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CHAPTER 7

THE NAVIER-STOKES EQUATION

- STILL A DRAFT -

We present some mathematical results on the Navier-Stokes equation about incom-
pressible fluids in dimension d = 2, 3.
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1. Introduction, a priori estimate, vortex formulation

We consider the Navier-Stokes equation

(1.1)

{
∂tu− ν∆u+ u · ∇u+∇p = 0
div u = 0,

on the vector (velocity) field u : (0, T ) × Ω → Rd, with Ω ⊂ Rd. For the sake of
simplicity, we will only consider the case Ω = Rd with d = 2, 3, and a viscosity
coefficient ν = 1. The first equation is vectorial, and it is thus equivalent to

∂tui −∆ui + u · ∇ui + ∂ip = 0, ∀ i = 1, . . . , d.

• The pressure. The term ∇p is linked to the vanishing divergence condition
and can be interpreted as a “Lagrange multiplicator” associated to this constraint.
More precisely, computing the divergence of each term involved in the first vectorial
equation, we get

−∆p = div (u · ∇u) =
∑
ij

∂2
ij(uiuj),

where we have used that div u = 0 in the last equality. After having properly
defined the inverse of the Laplacian operator, we may thus write

p := (−∆)−1
(∑
ij

∂2
ij(uiuj)

)
.

We will come back on that fundamental (but technical) point later.
1
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• The energy identity. We compute

1

2

d

dt
‖u‖2L2 =

∫
∂tu · u

= −
∫

(u · ∇u) · u+

∫
∆u · u−

∫
∇p · u.

Using integrations by part, we compute each term separately. We have

−
∫
∇p · u =

∫
p (div u) = 0,∫

∆u · u = −
∫
|∇u|2 := −

∑
ij

∫
(∂iuj)

2,

and also (with Einstein’s convention of summation of repeated indices)∫
(u · ∇u) · u =

∫
(uj∂jui)ui =

1

2

∫
uj∂j |u|2 = −1

2

∫
(div u)|u|2 = 0.

All together, we have

1

2

d

dt
‖u‖2L2 = −‖∇u‖2L2 ,

and finally after time integration

(1.2) ‖u(t)‖2L2 + 2

∫ t

0

‖∇u(s)‖2L2 ds = ‖u0‖2L2 , ∀ t ≥ 0.

• The vortex and the dimension d = 2. In dimension d = 3, we define the
vortex vector field

Ω := curlu := ∇∧ u =

∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1

 .

In dimension d = 2, we may associated the 3d vector field ũ : R3 → R3, ũ(x1, x2, x3) =
(u1(x1, x2), u2(x1, x2), 0), so that

Ω̃ = curl ũ =

0
0
ω

 , ω := ∂1u2 − ∂2u1,

and the vortex is thus a scalar. In any dimension, we may verify (that is left as an
exercise) that the vortex satisfies the evolution equation

∂tΩ + u · ∇Ω− Ω · ∇u−∆Ω = 0,

where we have just used that curl∇p = (∇ ∧ ∇)p = 0. We deduce from this that
in dimension d = 2, we have

∂tω + u · ∇ω −∆ω = 0,

where we have used

div Ω̃ = ∇ · (∇∧ ũ) = 0, and then Ω̃ · ∇ũ = ∇ · (Ω̃⊗ ũ) = 0.

We may rather compute directly the evolution equation satisfied by the vortex
function ω. We indeed have

∂tω = ∂1(∆u2 − u · ∇u2 − ∂2p)− ∂2(∆u1 − u · ∇u1 − ∂1p)

= ∆ω − u · ∇ω +Q,
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with

Q := −∂1u · ∇u2 + ∂2u · ∇u1

= −∂1u1∂1u2 − ∂1u2∂2u2 + ∂2u1∂1u1 + ∂2u2∂2u1

= ∂1u1(∂2u1 − ∂1u2) + ∂2u2(∂2u1 − ∂1u2)

= (div u)ω = 0.

We end with a last observation. We compute

curl Ω̃ = curl curl ũ = (∇div −∆)ũ = −∆ũ,

so that

ũ = −∆−1curl Ω̃ = −curl ∆−1Ω̃ = −∇ ∧

 0
0

∆−1ω

 =

−∂2(∆−1ω)
∂1(∆−1ω)

0

 .

Recalling that

∆E = δ

with E(x) = (2π)−1 log |x| in dimension d = 2, we get

(1.3) u =

(
ũ1

ũ2

)
= K ∗ ω

with

K(x) := ∇⊥E(x) =
1

2π

x⊥

|x|2
, x⊥ = (−x2, x1).

