
Université Paris-Dauphine 2023-2024
An introduction to evolution PDEs January 2024

Exam, January 12, 2023

The exam is made of two independent problems. One may obtain the maximal score without
dealing with the “more difficult questions” that one finds at the end of each problem. The
answers may be written in english, french or spanish (choose only one language!).

1 Problem 1 - The kinetic Fokker-Planck equation.

In this problem, we consider the kinetic Fokker-Planck (or Kolmogorov) equation{
∂tf = −v∂xf + ∂2vvf in (0,∞)× R× R,
f(0, ·) = f0 on R× R,

(1.1)

on the function f = f(t, x, v), t ≥ 0, x ∈ R, v ∈ R.

The aim of this problem is to prove the existence and uniqueness of the solution to the
Fokker-Planck equation as well as an ultracontractivity property.

Question 1

For f0 ∈ L2(R) and T > 0, establish that there exists a weak solution f ∈ L2((0, T ) ×
R;H1

v (R)) to equation (1.1) in the sense∫
U
{f(−∂tφ− v∂xφ) + ∂vf∂vφ}dtdxdv =

∫
R2

f0φ(0, ·)dxdv (1.2)

for any φ ∈ C1
c ([0, T )× R2), U := (0, T )× R2.

In the next two questions, we accept furthermore that

f ∈ C(R+;L
2(R2)). (1.3)
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Question 2

Consider a mollifer (ρε) in R2 and define fε := f ∗x,v ρε. Prove that

∂tfε + v∂xfε − ∂2vvfε = rε,

in D′([0, T )×R2), with rε → 0 in L2
loc((0, T )×R2). Deduce that for any β ∈ C2, β′′ ∈ L∞(R),

there holds
∂tβ(f) = −v∂xβ(f) + ∂2vvβ(f)− β′′(f)|∂vf |2, (1.4)

in D′([0, T )× R2), and more precisely∫
U
{β(f)(−∂tφ− v∂xφ) + ∂vβ(f)∂vφ+ β′′(f)|∂vf |2φ}dtdxdv =

∫
R2

β(f0)φ(0, ·)dxdv,

for any φ ∈ C1
c ([0, T )× R2).

Question 3

Prove that f is the unique function satisfying both (1.2) and (1.3).

In the seven next questions, we assume that the involved functions are nice (smooth,
fast decaying) in order to justify the computations.

Question 4

We denote Lp = Lp(R2) and we assume f0 ∈ Lp, 1 ≤ p ≤ ∞. For a solution f to (1.1)
establish that

sup
t≥0

∥f(t, ·)∥Lp ≤ ∥f0∥Lp .

Question 5

We denote L2 = L2(R2) and (·, ·) the associated scalar product. Prove that a solution f to
(1.1) satisfies

1

2

d

dt
∥f∥2L2 = −∥∂vf∥2L2

1

2

d

dt
∥∂xf∥2L2 = −∥∂2xvf∥2L2

1

2

d

dt
∥∂vf∥2L2 = −(∂xf, ∂vf)− ∥∂2vvf∥2L2

d

dt
(∂xf, ∂vf) = −∥∂xf∥2L2 − 2(∂2xvf, ∂

2
vvf).
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Question 6

We denote H1 = H1(R2) and, for f ∈ H1, we define

∥f∥2H1 := ∥f∥2L2 + ∥∂xf∥2L2 + ∥∂vf∥2L2 , F = F(f) := ∥f∥2H1 + (∂xf, ∂vf).

Establish that
1

2
∥f∥2H1 ≤ F ≤ 3

2
∥f∥2H1 , ∀ f ∈ H1.

For a solution f to (1.1), we denote Ft := F(f(t, ·)). Establish that F ′
t ≤ 0 and deduce

∥f(t, ·)∥H1 ≤
√
3 ∥f0∥H1 , ∀ t ≥ 0.

Question 7

We define

G = G(f) := ε−1∥f∥2L2 + ε3t3∥∂xf∥2L2 + εt∥∂vf∥2L2 + ε2t2(∂xf, ∂vf).

For a solution f to (1.1), we denote Gt := G(f(t, ·)). Establish that for some fixed ε ∈ (0, 1)
small enough, there holds G ′

t ≤ 0 for any t > 0. (Hint. At some point, use the Young
inequalities

2∥∂vf∥L2∥∂xf∥L2 ≤ ε−2t−1∥∂vf∥2L2 + ε2t∥∂xf∥2L2 ,

2∥∂2vvf∥L2∥∂2xvf∥L2 ≤ ε−1t−1∥∂vvf∥2L2 + εt∥∂vxf∥2L2).

