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CHAPTER 7
THE NAVIER-STOKES EQUATION

- STILL A DRAFT -

We present some mathematical results on the Navier-Stokes equation about incom-
pressible fluids in dimension d = 2, 3.
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1. INTRODUCTION, A PRIORI ESTIMATE, VORTEX FORMULATION

We consider the Navier-Stokes equation
Ou —vAu+u-Vu+Vp=0
divu =0,
on the vector (velocity) field v : (0,7) x Q — R? with Q C R?. For the sake of

simplicity, we will only consider the case Q = R¢ with d = 2,3, and a viscosity
coefficient v = 1. The first equation is vectorial, and it is thus equivalent to

Owu; — Au; +u-Vu; +9p=0, Vi=1,...,d.

(1.1)

e The pressure. The term Vp is linked to the vanishing divergence condition
and can be interpreted as a “Lagrange multiplicator” associated to this constraint.
More precisely, computing the divergence of each term involved in the first vectorial
equation, we get
—Ap =div(u-Vu) = Z 07 (uguy),
ij

where we have used that divu = 0 in the last equality. After having properly
defined the inverse of the Laplacian operator, we may thus write

pi=(—A)"" (Z 822](u1uj)>

We will come back on that fundamental (but technical) point later.
1
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e The energy identity. We compute

1d
§%||u||%g = /8tu-u

—/Vp-u = /p(divu):(),
Jawu = - [wup :=—Z/<aiuj>2,

and also (with Einstein’s convention of summation of repeated indices)

/(u -Vu) - u = /(ujajui)ui = %/uj8j|u|2 = —% /(divu)|u|2 =0.

All together, we have
1d
2 dt
and finally after time integration

lullZe = —[IVullZ:,

t
(1.2) lu(t)lZ- + 2/0 IVu(s)|Z2 ds = lluoll>, Vt=0.

e The vortex and the dimension d = 2. In dimension d = 3, we define the
vortex vector field

Oguz — O3us
Q:=curlu:=V Au= | d3u; — Orus
81U2 — 82u1
In dimension d = 2, we may associated the 3d vector field @ : R3 — R3, @i(x1, 22, 23) =
(ul(ml, .1‘2), UQ(l‘l, 332), 0), so that
B 0
Q=curlu= (0], w:=01us— dus,
w

and the vortex is thus a scalar. In any dimension, we may verify (that is left as an
exercise) that the vortex satisfies the evolution equation

O+ u-VQ—-Q- -Vu—AQ =0,
where we have just used that curl Vp = (V A V)p = 0. We deduce from this that
in dimension d = 2, we have
Ow~+u-Vw—Aw =0,

where we have used

divQ=V-(VA@) =0, and then Q-Vi=V-(Q®a)=0.
We may rather compute directly the evolution equation satisfied by the vortex
function w. We indeed have

Ow = O1(Aug —u-Vug — dap) — d2(Auy —u - Vuy — 01p)

= Aw—u-Vwu+Q,
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with
Q = —0u-Vug+ du-Vuy
= —01u101ug — O1usOaug + Oou1 O1uq + Oauadouy
= O1u1(Oaug — Or1ug) + Oous(Douy — Orus)
= (divu)w=0.
We end with a last observation. We compute

curl Q = curlcurl @ = (Vdiv — A)a = —Ad,

so that
~ ~ 0 —82(A_1w)
i=—-A"teurlQ = —cwrl AT!IQ =~V A 0 = | (A W)
A~ 0

Recalling that
AE =9
with E(z) = (27) " !log |z| in dimension d = 2, we get
(1.3) uw= (E‘l) = Kxw
U2
with
1zt
27 |x|2’
As a conslusion, in dimension d = 2 we obtain the following scalar equation on the
vortex

Lo

K(z):=V*E(z) = —Z9,x1).

0w + (K *w) - Vw — Aw = 0,
from what we may reconstruct the velocy filed thanks to the Biot-Savart equa-
tion (1.3).

2. AROUND THE PRESURE ISSUE

Theorem 2.1 (Hodge decomposition and pressure). For any T : Q — R?, there
exist ¢ : 0 — R and ¥ : Q = R? such that

T = curly + Vo,
with Y =0 and T =V ifcurlT =0 and ¢p =0 et T = curly if divT = 0. As a
consequence, when T 1 {S, divS = 0} there exists p : Q@ — R such that T = Vp.
Idea of the proof. We make the following observations
curl V=0, divcurl =0, A :=Vdiv — curlcurl
We set
w:=A"1T, ¢:=divw, ¢ :=—curlw,

so that
T = Aw = (Vdiv — curlcurl )Jw = Vi + curl .