As a conslusion, in dimension d = 2 we obtain the following scalar equation on the
vortex

∂tω + (K ∗ ω) · ∇ω −∆ω = 0,

from what we may reconstruct the velocy filed thanks to the Biot-Savart equa-
tion (1.3).

2. Around the presure issue

Theorem 2.1 (Hodge decomposition and pressure). For any T : Ω → Rd, there
exist ϕ : Ω→ R and ψ : Ω→ Rd such that

T = curlψ +∇ϕ,
with ψ = 0 and T = ∇ϕ if curlT = 0 and ϕ = 0 et T = curlψ if div T = 0. As a
consequence, when T ⊥ {S, divS = 0} there exists p : Ω→ R such that T = ∇p.

Idea of the proof. We make the following observations

curl∇ = 0, div curl = 0, ∆ := ∇div − curl curl

We set

w := ∆−1T, ϕ := divw, ψ := −curlw,

so that

T = ∆w = (∇div − curl curl )w = ∇ϕ+ curlψ.

On the other hand, the operator ∆−1 commutes with translations and thus with
both operators div and curl . To see this in another way, we may write

∆−1div = ∆−1div (∇div − curl curl )∆−1 = ∆−1div∇div ∆−1 = div ∆−1
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and

∆−1curl = ∆−1curl (∇div − curl curl )∆−1 = −∆−1curl curl curl ∆−1

= −∆−1(∇div −∆) curl ∆−1 = ∆−1∆ curl ∆−1 = curl ∆−1.

Be careful with the fact that we have used ∆∆−1 = I what is always true, but
also ∆−1∆ = I which is less clear, but also true in the case when Ω = Rd. As a
consequence, we have

ψ = curl (∆−1T ) = ∆−1(curlT ) = 0 when curlT = 0

and

ϕ = div (∆−1T ) = ∆−1(div T ) = 0 when div T = 0.

Finally, if T ⊥ {S, divS = 0}, we have in particular for any φ ∈ D(Rd),

〈curlT, φ〉 = 〈T,−curlφ〉 = 0,

because div curlφ = 0. We deduce that curlT = 0, and thus T = ∇p. �

We introduce the close sets V and R of the Hilbert space L2(Rd) of vector field, by
defining

V := {u ∈ L2(Rd); div u = 0},
R := {u ∈ L2(Rd); curlu = 0}.

Theorem 2.2 (Hodge decomposition and pressure in L2(Rd)). For any vector field

u ∈ L2(Rd), there exist a scalar function ϕ ∈ Ḣ1(Rd) and a vector field ψ ∈ Ḣ1(Rd)
such that

u = curlψ +∇ϕ, ‖∇ϕ‖+ ‖Dψ‖ . ‖u‖,
with ψ = 0 and thus u = ∇ϕ if u ∈ R and ϕ = 0 and thus u = curlψ if u ∈ V. As
a consequence, when u ⊥ V there exists p ∈ Ḣ1 such that u = ∇p.

Idea of the proof. In the Fourier side, everything becomes easier. �

Theorem 2.3 (pressure again). We define the projection

P = I −∇∆−1div .

There is equivalence between

(1) T = ∇p,
(2) PT = 0,

(3) T ⊥ V.

Idea of the proof. (1)⇒ (2) For T = ∇p, we have

PT = T −∇∆−1div∇p = T −∇p = 0.

(2)⇒ (3) Assume PT = 0. For any v ∈ V, there holds Pv = v, and therefore

(T, v) = (T,Pv) = (PT, v) = 0.

That means T ⊥ V.
(3)⇒ (1) That follows immediately from the Hodge decomposition. �
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3. Leray solutions to the Navier-Stokes equation

We consider the Navier-Stokes equation

(3.1)

{
∂tu−∆u+ u · ∇u+∇p = 0
div u = 0,

on the vector fields u : (0, T )× Ω→ Rd, with d = 2, 3.

Theorem 3.1. For any u0 ∈ V, there exists at least one weak global solution

u ∈ XT := L∞(0, T ;V) ∩ L2(0, T ;H1), ∀T > 0,

in the sense that∫
ut · ψt dx+

∫ t

0

∫
∇u : ∇ψ dxds =

=

∫
u0 · ψ0 dx+

∫ t

0

∫
u⊗ u : ∇ψ dxds−

∫ t

0

∫
u · ∂sψ dxds,

for any t ∈ (0, T ) and ψ ∈ C1, divψ = 0. Moreover, the following energy inequality
holds

(3.2) ‖u(t)‖2L2 + 2

∫ t

0

‖∇u(s)‖2L2 ds ≤ ‖u0‖2L2 , ∀ t ≥ 0.