Deduce that f(t) ∈ H1 for any t > 0 if f0 ∈ L2, and more precisely

t3∥f(t, ·)∥2H1 ≤
2

ε4
∥f0∥2L2 , ∀ t ∈ (0, 1).

Question 8

Deduce that for any q ∈ (2,∞) and T ∈ (0, 1), there exists C(q) such that

∥f(t, ·)∥Lq ≤ C(q)

t3/2
∥f0∥L2 , ∀ t ∈ (0, T ).

Together with question 4, establish that there exists C > 0 such that

∥f(t, ·)∥L3 ≤ C

(t− s)2/3
∥f(s, ·)∥L2 , ∀ s, t, 0 < s < t < T.
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Question 9

Denote ρa := ∥f(t, ·)∥La . For φ ≥ 0, establish that∫ T

0

φ(t)ρ3(t)dt ≤ C

∫ T

0

Φ(s)ρ2(s)ds,

with

Φ(s) :=

∫ T

s

φ(t)

t

dt

(t− s)2/3
.

Together with question 4, deduce that

A(T )ρ3(T ) ≲ B(T )ρ3/2(0), ∀T ∈ (0, 1),

with

A(T ) :=

∫ T

0

φ(t)dt, B(T ) :=

∫ T

0

Φ2(s)φ−1(s)ds.

Choosing finally φ(t) := ψ(t/T ) and ψ adequately, establish that

ρ3(T ) ≲ T−4/3ρ3/2(0), ∀T ∈ (0, 1).

Question 10 (more difficult)

Taking into account the previous two questions and repeating the arguments, establish suc-
cessively

∥f(t, ·)∥L2 ≤ C1

(t− s)2/3
∥f(s, ·)∥L3/2 , ∀ s, t, 0 < s < t < 1,

∥f(t, ·)∥L2 ≤ C2

t•
∥f0∥L1 , ∀ t ∈ (0, 1),

for some Ci > 0 and • > 0 to be made explicit. Establish next

∥f(t, ·)∥L∞ ≤ C3

t2•
∥f0∥L1 , ∀ t ∈ (0, 1).

The aim of the next questions is to prove (1.3).

Question 11 (more difficult)

For f0 ∈ L2(R), we consider a function f ∈ L2((0, T ) × R;H1
v (R)) which satisfies (1.2) as

established in Question 1. We denote by (fε) and (rε) the sequences of functions defined in
Question 2.
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For εn → 0, define gn,m := fεm − fεn , Rn,m := rεm − rεn , and establish that∣∣∣∫
R2

β(gn,m)(t1)ϕdxdv −
∫
R2

β(gn,m)(t0)ϕdxdv
∣∣∣

≤
∫ t1

t0

∫
R2

{
|gn,m||v∂xϕ+ ∂2vvϕ|+ |Rn,m|ϕ

}
dvdxdt,

for any 0 ≤ t0 ≤ t1 ≤ T , any n,m ≥ 1, any ϕ ∈ C2
c (R2), first for β ∈ C2, 0 ≤ β′′ ∈ L∞(R),

0 ≤ β(s) ≤ |s|, next for β(s) = |s|.
Observing that there exists t1 ∈ (0, T ) such that fεn(t1, ·) → f(t1, ·) in L2 as n → ∞,
establish that (fεnϕ) is a Cauhy sequence in C([0, T ];L1) for any 0 ≤ ϕ ∈ C2

c (R2) and any

T > 0. Deduce that there exists a function f̃ ∈ C([0, T ];L1(BR)) for any T,R > 0 such that

f̃ = f a.e. on R+ × R2. In the sequel, we adopt the notation f for f̃ .

Question 12 (more difficult)

Repeating the proof of Question 2, establish that (1.4) holds for any β ∈ C2, β′, β′′ ∈ L∞(R).
Deduce that f ∈ L∞(0, T ;L2) and next that (1.4) holds for any β ∈ C2, β′′ ∈ L∞(R).

Question 13 (more difficult)

Establish that f ∈ C(R+;L
2
weak) in the sense that

t 7→
∫
R2

f(t, ·)ϕdx ∈ C(R+)

for any ϕ ∈ L2(R2) and that t 7→ ∥f(t, ·)∥L2 ∈ C(R+). Deduce that (1.3) holds.
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2 Problem 2 - The Vlasov-Poisson equation.