On the other hand, the operator A~! commutes with translations and thus with
both operators div and curl. To see this in another way, we may write

AN div = A7 div (Vdiv — curlcurl )A™! = A~ ldiv VdivA ™! = divA™!
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and
A7teurl = A'curl (Vdiv — curlcurl ) A~ = —A~curl curl curl A™*
= —A'Vdiv - A)curlAT = AP Acurl AT = curl AT
Be careful with the fact that we have used AA~! = I what is always true, but

also A™'A = I which is less clear, but also true in the case when Q = R?. As a
consequence, we have

Y =curl (A™!'T) = A~ (curlT) =0 when curlT =0
and
e =div(A™'T)=A"YdivT) =0 when divT =0.
Finally, if T 1 {S, divS = 0}, we have in particular for any ¢ € D(R?),
(curl T, ¢) = (T, —curl ¢) = 0,
because div curl = 0. We deduce that curl T = 0, and thus 7" = Vp. d

We introduce the close sets V and R of the Hilbert space L?(R?) of vector field, by
defining

V = {ue L*RY); divu =0},
R = {uc L*R?); curlu = 0}.
Theorem 2.2 (Hodge decomposition and pressure in L?(R%)). For any vector field

u € L*(R?), there exist a scalar function ¢ € H'(R?) and a vector field p € H'(R?)
such that

u=culy+ Vo, Vel + [DY] < [lull,

with ¢ =0 and thus u =V if u € R and ¢ =0 and thus u = curly if u € V. As
a consequence, when u LV there exists p € H' such that u = Vp.

Idea of the proof. In the Fourier side, everything becomes easier. O
Theorem 2.3 (pressure again). We define the projection
P=1-VA~ldiv.

There is equivalence between

(1) T=Vp,
(2) PT =0,
3) TLV.

Idea of the proof. (1) = (2) For T = Vp, we have
PI=T-VA ldivVp=T—-Vp=0.
(2) = (3) Assume PT = 0. For any v € V, there holds Pv = v, and therefore
(T,v) = (T,Pv) = (PT,v) =0.

That means T' L V.
(3) = (1) That follows immediately from the Hodge decomposition. O
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3. LERAY SOLUTIONS TO THE NAVIER-STOKES EQUATION

We consider the Navier-Stokes equation

Ou—Au+u-Vu+Vp=0
(3.1) { divu = 0,

on the vector fields u : (0,7) x Q — RY, with d = 2, 3.

Theorem 3.1. For any ug € V, there exists at least one weak global solution
uw€ Xp:=L>0,T;V)NL*0,T; H'), VT >0,

in the sense that

t
/ut~wtdm+//Vu:V1/)dxds:
’ ¢ t
:/u0~1/)0dx+/ /u@uszdxdsf/ /u~831/1dxds,
0 0

for anyt € (0,T) and ¢ € C*, diveyp = 0. Moreover, the following energy inequality
holds

t
(3-2) lu(®)lI72 + 2/ IVu(s)l1Z2 ds < Jluollz-, ¥t >0.
0

We accept that the above Navier-Stokes equation is equivalent to the two following
formulations

(3.3) Ou — Au—P(u-Vu) =0
and
(3.4) Ou—Au—u-Vu L DRV.

We observe that (3.1) = (3.3) is just a consequence of the fact that Pu = u because
divu = 0 and the fact that PVp = 0.

There exist two classical strategies in order to establish the Leray Theorem 3.1
about existence of solutions.
A first way consists in considering a Friedrich discretization scheme

Opty, — SplAu, — Pdiv (Spu, ® Spu,)] =0,
where S, is a finite dimensional range operator for which existence of solutions is
given by the Cauchy-Lipschitz on ODE, and then to pass to the limit n — oco.

A second way consists in considering the regularized equation
(3.5) Orue — Aug + (pe * u) - Vue + Vp. =0,
for a sequence of mollifiers (p.) and then to pass to the limit € — 0.

We will follow that second way but we rather start by proving a stability principle.

Theorem 3.2. Consider a sequence (ug ) of V such that ug, — ug in L? and a
sequence of associated Leray weak global solutions (uy,). Then, there exists u € X
and a subsequence (u,) such that u,  — u and w is a Leray weak global solution
associated to ug.

In the proof we use in a crucial way the following classical compactness lemma.
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Lemma 3.3 (Aubin-Lions). Consider a sequence (uy) which satisfies
(i) (un) is bounded in L7,
(i)  (Oyun) is bounded in LI(H,*), s € Ry,
(iii)  (Vayuy,) is bounded in L2,.
Then, there exists u € L?, and a subsequence (un) such that w, — u strongly in

L?((0,T) x Br) as n — oo for any R > 0.