We accept that the above Navier-Stokes equation is equivalent to the two following
formulations

(3.3) ∂tu−∆u−P(u · ∇u) = 0

and

(3.4) ∂tu−∆u− u · ∇u ⊥ D ⊗ V.

We observe that (3.1)⇒ (3.3) is just a consequence of the fact that Pu = u because
div u = 0 and the fact that P∇p = 0.

There exist two classical strategies in order to establish the Leray Theorem 3.1
about existence of solutions.

A first way consists in considering a Friedrich discretization scheme

∂tun − Sn[∆un −Pdiv (Snun ⊗ Snun)] = 0,

where Sn is a finite dimensional range operator for which existence of solutions is
given by the Cauchy-Lipschitz on ODE, and then to pass to the limit n→∞.

A second way consists in considering the regularized equation

(3.5) ∂tuε −∆uε + (ρε ∗ uε) · ∇uε +∇pε = 0,

for a sequence of mollifiers (ρε) and then to pass to the limit ε→ 0.

We will follow that second way but we rather start by proving a stability principle.

Theorem 3.2. Consider a sequence (u0,n) of V such that u0,n → u0 in L2 and a
sequence of associated Leray weak global solutions (un). Then, there exists u ∈ XT

and a subsequence (un′) such that un′ → u and u is a Leray weak global solution
associated to u0.

In the proof we use in a crucial way the following classical compactness lemma.
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Lemma 3.3 (Aubin-Lions). Consider a sequence (un) which satisfies

(i) (un) is bounded in L2
tx,

(ii) (∂tun) is bounded in L2
t (H

−s
x ), s ∈ R+,

(iii) (∇xun) is bounded in L2
tx.

Then, there exists u ∈ L2
tx and a subsequence (un′) such that un′ → u strongly in

L2((0, T )×BR) as n→∞ for any R > 0.

Idea of the proof. Step 1. We may write ∂tun = Dsgn with (gn) bounded in
L2
tx. We introduce a sequence of mollifiers (ρε), that is ρε(x) := ε−dρ(ε−1x) with

0 ≤ ρ ∈ D(Rd), 〈ρ〉 = 1. We observe that

∂

∂t

∫
Rd
un(t, y) ρε(x− y) dx =

∫
Rd
gn(t, y)Dsρε(x− y) dy,

where the RHS term is bounded in L2((0, T ) × Rd) uniformly in n for any fixed
ε > 0. We also clearly have

∇x
∫
Rd
un(t, y) ρε(x− y) dx = −

∫
Rd
un∇yρε(x− y) dy,

where again the RHS term is bounded in L2((0, T ) × Rd) uniformly in n for any
fixed ε > 0. In other words, un ∗ ρε is bounded in H1((0, T )× Rd). Thanks to the
Rellich-Kondrachov Theorem, we get that (up to the extraction of a subsequence)
(un ∗ ρε)n is strongly convergent in L2((0, T )× BR), for any R > 0. On the other
hand, from (i) and the Banach-Alaoglu weak compacteness theorem, we know that
there exists u ∈ L2

tx and a subsequence (un′) such that un′ ⇀ u weakly in L2
tx. All

together, for any fixed ε > 0, we then get

un ∗ ρε → u ∗ ρε strongly in L2((0, T )×BR) as n→∞.

Step 2. We now observe that∫
(0,T )×Rd

|w − w ∗ ρε|2 dxdt =

∫
(0,T )×Rd

∣∣∣∫
Rd

(w(t, x)− w(t, x− y))ρε(y) dy
∣∣∣2 dxdt

=

∫
(0,T )×Rd

∣∣∣∫
Rd

∫ 1

0

∇xw(t, zs) · yρε(y) dsdy
∣∣∣2 dxdt,

with zs := x+ sy. From the Jensen (or Cauchy-Schwarz) inequality, we deduce∫
(0,T )×Rd

|w − w ∗ ρε|2 dxdt ≤ ε2

∫
(0,T )×Rd

∫
Rd

∫ 1

0

|∇xw(t, zs)|2
1

εd
|y|2

ε2
ρ
(y
ε

)
dsdydxdt

≤ ε2

∫
(0,T )×Rd

|∇xw(t, z)|2dtdz
∫
Rd
|z|ρ(z) dy

≤ ε2Cρ‖∇xw‖2L2
tx
.

