Exercises on chapters $1 \& 2$

1. About the Gronwall lemma

Exercice 1.1. Prove in full generality the following classical differential version of Gronwall lemma.
Lemma. We assume that $u \in C([0, T) ; \mathbb{R}), T \in(0, \infty)$, satisfies the differential inequality

$$
\begin{equation*}
u^{\prime} \leq a(t) u+b(t) \quad \text { on } \quad(0, T) \tag{1.1}
\end{equation*}
$$

in the distributional sense, for some $a, b \in L^{1}(0, T)$. Then, u satisfies the pointwise estimate

$$
\begin{equation*}
u(t) \leq e^{A(t)} u(0)+\int_{0}^{t} b(s) e^{A(t)-A(s)} d s, \quad \forall t \in[0, T) \tag{1.2}
\end{equation*}
$$

where we have defined the primitive function

$$
A(t):=\int_{0}^{t} a(s) d s
$$

Exercice 1.2. We assume that $u \in C([0, T) ; \mathbb{R}), T \in(0, \infty)$, satisfies the integral inequality

$$
\begin{equation*}
u(t) \leq B(t)+\int_{0}^{t} a(s) u(s) d s \quad \text { on } \quad[0, T) \tag{1.3}
\end{equation*}
$$

for some $B \in C([0, T))$ and $0 \leq a \in L^{1}(0, T)$. Prove that u satisfies the pointwise estimate

$$
u(t) \leq B(t)+\int_{0}^{t} a(s) B(s) e^{A(t)-A(s)} d s, \quad \forall t \in(0, T)
$$

1) By considering the function

$$
v(t):=\int_{0}^{t} a(s) u(s) d s
$$

2) By considering the function

$$
v(t):=\int_{0}^{t} a(s) u(s) d s e^{-A(t)}-\int_{0}^{t} a(s) B(s) e^{-A(s)} d s
$$

Recover the fact that $u \in C([0, T) ; \mathbb{R}), T \in(0, \infty)$, satisfies the integral inequality

$$
u(t) \leq u_{0}+\int_{0}^{t} a(s) u(s) d s+\int_{0}^{t} b(s) d s \quad \text { on } \quad[0, T)
$$

for some $0 \leq a \in L^{1}(0, T)$ and $b \in L^{1}(0, T)$, implies that u satisfies the pointwise estimate

$$
u(t) \leq u_{0} e^{A(t)}+\int_{0}^{t} b(s) e^{A(t)-A(s)} d s, \quad \forall t \in(0, T)
$$

3) first in the case when $b=0$;
4) next, in the general case.

2. About variational solutions

Exercice 2.1. Consider $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{div} f \in L^{1}\left(\mathbb{R}^{d}\right)$. Show that

$$
\int_{\mathbb{R}^{d}} \operatorname{div} f d x=0
$$

Exercice 2.2. We consider the nonlinear McKean-Vlasov equation

$$
\begin{equation*}
\partial_{t} f=\Lambda[f]:=\Delta f+\operatorname{div}(F[f] f), \quad f(0)=f_{0} \tag{2.1}
\end{equation*}
$$

with

$$
F[f]:=a * f, \quad a \in W^{1, \infty}\left(\mathbb{R}^{d}\right)^{d} .
$$

1) Prove the a priori estimates

$$
\|f(t)\|_{L^{1}}=\left\|f_{0}\right\|_{L^{1}} \quad \forall t \geq 0, \quad\|f(t)\|_{L_{k}^{2}} \leq e^{C t}\left\|f_{0}\right\|_{L_{k}^{2}} \quad \forall t \geq 0
$$