Idea of the proof. Step 1. We may write dyu,, = D?®g, with (g,) bounded in

L?,. We introduce a sequence of mollifiers (p.), that is p.(z) := e p(c'z) with

0 < p e D(RY), (p) = 1. We observe that

B
e / un(t,y) pe(r — y) de = / gn(t,y) D*p(z —y) dy,
R4 R4

where the RHS term is bounded in L?((0,T) x R?) uniformly in n for any fixed
e > 0. We also clearly have

\z /Rd Un(t,y) pe(r —y) de = —/Rd UnVype(r —y) dy,

where again the RHS term is bounded in L2((0,7) x R%) uniformly in n for any
fixed £ > 0. In other words, u,, * p. is bounded in H'((0,T) x R%). Thanks to the
Rellich-Kondrachov Theorem, we get that (up to the extraction of a subsequence)
(un * pe)n is strongly convergent in L?((0,T) x Bg), for any R > 0. On the other
hand, from (i) and the Banach-Alaoglu weak compacteness theorem, we know that
there exists u € L?, and a subsequence (u,,) such that u,, — u weakly in L7,. All
together, for any fixed € > 0, we then get

Up * pe — u* pe strongly in L?((0,T) x Bg) as n — oo.

Step 2. 'We now observe that

/ lw —w * pe|® dedt = /
(0,T)xR4 (0,T)xR4

1 2
/ / / Vaw(t, ) - ype(y) dsdy| ded,
(0,T)xRa ! JRd

with z; := & + sy. From the Jensen (or Cauchy-Schwarz) inequality, we deduce

/ lw —w * p|> dedt < / / / |Viw(t, zs |y| (g) dsdydxdt
(0,T) xR¢ 0,T)xRe JRd €

< 52/ |wa(t,z)\2dtdz/ 1210(2) dy
(0,7) xRe Rd
< S0 Vauls -

| wlta) = itz = ).y dac

We conclude that u,, — u in L%((0,T) x Bg) by writing
Up — U= (Up — Up * pe) + (Up xp—u*p)+ (u*pe —u)
and using the previous convergence and estimates. O

Idea of the proof of Theorem 3.2. From an interoplation theorem and Sobolev
embedding, in dimension d = 2, we have

L(L*)NL(HY) € Li(HY?) € L,
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because for s = 1/2, the relation 1/s* =1/2 — s/d gives s* = 4. We deduce that

Up @ u, is bounded in L2((0,T) x R?).
Similarly, in dimension d = 3, we have

L(L2) N LE(HY) © LAHY2) € (LY,
because for s = 1/2, the relation 1/s* = 1/2 — s/d gives s* = 3. Because of the
same Sobolev embedding, we have L3/2 ¢ H~1/2, and then

Uy, @ u, is bounded in L2(L¥%(R%)) ¢ L(H'/2(R®)).
We recall the definition of the projector
P =7 - VA~ldiv,

which in the Fourier side also writes

N T:
SN

Arguing in the Fourier side, we see that
Pdiv (u, ® u,) is bounded in LZ(H*(R?)),
with s = —1if d =2 and s = —3/2 if d = 3. As a consequence, we find
Oy, = Auy, — Pdiv (uy, @ uy,),
which is bounded in L2(0,T; H*(R%)), for the same values of s as above when

d = 2,3. From, Aubin-Lions’ lemma, we deduce that u, — u strongly LIQOC and

then u,, ® u, — u ® u strongly Llloc. As a consequence, we may pass to the limit in

the weak formulation in the sense that

/un(t)ow(t)daz = /Ot/Vun:Vz/;dxder/Ot/un@un:Vz/deds
+/uo7n~wodw+/0t/un-ﬁtwdmds,

for any ¢ € CH(R*1), div,y = 0, and we get that u also satisfies the same weak
formulation of the Navier-Stokes equation. O

Idea of the proof of Theorem 3.1. We now consider the equation (3.5), and we start
with considering the linear mapping which to a vector field u : (0,7) x R? — R¢
associates the solution v : (0,7) x R? — R9 to the linear equation

(3.6) v —Av+ (u*xp:)-Vo+Vp=0
’ diveo =0, v(0) = ug.