We conclude that un → u in L2((0, T )×BR) by writing

un − u = (un − un ∗ ρε) + (un ∗ ρ− u ∗ ρ) + (u ∗ ρε − u)

and using the previous convergence and estimates. �

Idea of the proof of Theorem 3.2. From an interoplation theorem and Sobolev
embedding, in dimension d = 2, we have

L∞t (L2) ∩ L2
t (Ḣ

1) ⊂ L4
t (Ḣ

1/2) ⊂ L4
tx,
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because for s = 1/2, the relation 1/s∗ = 1/2− s/d gives s∗ = 4. We deduce that

un ⊗ un is bounded in L2((0, T )× R2).

Similarly, in dimension d = 3, we have

L∞t (L2) ∩ L2
t (Ḣ

1) ⊂ L4
t (Ḣ

1/2) ⊂ L4
t (L

3),

because for s = 1/2, the relation 1/s∗ = 1/2 − s/d gives s∗ = 3. Because of the

same Sobolev embedding, we have L3/2 ⊂ Ḣ−1/2, and then

un ⊗ un is bounded in L2
t (L

3/2(R3)) ⊂ L2
t (Ḣ

−1/2(R3)).

We recall the definition of the projector

P = I −∇∆−1div ,

which in the Fourier side also writes

P̂ = I − ξ ⊗ ξ
|ξ|2

.

Arguing in the Fourier side, we see that

Pdiv (un ⊗ un) is bounded in L2
t (H

s(Rd)),

with s = −1 if d = 2 and s = −3/2 if d = 3. As a consequence, we find

∂tun = ∆un −Pdiv (un ⊗ un),

which is bounded in L2(0, T ;Hs(Rd)), for the same values of s as above when
d = 2, 3. From, Aubin-Lions’ lemma, we deduce that un → u strongly L2

loc and
then un⊗un → u⊗u strongly L1

loc. As a consequence, we may pass to the limit in
the weak formulation in the sense that∫

un(t) · ψ(t) dx = −
∫ t

0

∫
∇un : ∇ψ dxds+

∫ t

0

∫
un ⊗ un : ∇ψ dxds

+

∫
u0,n · ψ0 dx+

∫ t

0

∫
un · ∂tψ dxds,

for any ψ ∈ C1
c (Rd+1), divxψ = 0, and we get that u also satisfies the same weak

formulation of the Navier-Stokes equation. �

Idea of the proof of Theorem 3.1. We now consider the equation (3.5), and we start
with considering the linear mapping which to a vector field u : (0, T ) × Rd → Rd
associates the solution v : (0, T )× Rd → Rd to the linear equation

(3.6)

{
∂tv −∆v + (u ∗ ρε) · ∇v +∇p = 0
div v = 0, v(0) = u0.

Let us make the problem more precise. Fix u0 ∈ V and (ρε) a mollifier. We define

XT := C([0, T ];V) ∩ L2(0, T ;H1(Rd)) ∩H1(0, T ;H−1(Rd)),

and for u, v, ψ ∈ XT , we may multiply (3.6) and integrate the resulting equation in
order to get (at least formally)∫

vt · ψt dx = −
∫ t

0

∫
∇v : ∇ψ dxds+

∫ t

0

∫
(u ∗ ρε)⊗ v : ∇ψ dxds

+

∫
u0 · ψ0 dx+

∫ t

0

∫
v · ∂tψ dxds.
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It is worth emphasizing that because of div u = 0, we also have div (u ∗ ρε) = 0,
and then (u ∗ ρε) · ∇v = div ((u ∗ ρε) ⊗ v). That is nothing but the J.-L. Lions’
variational formulation of (3.6) when making of spaces and operator

H := V, V := H1, Λtv := ∆v − (ut ∗ ρε) · ∇v −∇p,

where p stands for a Lagrange multiplicator. We have to show that −Λt is bounded
and satisfies G̊arding’s inequality. We indeed observe that V endowed with the L2

scalar product is an Hilbert space (because it is closed in L2) and next for any
v, ψ ∈ V ∩H1, we have

|(Λtv, ψ)L2 | =
∣∣∣∫ ((ut ∗ ρε)⊗ v +∇v) : ∇ψ

∣∣∣ ≤ Cε‖v‖H1‖ψ‖H1 ,

using that ‖u(t) ∗ ρε‖∞ ≤ ‖u(t)‖L2‖ρε‖L2 ≤ Cε, and

(Λtv, v)L2 = −
∫

((ut ∗ ρε)⊗ v +∇v) : ∇v ≤ −1

2
‖v‖2H1 + Cε‖v‖2L2 .

