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Problem 1 - The heat equation in the half-line.

In this problem, we consider the heat equation in the half-line

atf = 85:13.]( in (07 OO) X R-‘m (O 1)
f(o):fO on RJrv ‘
with Neumann condition
0. f(t,0) =0 on (0,00), (0.2)
or Dirichlet condition
f(t,0) =0 on (0,00), (0.3)

and we investigate the long time behaviour of the solutions. The aim of the problem is to
recover the classical decay estimate in the case of the Neumann problem (0.1)-(0.2) and to
show that this estimate may be improved in the case of the Dirichlet problem (0.1)-(0.3).

Question 1

For f € L*(R,), we denote f(z) = f(z) if > 0, f(z) = f(—z) if z < 0. Observe that
for f € CY(R,) there is equivalence between f'(0) = 0 and f € C'(R). Show that if
feC(0,T); L*(R,)) N L*(0,T; H'(R,)) is a solution to (0.1)-(0.2) in the sense

d oo oo

then f € C([0,T); L*(R)) N L%*(0,T; H'(R)) is a solution to the heat equation on the real
line in the sense

a / Fo— —/axfaxw, Vo e H'(R).

Deduce that if fy € L'(R,), there exists at least one solution f to (0.1)-(0.2) and this one
satisfies

C
1t )ze < 1l follzrs vt >0.



Question 2

Prove that a solution f to the Dirichlet problem (0.1)-(0.3) satisfies (at least formally)

d
2 flaw <

0
d o0
/ frdx = ), |flzdz <0,

%/0 fPdx = —/Ooo(axf)Q,
%/ﬂwﬁd:@:—/om(axf-f

Again formally, establish that if fy > 0, the associated solution satisfies f > 0.

Question 3

For f € C(R,), we denote f(z) = f(z) if 2 > 0, f(z) = —f(—z) if # < 0. Show that if
feC(0,T); L*(R,)) N L*(0,T; HY(R,)) is a solution to (0.1)-(0.3) in the sense

/fso——/ 0.f0.p, Vi€ HUR,).

then f € C([0,T); L2(R)) N L*(0, T; H'(R)) is a solution to the heat equation on the real
line in the sense

d [ ~ -
E /R Fo=— /R 0, fonp, Vo€ H\R). (0.4)

Reciprocally, deduce that if f € C([0,T): L*(R)) N L2(0,T; H*(R)) is an odd solution to the
heat equation on the real line in the sense that it satisfies (0.4) and f(t,z) = f(t,—z) for
any t € (0,7) and a.e. © € Ry, then the restriction f := f|JR+ is a solution to the Dirichlet
problem (0.1)-(0.3). Deduce that if f, € L*(R,), there exists at least one solution f to
(0.1)-(0.3).

Question 4 (improved Nash inequality)

We denote by Lj the Lebesgue space endowed with the norm [|g|| 1 := [|(1+|x[)g|/z1. Show

that there exists a constant C;y > 0 such that for any ¢ € L1(R) N H'(R) with zero mean,

there holds 53
lgll72 19/l =

(Hint. Use first Parseval’s identity and adapt the classical Nash inequality).

Deduce that there exists a constant C' > 0 such that for any h € Li(R;) N H*(R,) with

h(0) = 0, there holds

< Cuvlgl s’

RIS < CRIE I | 2.

(Hint. Use the previous inequality for a well chosen g).
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Question 5

Consider fy € Li(Ry) N L?(R,). Establish (at least formally) that the associated solution
satisfies the improved decay

C
(& )ze < 5l follzys Ve >0.

Question 6

Explain briefly how to make the above result completely rigorous.

Question 7

Recover the same result for both problems (0.1)-(0.3) for any solution associated to an initial
datum fy € L{(R,) with zero mean by using the Fokker-Planck equation and the optimal
Poincaré estimate.



Problem 2 - Krein-Rutman theorem in a weakly dissipative frame-
work

The aim of this problem is to extend the Krein-Rutman theorem to a more general framework
and to apply it to an example of parabolic equation.

1 PartI- An abstract Krein-Rutman theorem.

In this part X denotes a Banach lattice (e.g. X := LP (E, o/, nu) associated to the measurable
space (B, o, u) = (R? Z(R?),\) and the weight function m : E — [1,00)), Y denotes a
dual Banach lattice (e.g. Y := L¥ v :=m~') and S = S, is a positive continuous semigroup
of bounded operators on X.

We recall that X (and Y') is a Banach space equipped with an order > such that any vector
f € X splitsas f = f, — f_ with fy € X, := {g € X; g > 0} and we may associate its
absolute value |f| := f, + f_. We finally recall that S(¢)f > 0 for any ¢t > 0 if f > 0. We
denote the dual bracket between X and Y by

() = /E Fud.