Let us make the problem more precise. Fix ug € V and (p.) a mollifier. We define
Xp = C([0,T; V) N L*(0,T; H' (RY)) n H' (0, T5 H™ ' (RY)),

and for u, v, ¥ € Xp, we may multiply (3.6) and integrate the resulting equation in
order to get (at least formally)

t t
/Ut~1/1tdx = —/ /szvwdasds—F//(u*p5)®vszda:ds
0 0
t
+/u0~w0dm+//v-8twdxds.
0
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It is worth emphasizing that because of divu = 0, we also have div (u * p.) = 0,
and then (u * p.) - Vo = div ((u * p:) ® v). That is nothing but the J.-L. Lions’
variational formulation of (3.6) when making of spaces and operator

H:=V, V:.=H! Aw := Av — (ug x p.) - Vo — Vp,

where p stands for a Lagrange multiplicator. We have to show that —A; is bounded
and satisfies Gdrding’s inequality. We indeed observe that V endowed with the L?
scalar product is an Hilbert space (because it is closed in L?) and next for any
v, € VN H', we have

(Aevsw)aal = | [ (s xp0) 904 ) 99| < Collllm 6,
using that u(t) * pe oo < lu(t) 122 2 < Cc, and
1
(Aewv)ze = = [ (s p2) 90+ 90) s Vo < = Jolfy + Celol

From J.-L. Lions theorem, we therefore establish the existence and uniqueness of a
variational solution v € Xr to the linear equation (3.6) and that one satisfies the
energy identity

t
lv(®)]1Z> + 2/0 IVu(s)l[Z2 ds = [luoll7=, Vit € (0,7),

by just repeating the arguments leading to (1.2).

Denoting v := ®(u), we have shown ® : Xr — Xr. Considering uj,us € Xr
with [Ju;(t)]l2 < |luoll2 for any ¢ € (0,7T) and denoting v; := ®(u;), v = vy — vy,

u = ug — u1, we have

1d
5%/|v|2 = /(Avg—(ug*pg)-va—Vpg)-v
_/(A'Ul — (u1 * pe) - Vor — Vpy) -0
= /(va—i—(ug*pg)@w):Vv—/(Vvl—i-(ul*pE)@vl):Vv

= /|Vv|2 + /[(UQ * pe) ®v) + (u* pe) @v1)] : Vo.

As a consequence, we have
1d

sl < [lwaxpy el + [lwep) @)
< e pell [P+ s pel [l
< CulluolB ol + Collul ol

and from the Gronwall lemma, we deduce
t
ol < [ CeC I ufds, €= O fual,
0

and finally

sup o3 < €977 — 1] sup fue3-
0,7*] [0,7]
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As a conclusion, when T* > 0 is small enough, ® is a contraction in Xp«, so that
® admits a unique fixed point which is thus the unique solution to the regularized
Navier-Stokes equation (3.6).

Let us come back to the above computation in order to make it completely rigorous
when we have to deal with variational solutions. With the same notations v; :=
D(u;), v =vy — vy, u=1ug —uy and ¥ = v, we write first

1 2 2 ! /
ol @)l —/O<v (s),v(s)) ds

= (va(t),r) — (o ) — / (W), vn(s)) ds

(01 (£), ) + (o) + / (W), vn(s)) ds

t t
= —/ /vaszdxds—i—/ /(UQ*p8)®UQIV1/)d$dS
0 0
t t
/ /Vvl :Vz/)dxds—/ /(u1 * pe) @y : Vipdads
0 0

¢
= */ /[VU+(U2*P5)®U2*(U1*ps)®"u1]:Vvdxds,
0

and we may then estimate the RHS term similarly as we did above.

4. THE NAVIER-STOKES EQUATION IN VORTEX FORMULATION IN 2D

In this section, we consider the Navier-Stokes equation in dimension d = 2 in its
vortex formulation, that we will simply call from now on the vortezr equation, namely

(4.1) Ow+u-Vw— Aw =0,

where u is given that the Biot-Savart equation (1.3).

1

u:=Kxw, K(x): Lz

I
T2m |z (

—Zo, T1).
Theorem 4.1. For any wy € L'(R?), there exists a unique global solution to the
vortexr equation
w € C([0,00); L' (R?)) N C((0, 00); L= (R?))
such that
lw®lzr < llwollzr, 7% [w(®)lzs < Cllwollz,

for anyt >0 and any p € (1,00] for a universal constant C' > 0. The equation has
to be understood in the mild sense

t
wp = eNtwy — / e(t_s)A(us - Vws) ds,
0

where et stands for the heat semigroup.