From J.-L. Lions theorem, we therefore establish the existence and uniqueness of a
variational solution v ∈ XT to the linear equation (3.6) and that one satisfies the
energy identity

‖v(t)‖2L2 + 2

∫ t

0

‖∇v(s)‖2L2 ds = ‖u0‖2L2 , ∀ t ∈ (0, T ),

by just repeating the arguments leading to (1.2).

Denoting v := Φ(u), we have shown Φ : XT → XT . Considering u1, u2 ∈ XT
with ‖ui(t)‖2 ≤ ‖u0‖2 for any t ∈ (0, T ) and denoting vi := Φ(ui), v = v2 − v1,
u = u2 − u1, we have

1

2

d

dt

∫
|v|2 =

∫
(∆v2 − (u2 ∗ ρε) · ∇v2 −∇p2) · v

−
∫

(∆v1 − (u1 ∗ ρε) · ∇v1 −∇p1) · v

=

∫
(∇v2 + (u2 ∗ ρε)⊗ v2) : ∇v −

∫
(∇v1 + (u1 ∗ ρε)⊗ v1) : ∇v

=

∫
|∇v|2 +

∫
[(u2 ∗ ρε)⊗ v) + (u ∗ ρε)⊗ v1)] : ∇v.

As a consequence, we have

1

2

d

dt
‖v‖22 ≤

∫
|(u2 ∗ ρε)⊗ v|2 +

∫
|(u ∗ ρε)⊗ v1)|2

≤ ‖u2 ∗ ρε‖2∞
∫
|v|2 + ‖u ∗ ρε‖2∞

∫
|v1|2

≤ Cε‖u0‖22 ‖v‖22 + Cε‖u‖22 ‖u0‖22,

and from the Gronwall lemma, we deduce

‖vt‖22 ≤
∫ t

0

CeC(t−s)‖us‖22 ds, C := Cε ‖u0‖22,

and finally

sup
[0,T∗]

‖vt‖22 ≤ [eCT
∗
− 1] sup

[0,T∗]

‖ut‖22.
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As a conclusion, when T ∗ > 0 is small enough, Φ is a contraction in XT∗ , so that
Φ admits a unique fixed point which is thus the unique solution to the regularized
Navier-Stokes equation (3.6).
Let us come back to the above computation in order to make it completely rigorous
when we have to deal with variational solutions. With the same notations vi :=
Φ(ui), v = v2 − v1, u = u2 − u1 and ψ = v, we write first

1

2
‖v(t)‖2 = ‖v(t)‖2 −

∫ t

0

〈v′(s), v(s)〉 ds

= (v2(t), ψt)− (u0, ψ0)−
∫ t

0

〈ψ′s, v1(s)〉 ds

−(v1(t), ψt) + (u0, ψ0) +

∫ t

0

〈ψ′s, v1(s)〉 ds

= −
∫ t

0

∫
∇v2 : ∇ψ dxds+

∫ t

0

∫
(u2 ∗ ρε)⊗ v2 : ∇ψ dxds∫ t

0

∫
∇v1 : ∇ψ dxds−

∫ t

0

∫
(u1 ∗ ρε)⊗ v1 : ∇ψ dxds

= −
∫ t

0

∫
[∇v + (u2 ∗ ρε)⊗ v2 − (u1 ∗ ρε)⊗ v1] : ∇v dxds,

and we may then estimate the RHS term similarly as we did above.

4. The Navier-Stokes equation in vortex formulation in 2D

In this section, we consider the Navier-Stokes equation in dimension d = 2 in its
vortex formulation, that we will simply call from now on the vortex equation, namely

(4.1) ∂tω + u · ∇ω −∆ω = 0,

where u is given that the Biot-Savart equation (1.3).

u := K ∗ ω, K(x) :=
1

2π

x⊥

|x|2
, x⊥ = (−x2, x1).