In this problem, we consider the (nonlinear) Vlasov-Poisson equation{
∂tf + v · ∇xf + Ef · ∇vf = 0 in (0,∞)× Rd × Rd,

f(0, ·) = f0 on Rd × Rd,
(2.1)

on the function f = f(t, x, v), t ≥ 0, x ∈ Rd, v ∈ Rd, in dimension d = 2, where

Ef = −∇xΦf , −∆xΦf = ρf in (0,∞)× Rd,

and

ρf (t, x) :=

∫
Rd

f(t, x, v)dv.

We assume that

0 ≤ f0 ∈ (L1 ∩ L∞)(R2d), f0|v|2 ∈ L1(R2d), Ef0 ∈ L2(Rd). (2.2)

The aim of this problem is to establsih the existence of a weak solution to the Vlasov-
Poisson equation (2.1).

Question 21

Prove formally that

∥f(t, ·)∥Lp(R2d) = ∥f0∥Lp(R2d), ∀ t ≥ 0, ∀ p ∈ [1,∞],

and f(t, ·) ≥ 0 on R2d for any t ≥ 0.

Question 22

Prove formally that
d

dt

∫
R2d

f |v|2dxdv = 2

∫
Rd

jf · Efdx,

with

jf (t, x) :=

∫
Rd

f(t, x, v)vdv.

Prove formally that
∂tρf = −divxjf

and establish next that

2

∫
Rd

jf · Efdx = −2

∫
Rd

∂tρfΦf = − d

dt

∫
Rd

|∇xΦf |2.

Deduce that∫
R2d

f |v|2dxdv +
∫
Rd

|∇xΦf |2 =
∫
R2d

f0|v|2dxdv +
∫
Rd

|∇xΦf0|2, ∀ t ≥ 0.
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Question 23

Using the splitting R2 = BR ∪Bc
R for any R > 0, establish that∫

gdv ≤ C∥g∥1/2L∞ ∥|v|2g∥1/2L1 , ∀ g = g(v) ≥ 0,

for a constant C > 0. Deduce that

∥ρf∥L2 ≲ ∥f∥1/2L∞
xv
∥|v|2f∥1/2L1

xv
, ∀ f = f(x, v) ≥ 0. (2.3)

Question 24

Establish that at least formally

∥DxEf∥L2((0,T )×Rd) = ∥ρf∥L2((0,T )×Rd). (2.4)

Question 25

We recall the Plancherel identity ∫
R2

Eψ =

∫
R2

pE qψ,

for E,ψ : R2 → R, where the Fourier transforms are defined by

pE(ξ) :=
1

2π

∫
R2

E(x)e−ix·ξdx, qψ(ξ) :=
1

2π

∫
R2

ψ(x)eix·ξdx.

Establish that if f is a nice solution to the Vlasov-Poisson equation and ψ = ψ(x) is a nice
function then

d

dt

∫
Rd

Efψ = F, Fi :=

∫
R2

ξi
|ξ|2

ξ · pȷf qψ,

and next
∥F (t, ·)∥L∞ ≤ ∥jf∥L1∥ qψ∥L1 .

We recall that for ψ ∈ W 3,1(R2), we have qψ ∈ L1 and ∥ qψ∥L1 ≤ C∥ψ∥W 3,1 . Deduce from the
above relations that

∥Ef ∗x η∥H1
tx((0,T )×R2) ≤ C(η, T )(∥fv∥L∞

t L1
xv
+ ∥Ef∥L2

tx((0,T )×R2)), (2.5)

for any η ∈ W 3,1(R2) ∩W 1,∞(R2).

Question 26

If not proved, we may accept (2.3), (2.4) and (2.5). Consider a sequence (fn) of solutions to
the Vlasov-Poisson equation (2.1) in the distributional sense of D′([0, T )×R2d) and assume
that

∥fn(t, ·)∥L1∩L∞ +

∫
R2d

fn(t, ·)|v|2dxdv +
∫
Rd

|Efn(t,·)|2 ≤ C,

7



for any t ∈ (0, T ) and n ≥ 1. Prove that there exists a subsequence (fnk
) of (fn) and a

function f such that fnk
⇀ f as k → ∞ and f is a solution to the nonlinear Vlasov-

Poisson equation (2.1) in the distributional sense of D′([0, T )× R2d).

Question 27 (more difficult)

Suggest a strategy for proving the existence of a solution to the Vlasov-Poisson equation
(2.1) when the initial datum f0 satisfies the requirement (2.2).
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