We will not give the proof in the full generality, but rather explain how to proceed in
the particuar case wyp € L* N LP, p > 1. That case yet contains the main difficulties
and the proof we will see thus contains the main tools in order to overcome them.
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e We start with some a priori estimates. For p € [1,00), we compute
%/\wﬁ’ de = p/w|w|p*2Aw dx fp/w|w\p*2u -Vwdz
= —plp-1) / lwP~2|Vw|? dz — /u - V|wl|P dx
R pp%l /|V(W|W\P/2-1)\2dx + /(divu)|w|pdac
= a2 [P P,

by performing two integrations by parts. We deduce

(4.2) lwillee < |lwollLe, Yt >0, Vp el o],

as well as
o0

(4.3) / 1V (ws|ws |2 )| g2 ds < [lwollze,  ¥p € (1,00).
0

e We now briefly explain a possible strategy in order to obtain the existence of
solution which consists to follow the same line of arguments as in the previous
section when we have considered the NS equation in dimension d = 2,3. We

introduce the kernel K. := K x p. for a sequence of mollifiers (p.) and we first
consider the regularized equation
(4.4) Ow —Aw+ K. *xw-Vw =0, w(0)=wo.

That equation may be tackled thanks to the classical way. We define the mapping
g — f, where f is the solution to the linear equation

8tf—Af+K5*gi:0, f(O):wO

When furthemore, wy € L?, we prove that this mapping has a fixed point in the
J.-L.-Lions space X7 for T" > 0 small enough, and we get then a global solution
we € Xp, VT > 0, to the regularized equation (4.4) by repeating the argument
(valid on a small intervalle (0,7, with T := T(|| wol|r2)). When p = 2, we may
pass to the limit € — 0 exacltly as in the previous section and in that way we obtain
a solution
we C(Ry; L) NL®(Ry; L) N LA (R, HY)

to the vortex equation (4.1). For the more general case p > 1, we may also proceed
similarly by adapting Aubin-Lions’ lemma to a LP framework, we however do not
developp further that issue.

e We finally concentrate on the uniqueness issue for solutions which belong to
L (R4; LP(R?)), p > 1. We start with several intermediate results of independant
interest.

Lemma 4.2. For any 1 <r < p < oo and for any g € L4(R?), there holds

1
||€tA9HLP(R2) S tl ||9||LT(R2)

_1
P

and
Ve 2 gl o (re) S T

1
m ”g”LT(]RQ)-
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The proof is straightforward by writing the kernel representation of the heat semi-
group.
We also recall the following formulation of the Holder inequality
1 1 1
4.5 Foller <\ flleslglee, -=—2+ -,
(4.5) £ gl 1fllzellgll FT37 5

for B,p > 1 such that 1/84+1/p < 1.

We finally accept the following consequence of the Hardy-Littlewood-Sobolev (HLS)
inequality

11 1

B q 2

which holds true for any ¢ € (1,2). Recalling the Young inequality about convolu-
tion product stipulating that

(4.6) 1K * gll s re) < CqllgllLae2),

(4.7) If*gllee < fllzellgllze, VfelLP, gelf,
for any p, ¢ € [1,400] such that 1/p+1/q < 1 and with

1 11

AR

the HLS inequality can be seen as a critical case of the Young inequality in the case
when f = K ¢ L?(R?).

Let us start the uniqueness proof and thus consider two solutions w?, i = 1,2, to
the vortex equation that we write in mild form
t
wi = etPuwy — / =2 (div (usws)) ds.
0

2 2 1

Introducing the difference w := w? — w! and u = u? — u!, we have

¢ ¢
wp = / e=I8(div (ugw?)) ds + / =8 (div (ulw,)) ds =: Q2 + Q}.
0 0

Let us fix p € (1, min(p,2)) and observe that
wlpe < t1_1/p||wo||Lp —0, ast—0,

where we have set

[ fllp.e == sup [s'727| fs]lzr].
s€(0,t)
We estimate
t
194 < / 1et=92 (div (uleos)) | o ds
0

t

A

A
S— S S—

||uiw5||y ds

N

(t—s)7t77s
bl

T tlluslpellwslze ds
Ay

A

gz llws 2o ds,

(t—s)%
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where we have successively used the second estimate on the heat semigroup as
stated in Lemma 4.2 with r defined by

1 2 1

P Y
next the Holder inequality (4.5) with

11 1

BTy
and finally the HLS inequality with

11 1

B g 2
From the three above definitions, we have

1 1 1 1

1
— —+ — —
qg B 2 r p
As a consequence ¢ = p, and we may write

t
ds
1 < 1
HQt“LF ~ /() (t—s)l 2(1,%) ||w HpthwHPyt

PS

<Cl

~ 1
t'w

l[w llp,ellwllp,e

with the constant
du

1
¢= /0 (1-— u)%uﬂl_%)

is finite because of the choice of p € (1,2). The same computations lead to As a
consequence ¢ = p, and we may write

1
1Q¢lIr < ¢ e .
P

Wlp,e

Coming back to the estimate on the mild formulation, we deduc e

A

_1
77 oy || o

Clllw* lp.e + llew*lp.e] flo

Ot ?woll o] Iwllp.t,

|;D7t

IN

so that

1
lollpe < S lwllp.e,

for ¢ > 0 small enough, and that ends the proof of the uniqueness.