We further assume that

(1) there exists 19 € Y \{0} such that [S;f]o > [f]o for any f € X, and t > 0, we denote
by X the vector space X endowed with the (semi)norm || f|lx = [flo := {|f], ¥o);

(ii) there exist v € L°(R,; #B(X)) and 0 < w € L'(Ry; B(X, X)) such that
S=v+wx*S, (1.1)
and we set

M= swp o(®)acy < o0, O(1) = w®llacey € LR, (12

(iii) Bx is weakly o(X,Y) sequentially compact (so that Y is separable).
We define the positive number
R := max(2(|©]| 1, [|g0ll),
for some gy € X, such that [gy]o = 1, the set
C={feX[flo=1 |fll <R}

as well as the function A and its supremum A* by

A(t) = inf[S(t) flo, Vt>0, A" = sup A(%).

fec >0



Question 8
Show that C is nonempty convex and weakly compact. Show that
[Stf]OZ [sz]()v thSZO, vf207

and that A is an increasing function.

Question 9
We assume \* > 2M. Choosing Ty > 0 such that
Vfel, [Snpflo>2M
(why is it possible?), we define
Sto.f

Or f = S 1o’
Show that &7, : C — C and next that there exists fr, € X such that
fro =0, [fnlo=1, Snpfn=e""fn.
Conclude that there exists (A1, f1) € R x X such that
M >0, f1e Xo\{0}, Lfi=Mfi

Vfec.

From now on in this part, we assume \* < 2M.

Question 10
Prove that there exists fy € C such that

Vi>0, [S(t)foo <2M. (1.3)
(Hint. Start observing that for any n > 1, there exists f,, € C such that [S(n)f.]o < 2M).

Taking advantage of the splitting structure (1.1) of the semigroup S, for any 7' > 0, we
introduce the associated Cesaro means

1 /7 1 [T 1 (T
UT = T/O S(t) dt, VT = T/O "U(t) dt, WT = T/O (w * S)(t) dt
Question 11

Establish that
IVellaco < M

and

Wz foll < [1©][2+ [Ur folo-
(Hint. For the second inequality, use the Fubini theorem). Deduce that

1< [Srfolo <2M and |[Urfoll < M|l fol| 4+ 2M /O] 1.
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Question 12
Deduce that there exist T, — +o00 and f; € X such that Uy, f — f1 and f; satisfies

f1 € X+\{0}, Efl = )\1f1, with A\ = 0.

Summarize the result established under assumptions (i), (ii) and (iii).

2 Part II - The Krein-Rutman theorem for a parabolic equation.

We consider the parabolic equation
Of =Lf :=Af +div(bf)+cf in (0,00) x RY (2.1)

with .
b= ;V(x)”,v €(0,1), 0< {(x)ce L™.

We define the multiplication operator A and the elliptic operator B by
A:=Myr, B:=L-A,
for M, R > 0 and xg(z) := x(z/R) with y € D(R?), 15, < x < 13,.

Question 13

Recall why the parabolic equation (2.1) has a solution and generates a positive semigroup in
L2, for any weight function m, we choose m increasing enough in such a way that L2, C L'.
Exhibit 1y € L> N C? such that

Lo > 0.

Deduce that S satisfies property (i) stated at the beginning of Part I.

Question 14

We consider the family of weight functions m := (x)*, for some k > 0 large enough to be
specified. Prove that we may find M, R > 0 large enough such that

[Bnin < —a [ o
for some ¢ > 0 and for any £ > 0 and any nice function f > 0. Prove similarly that
/(Bf>f(x>2kdx S Gk / IV f1? () da — Ck/f2<:v>2k+7—2 dz

for any nice function f and any k > 0 large enough (at least £ > d/2). Deduce that
(a) Sp € Ls°(B(L2)) and S € Le°(B(LL)).



Question 15
Establish that if 0 < u € C*(R,) satisfies
u < —cuttVY e a0,
there exists C':= C(c, ) > 0 such that
u(t) < C/t*, Vit > 0.
Prove successively that if £ > k > 0 there exists o = a(k, ) > 0 such that

196(#) |-y < C/#),
196(t) |22 < C/()%,
158(t) || L3—sz2 < O/t

Question 16
For N :=[d/4] + 1 and m chosen conveniently, deduce that
(b) SpA € Li(#(L7,));

(c) (Sp AN € LI(B(LY, L7,))-

Question 17
Conclude that there exists fi € H} and A; > 0 such that

Lfi=Mh, f120, fi#0.