for any $k>0$ and a constant $C:=C\left(k,\|a\|_{W^{1, \infty}},\left\|f_{0}\right\|_{L^{1}}\right)$, where we define the weighted Lebesgue space L_{k}^{2} by its norm $\|f\|_{L_{k}^{2}}:=\left\|f\langle x\rangle^{k}\right\|_{L^{2}},\langle x\rangle:=\left(1+|x|^{2}\right)^{1 / 2}$.
2) We set $H:=L_{k}^{2}, k>d / 2$, and $V:=H_{k}^{1}$, where we define the weighted Sobolev space H_{k}^{1} by its norm $\|f\|_{H_{k}^{1}}^{2}:=\|f\|_{L_{k}^{2}}^{2}+\|\nabla f\|_{L_{k}^{2}}^{2}$. Observe that for any $f \in V$ the distribution $\Lambda[f]$ is well defined in V^{\prime} thanks to the identity

$$
\langle\Lambda[f], g\rangle:=-\int_{\mathbb{R}^{d}}(\nabla f+(a * f) f) \cdot \nabla\left(g\langle x\rangle^{2 k}\right) d x \quad \forall g \in V
$$

(Hint. Prove that $L_{k}^{2} \subset L^{1}$). Write the variational formulation associated to the nonlinear McKeanVlasov equation. Establish that if moreover the variational solution to the nonlinear McKean-Vlasov equation is nonnegative then it is mass preserving, that is $\|f(t)\|_{L^{1}}=\left\|f_{0}\right\|_{L^{1}}$ for any $t \geq 0$. (Hint. Take $\chi_{M}\langle x\rangle^{-2 k}$ as a test function in the variational formulation, with $\chi_{M}(x):=\chi(x / M), \chi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, $\left.\mathbf{1}_{B(0,1)} \leq \chi \leq \mathbf{1}_{B(0,2)}\right)$.
3) Prove that for any $0 \leq f_{0} \in H$ and $g \in C([0, T] ; H)$ there exists a unique mass preserving variational solution $0 \leq f \in X_{T}$ to the linear McKean-Vlasov equation

$$
\partial_{t} f=\Delta f+\operatorname{div}(F[g] f), \quad f(0)=f_{0}
$$

Prove that the mapping $g \mapsto f$ is a contraction in $C([0, T] ; H)$ for $T>0$ small enough. Conclude to the existence and uniqueness of a global (in time) variational solution to the nonlinear McKean-Vlasov equation.

Exercice 2.3. For $a, c \in L^{\infty}\left(\mathbb{R}^{d}\right), f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, we consider the linear parabolic equation

$$
\begin{equation*}
\partial_{t} f=\Lambda f:=\Delta f+a \cdot \nabla f+c f, \quad f(0)=f_{0} \tag{2.2}
\end{equation*}
$$

We introduce the usual notations $H:=L^{2}, V:=H^{1}$ and X_{T} the associated space for some given $T>0$. 1) Prove that for $\gamma \in C^{1}(\mathbb{R}), \gamma(0)=0, \gamma^{\prime} \in L^{\infty}$, there holds $\gamma(f) \in H$ for any $f \in H$ and $\gamma(f) \in V$ for any $f \in V$.
2) Prove that $f \in X_{T}$ is a variational solution to (2.3) if and only if

$$
\frac{d}{d t} f=\Lambda f \text { in } V^{\prime} \text { a.e. on }(0, T)
$$

3) On the other hand, prove that for any $f \in X_{T}$ and any function $\beta \in C^{2}(\mathbb{R}), \beta(0)=\beta^{\prime}(0)=0$, $\beta^{\prime \prime} \in L^{\infty}$, there holds

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}} \beta(f)=\left\langle\frac{d}{d t} f, \beta^{\prime}(f)\right\rangle_{V^{\prime}, V} \text { a.e. on }(0, T)
$$

(Hint. Consider $f_{\varepsilon}=f *_{t} \rho_{\varepsilon} \in C^{1}\left([0, T] ; H^{1}\right)$ and pass to the limit $\left.\varepsilon \rightarrow 0\right)$.
4) Consider a convex function $\beta \in C^{2}(\mathbb{R})$ such that $\beta(0)=\beta^{\prime}(0)=0$ and $\beta^{\prime \prime} \in L^{\infty}$. Prove that any variational solution $f \in X_{T}$ to the above linear parabolic equation satisfies