5. INTERPOLATION INEQUALITIES

About interpolation inequalities :
e [PNLTC L" for any p <r < q and
1—e 1 6 1-90

o < lelilllln’, - =2+—— Vuel’nlLt

u i
[[ul .
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We use the Holder inequality and we then write

—o\Y
||UHLT = </|u|r9|u|r(1 0))

1/(rs) / 1/(rs")
< (/|u|r0s> (/|u|9 r(l—é)) ;
with 1/s + 1/s’ = 1 choosen in such a way that rfs = p. As a consequence,
1/(rs) =6/p and
1 1 1 1 Or 1 6 1-6
L
p r.op q

and that ends the proof of the first interpolation inequality.
o [P1(LP2)N L9 (L%) C L™ (L™), and more precisely
1 6 1-86
_|_

[ullpra(zr) < Hu||LP1(LP2)||u||Lq1 (Laz)> = i %

for any u € LP(LP2) N L9 (L9%) for a same 6 € (0,1).
We proceed similarly as above. Thanks to the first interpolation inequality and the
Holder inequality, we then write

lallrs gr) = / [
10 r1(1—6
< ([t ey
([t e ([t )
L172 La2 )

with 1/s 4+ 1/s’ = 1 choosen in such a way that r10s = p;. As a consequence,
1/(r18) = 6/p1 and

1 1 1 1 Ory 1 0 1-6
L-la-h-te-ty-lol

18 1 S 1 p r P a1
and that ends the proof of the second interpolation inequality.

e H51 N H% C H* for any 51 < s < s9 and
s=0s; 4+ (1—0)sy, Yue HNH>.

L72

A

IN

lull e < Nully..,

Jull e
On the Fourier side, we have

ul2, = /|ﬁ|2‘9|£\2951|ﬁ\2(1’9)|£\2(1*9)52dg

([rapiep= ae)"( [ 1apiepsae) .

by using the Holder inequality with exponent p =1/6 and p’ = 1/(1 — 6).
e LP(H*) N LI(H") C L"(H®), and more precisely
1 6 1-46
lullr e < Vi Nl 5 =5+ s e = Bat (1= )
for any u € LP(H®) N LI(H) for a same 6 € (0,1).
We write indeed

IN

0
lull o grey < Ml allull "Ml 2
and we argue exactly as in the proof of the second interpolation inequality.



14 CHAPTER 7 - THE NAVIER-STOKES EQUATION

e Sobolev embedding. For any s € (0,d/2), there holds
. 1 1 s

5.1 H*(R?Y) C LP(R? ith —=-—-.

(5.1) R C PEY), with - ="

In particular, H'/?(R?) ¢ L*(R?) and H'/?(R®) c L*(R?). The proof of (5.1) is a

bit tricky and it is presented below. We start with the Cavalieri’s principle

(5:2) WAl =p/ooo {1 ()] > t}| dt

because

/'f(af”pdx:// 1t<|f<z>|Pt”_ldtdw=p/ {/ (a5 da ft7 1 dt,
Rd R4 JO 0 Rd

by the Fubini theorem. We then introduce the splitting
f=fa+ 4
with . .
fai=F gcak), [H=F Qgzal),
where for a function g : R — C we define its Fourier transform § = Fg and its
inverse Fourier transform F~'g by
1 , 1 .
Fg(é) = ——~ ! “lg(z) = 7/ i ge.
00 = Gy [ 0(@)e =S dn, Flglw) = s [ a@) e

We observe that

aloe < @0 2all = @m)" [ 1irealfide
/ o /
< em ([ rgeate > ae) (1)
< (C1/2) A5 fll e

where we have used the Cauchy-Schwartz inequality and we denote here and below
by C; some constant which only depend on p, s and d. We deduce that
(fal >t/2} =0 if t>ta:=CrAY>7|f|| ;..

Together with the inclusion

{If(@)] >t} C {|fa(@)] > /2y U{|f* ()] > t/2},
we get
{If (@) >t} C {If*(2)| > t/2},
where we have defined
A= (Crt/If ).
Coming back to (5.2), we then have

1£15, <p / P FA (@) > t/2)] dt
0
We recall the Tchebychev inequality

lgI? 1
Hlgl > A} < 2 Llgl>n dr < FHgHLz
and the Plancherel idenitity

lgllze = llgllz
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The three last inequalities together, we have

o0
FA
1712, Sp/O LIt

We then write

[t = [ [P, de
0 0 R4

. tig)
/Iflz(/ 3 dt)d

1

—2
= = L P (cue ) e,

where we have used the Fubini theorem at the second line. From the very definition
p:=2d/(d — 2s), we have

(g—s)(p—Z):(d—%)(d%—l) d—(d—2s)=2s.

