcal{B} by

$$
\mathcal{A}:=M \chi_{R}, \quad \mathcal{B}:=\mathcal{L}-\mathcal{A},
$$

for $M, R>0$ and $\chi_{R}(x):=\chi(x / R)$ with $\chi \in \mathcal{D}\left(\mathbb{R}^{d}\right), \mathbf{1}_{B_{1}} \leq \chi \leq \mathbf{1}_{B_{2}}$.

Question 13

Recall why the parabolic equation (2.1) has a solution and generates a positive semigroup in L_{m}^{2} for any weight function m, we choose m increasing enough in such a way that $L_{m}^{2} \subset L^{1}$. Exhibit $\psi_{0} \in L^{\infty} \cap C^{2}$ such that

$$
\mathcal{L}^{*} \psi_{0} \geq 0
$$

Deduce that S satisfies property (i) stated at the beginning of Part I.

Question 14

We consider the family of weight functions $m:=\langle x\rangle^{k}$, for some $k>0$ large enough to be specified. Prove that we may find $M, R>0$ large enough such that

$$
\int(\mathcal{B} f)\langle x\rangle^{k} d x \leq-c_{k} \int f\langle x\rangle^{k+\gamma-2} d x
$$

for some $c_{k}>0$ and for any $k>0$ and any nice function $f \geq 0$. Prove similarly that

$$
\int(\mathcal{B} f) f\langle x\rangle^{2 k} d x \leq-c_{k} \int|\nabla f|^{2}\langle x\rangle^{2 k} d x-c_{k} \int f^{2}\langle x\rangle^{2 k+\gamma-2} d x
$$

for any nice function f and any $k>0$ large enough (at least $k>d / 2$). Deduce that (a) $S_{\mathcal{B}} \in L_{t}^{\infty}\left(\mathscr{B}\left(L_{m}^{2}\right)\right)$ and $S_{\mathcal{B}} \in L_{t}^{\infty}\left(\mathscr{B}\left(L_{m}^{1}\right)\right)$.

Question 15

Establish that if $0 \leq u \in C^{1}\left(\mathbb{R}_{+}\right)$satisfies

$$
u^{\prime} \leq-c u^{1+1 / \alpha}, \quad c, \alpha>0
$$

there exists $C:=C(c, \alpha)>0$ such that

$$
u(t) \leq C / t^{\alpha}, \quad \forall t>0
$$

Prove successively that if $\ell>k>0$ there exists $\alpha=\alpha(k, \ell)>0$ such that

$$
\begin{aligned}
& \left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L_{k}^{1}} \leq C /\langle t\rangle^{\alpha}, \\
& \left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{2} \rightarrow L_{k}^{2}} \leq C /\langle t\rangle^{\alpha} \\
& \left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L_{k}^{2}} \leq C / t^{d / 4}
\end{aligned}
$$

Question 16

For $N:=[d / 4]+1$ and m chosen conveniently, deduce that
(b) $S_{\mathcal{B}} \mathcal{A} \in L_{t}^{1}\left(\mathscr{B}\left(L_{m}^{2}\right)\right)$;
(c) $\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* N)} \in L_{t}^{1}\left(\mathscr{B}\left(L^{1}, L_{m}^{2}\right)\right)$.

Question 17

Conclude that there exists $f_{1} \in H_{m}^{1}$ and $\lambda_{1} \geq 0$ such that

$$
\mathcal{L} f_{1}=\lambda_{1} f_{1}, \quad f_{1} \geq 0, \quad f_{1} \not \equiv 0
$$