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\{c f \beta^{\prime}(f)-(\operatorname{div} a) \beta(f)\right\} d x d s
$$

for any $t \geq 0$.
5) Assuming moreover that there exists a constant $K \in(0, \infty)$ such that $0 \leq s \beta^{\prime}(s) \leq K \beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant $C:=C(a, c, K)$, there holds

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq e^{C t} \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x, \quad \forall t \geq 0
$$

6) Prove that for any $p \in[1,2]$, for some constant $C:=C(a, c)$ and for any $f_{0} \in L^{2} \cap L^{p}$, there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define β on \mathbb{R}_{+}and extend it to \mathbb{R} by symmetry. More precisely, define $\beta_{\alpha}^{\prime \prime}(s)=2 \theta \mathbf{1}_{s \leq \alpha}+p(p-$ 1) $s^{p-2} \mathbf{1}_{s>\alpha}$, with $2 \theta=p(p-1) \alpha^{p-2}$ and then the primitives which vanish at the origin, which are thus defined by $\beta_{\alpha}^{\prime}(s)=2 \theta s \mathbf{1}_{s \leq \alpha}+\left(p s^{p-1}+p(p-2) \alpha^{p-1}\right) \mathbf{1}_{s>\alpha}, \beta_{\alpha}(s)=\theta s^{2} \mathbf{1}_{s \leq \alpha}+\left(s^{p}+p(p-2) \alpha^{p-1} s+\right.$ $\left.A \alpha^{p}\right) \mathbf{1}_{s>\alpha}, A:=p(p-1) / 2-1-p(p-2)$. Observe that $s \beta_{\alpha}^{\prime}(s) \leq 2 \beta_{\alpha}(s)$ because $s \beta_{\alpha}^{\prime \prime}(s) \leq \beta_{\alpha}^{\prime}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\left.\beta_{\alpha}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)\right)$.
7) Prove that for any $p \in[2, \infty]$ and for some constant $C:=C(a, c, p)$ there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define $\beta_{R}^{\prime \prime}(s)=p(p-1) s^{p-2} \mathbf{1}_{s \leq R}+2 \theta \mathbf{1}_{s>R}$, with $2 \theta=p(p-1) R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta_{R}^{\prime}(s)=p s^{p-1} \mathbf{1}_{s \leq R}+\left(p R^{p-1}+2 \theta(s-R)\right) \mathbf{1}_{s>R}$, $\beta_{R}(s)=s^{p} \mathbf{1}_{s \leq R}+\left(R^{p}+p R^{p-1}(s-R)+\theta(s-R)^{2}\right) \mathbf{1}_{s>R}$. Observe that $s \beta_{R}^{\prime}(s) \leq p \beta_{R}(s)$ because $s \beta_{R}^{\prime \prime}(s) \leq(p-1) \beta_{R}^{\prime}(s)$ and $\beta_{R}(s) \leq \beta(s)$ because $\beta_{R}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)$. Pass to the limit $p \rightarrow \infty$ in order to deal with the case $p=\infty$).
8) Prove that for any $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (2.3). (Hint: Consider $f_{0, n} \in L^{1} \cap L^{\infty}$ such that $f_{0, n} \rightarrow f_{0}$ in $L^{p}, 1 \leq p<\infty$, and prove that the associate variational solution $f_{n} \in X_{T}$ is a Cauchy sequence in $C\left([0, T] ; L^{p}\right)$. Conclude the proof by passing to the limit $\left.p \rightarrow \infty\right)$.
9) Establsih the L^{p} estimates with "optimal" constant C (that is the one given by the formal computations).
10) Extend the above result to an equation with an integral term and/or a source term.
11) Prove the existence of a weak solution to the McKean-Vlasov equation (2.1) for any initial datum $f_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$.
12) Prove that $f_{0} \geq 0$ implies $f(t) \geq 0$ for any $t \in(0, T)$. (Hint. Choose $\beta(s):=s_{-}$).