Putting together the three last estimates and identities, we thus obtain

1712, < Cs / IR 1€ delFIE2 = Calf I,

which is nothing but the announced estimate. O

e Young inequality for convolution. For any p, ¢ € [1,+00] such that 1/p+1/q < 1,
there holds

(5:3) If*gller < flleelgllea, VfeLr, gelf
where 1 € (1,00) is defined by

1 1 1
S =1+4-.
P q r
We fix 0< feLP,0<ge L1, 0<he L, and observing that
11 1 1 1 1 1 1 1

rog¢ p r p ¢ p ¢

Al
r!

we may write

/(f*ghdw // =) g W) P hW) 7 ) (f (e — ) ha)7) dudy.

Because

we may use the generalized Holder inequality and we get

1/r , 1/' , 1/
/(f*g)hdx < (/ fpquxdy //gthdxdy p(/ PR dxdy) !

(R A e e e o P P
Together with the duality estimate

If *gll- = sup / (f % g)hde,

IRl <1

we immedialtely conclude that (6.11) for positive functions, and then for any func-
tions. (]



16 CHAPTER 7 - THE NAVIER-STOKES EQUATION

6. THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

We establish now a slight but fundamental improvement of the Young inequality.
The proof uses smart and accurate arguments of real harmonic analysis.

6.1. The maximal function.

Lemma 6.1 (Covering lemma). Let E C R? measurable which is covered by a
familly of balls {B;} of volume bounded by a same constant. Then we can select a
(disjoint finite or denombrable) subsequence denoted by By, ..., B, ... so that

(6.1) D ABL) 2 KTIAE),
k

where \ stands for the Lebesgue measure and K := 5% is a convenient choice.

Proof of Lemma 6.1 . We note J the set of indices for the set of distinct balls
{B;}? As a first step, we choose B; in the family {B;},c; which satisfies

1
diamf3; > 5 sup{diamBj; j € J}.
We proceed recursively by choosing By, k£ > 2, such that
1
diamBy, > §Sup{diamBj7 jeJand B;NB;=0Vi=1,...,k—1),

and build in that way a finite or denombrable sequence By, ..., Bg,.... We can
assume

(6.2) > A(By) < o0,
k

otherwise inequality (6.1) is trivial. We define B; as the ball having same center as
B, but whose radius is five times larger and we claim that

Ec|/JB;,
k

from what we immediately deduce (6.1) with K = 5. It is thus enough to prove
that for any B; in the familly {B;} which is not in the family {8y}, we have

B; c|JB;.
k

We fix such a ball B;. From (6.2), we clearly have A(Bg) — 0 when k — oo, and
we then may choose k as the first integer such that

1
diam B 1 < §diam B;.

From the definition of (B¢) we must have B; N B; # () for some i € {1,...,k} (oth-
erwise we have B; = Bi41 because of the diameter condition and that contradict
our choice of B; which precisely not belongs to that family). We conclude that
B; C By, and that ends the proof. O

1

L (RY), we define the maximal function

1
M (@) = sup s /B Wl

The maximal function M f is measurable (take r € Q) and positive whenever

f#0.

For a function f € L
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Theorem 6.2 (Maximal function). For any p € (1,00) and any f € LP(R?), we
have

(6.3) M flle < ClfllLe,
for some positive constant C which only depends on p and d.

Proof of Theorem 6.2 . Step 1. We prove that for g € L*(R%), there holds
K
(6.4) A({z € R% (Mg)(w) > a}) < —gllr, Ya>0,

for the same constant K as in the covering Lemma 6.1. Let us then fix g € L*(R?).
For any a > 0, we define

E, = {x; Mg(x) > a}.

By definition of the maximal function, for any = € E,, there exists a least one ball
B, with center z such that

(6.5) aA(B,) < / l9(v)|dy.

x

Because the right hand side is bounded by ||g||z: the volume of B, is necessarily
smaller than ||g||z1/a independently of € E,. Since the union of the balls B,
obviously covers E,,, we may make use of the covering Lemma 6.1 and deduce that
there exists a sequence of balls By, (extracted from the previous family) such that
they are mutually disjoint and

(6.6) MEq) < C > NBy)
k
Putting together (6.5), (6.6) and the fact that the balls (By) are disjoint, we get

aX(E,) <3 anB) < 3 /B o)l dy = / , sy

from which (6.4) immediately follows.
Step 2. We prove (6.3). Let us fix f € LP(R?). For any given a > 0, we define
9(2) = f(2) Ljf(@)|>a2 and Ey:={z;Mf(z) > a}.
From |f(z)] < |g(x)] + a/2, we deduce M f(z) < Mg(x) + /2, and therefore
E, C{z;Mg(z) > «/2}.
Applying (6.4) to the function g (which belongs to L*(R%)), we have
2K

(67) AU Alfr € B (Mo)(w) > ) < gl = 20 [ sl

On the other hand, we observe that thanks to the Fubini Theorem, we have

// pa”_ldadx:/ /le(x)>adxpap_1da
rd Jo 0 Jrd
oo

/0 M{z € RY; (Mg)(z) > a}) pa?~ ! da.

| sy o
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Together with (6.7) and using again the Fubini Theorem, we deduce

/(Mf)pda: < / 2 |f| dz paP~! da.
R 0

@ J|fIza/2

2K p /R |f(x)|(/02f(x)l a2 da)dx

= K [ @ s,
p— R

1
which ends the proof of (6.3). d

6.2. Hardy-Littlewood-Sobolev inequality.
1

(6.8) |+ 1]
||

For d > 2, we define the functional I by

I fl(x) == /Rdscic(;)d—ldy’ VfGD(Rd).

For d > 1, a € (0,d), we define the functional F' by

<Crlf]

L2r/(2=r) (]RZ) -

L7 (R2)5 Vr e (1,2)7

F(z) = /R W4y vfeD®Y.

a |z —yl*

We assume that p,q > 1 are such that

1 « 1

6.9 -+ -=1+-.

(6.9) P .
In particular, for d > 2 and o = d — 1, we have
11 1
p d q

so that ¢ = p* is the classical Sobolev exponent associated to W'P(RY) when
p € (1,d).

Theorem 6.3. For any p € (1,d), there holds

1 1 1
I:LP(RY — LIRY), =—:==—-.
g p d
In particular, there exists a constant C' such that
(610) Hf * IC||L4(R2) <C Hf||L4/3(]R2)7 Vf € L4/3(R2)’
e Hardy-Littlewood-Sobolev inequality. For any p € (1,d), there holds
(6.11) If * Gl < Cpllfllee, VfeL,
where G and p* € (1, 00) are defined by
1 1 1 1
G(x): = =

T oy Ty d
It is worth emphasizing that it is a critical case of the Young inequality since G
almost belongs to the L? Lebesgue space with ¢ := d/(d — 1) and that for such a
exponent g the exponent r associated to the Young inequality satisfies

1 d-1 1

42 T 14
>t a +-
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*

which is precisely r = p*.
We take 0 < f € LP and we define

_ fy)
F(x):= /]Rd P dy.

For a fixed § > 0, we define F = Fs + F° with
f(y) 5 f(y)
Fs(x) ::/ — 2 —dy, F°(zx):= — = dy.
lo—yl<s 17— yl¢! lo—y|>s |7 — Y|4t
On the one hand, for Fj, we write

Fy(r) = / f(y)

z—y|<d |$ - yla

[yt [ e

I L |
= —a1(— dy)d
1+a/0 " (rd /w_quf(y) y) 4

\a(B1) [?
< 1(15‘014)./0 rd*aflder(x)
= C1 67 Mf(x), C = (1+A2§Zl)a)’

where we have used the Fubini theorem at the third line and the definition of the
maximal function M f at the fourth line.

On the other hand, for F°®, we write

F6 - — f(y)
(2) /

z—y|>8 |$ - yla

1 l/p/ d/v
< P T == /p @ P
= ”fHL (/|ac—y>6 |£E _ y|ap/ dy) Cad ”fHL )

where we have used

dz 1/p’ e RN V-3
——d = Aa_1(S1)Y? / d=1=er'g
(/m o ) S ([ ')

_ Ad—1 (Sl)l/p gld—oap)/p"

(ap’ —d)M/¥

It is worth emphasizing that the last integral converges because from (6.9), there
holds

d—ap' =dp'(1/p' — a/d) = —dp'/q < 0.
Both estimates together imply

F(z) < 8“Mf(z)+ 8677 =||f||n
S (M f(x))t~ @D g @/d(a=e)

= (M)l e
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with the choice § := (||f||z» /M f(x))?/¢. As a consequence, we have

/FT'da; - /F(% 507 dx

< / (M f ()P de| 157

We immediately conclude thanks to Theorem 6.2.
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