Theorem 4.1. For any ω0 ∈ L1(R2), there exists a unique global solution to the
vortex equation

ω ∈ C([0,∞);L1(R2)) ∩ C((0,∞);L∞(R2))

such that

‖ω(t)‖L1 ≤ ‖ω0‖L1 , t1−
1
p ‖ω(t)‖Lp ≤ C‖ω0‖L1 ,

for any t ≥ 0 and any p ∈ (1,∞] for a universal constant C > 0. The equation has
to be understood in the mild sense

ωt = e∆tω0 −
∫ t

0

e(t−s)∆(us · ∇ωs) ds,

where e∆t stands for the heat semigroup.

We will not give the proof in the full generality, but rather explain how to proceed in
the particuar case ω0 ∈ L1 ∩Lρ, ρ > 1. That case yet contains the main difficulties
and the proof we will see thus contains the main tools in order to overcome them.



10 CHAPTER 7 - THE NAVIER-STOKES EQUATION

• We start with some a priori estimates. For p ∈ [1,∞), we compute

d

dt

∫
|ω|p dx = p

∫
ω|ω|p−2∆ω dx− p

∫
ω|ω|p−2 u · ∇ω dx

= −p(p− 1)

∫
|ω|p−2|∇ω|2 dx−

∫
u · ∇|ω|p dx

= −4
p− 1

p

∫
|∇(ω|ω|p/2−1)|2 dx+

∫
(div u)|ω|p dx

= −4
p− 1

p

∫
|∇(ω|ω|p/2−1)|2 dx,

by performing two integrations by parts. We deduce

(4.2) ‖ωt‖Lp ≤ ‖ω0‖Lp , ∀ t ≥ 0, ∀ p ∈ [1,∞],

as well as

(4.3)

∫ ∞
0

‖∇(ωs|ωs|p/2−1)‖L2 ds . ‖ω0‖Lp , ∀ p ∈ (1,∞).

• We now briefly explain a possible strategy in order to obtain the existence of
solution which consists to follow the same line of arguments as in the previous
section when we have considered the NS equation in dimension d = 2, 3. We
introduce the kernel Kε := K ∗ ρε for a sequence of mollifiers (ρε) and we first
consider the regularized equation

(4.4) ∂tω −∆ω +Kε ∗ ω · ∇ω = 0, ω(0) = ω0.

That equation may be tackled thanks to the classical way. We define the mapping
g 7→ f , where f is the solution to the linear equation

∂tf −∆f +Kε ∗ g · ∇f = 0, f(0) = ω0.

When furthemore, ω0 ∈ L2, we prove that this mapping has a fixed point in the
J.-L.-Lions space XT for T > 0 small enough, and we get then a global solution
ωε ∈ XT , ∀T > 0, to the regularized equation (4.4) by repeating the argument
(valid on a small intervalle (0, T ), with T := T (‖ ω0‖L2)). When p = 2, we may
pass to the limit ε→ 0 exacltly as in the previous section and in that way we obtain
a solution

ω ∈ C(R+;L2
w) ∩ L∞(R+;L2) ∩ L2(R+, Ḣ

1)

to the vortex equation (4.1). For the more general case p > 1, we may also proceed
similarly by adapting Aubin-Lions’ lemma to a Lp framework, we however do not
developp further that issue.

• We finally concentrate on the uniqueness issue for solutions which belong to
L∞(R+;Lρ(R2)), ρ > 1. We start with several intermediate results of independant
interest.

Lemma 4.2. For any 1 ≤ r ≤ p ≤ ∞ and for any g ∈ Lq(R2), there holds

‖et∆g‖Lp(R2) .
1

t
1
r−

1
p

‖g‖Lr(R2)

and

‖∇et∆g‖Lp(R2) .
1

t
1
2 + 1

r−
1
p

‖g‖Lr(R2).
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The proof is straightforward by writing the kernel representation of the heat semi-
group.

We also recall the following formulation of the Holder inequality

(4.5) ‖f g‖Lr ≤ ‖f‖Lβ‖g‖Lp ,
1

r
=

1

β
+

1

p
,

for β, p ≥ 1 such that 1/β + 1/p ≤ 1.

We finally accept the following consequence of the Hardy-Littlewood-Sobolev (HLS)
inequality

(4.6) ‖K ∗ g‖Lβ(R2) ≤ Cq ‖g‖Lq(R2),
1

β
=

1

q
− 1

2
,

which holds true for any q ∈ (1, 2). Recalling the Young inequality about convolu-
tion product stipulating that

(4.7) ‖f ∗ g‖Lβ ≤ ‖f‖Lp‖g‖Lq , ∀ f ∈ Lp, g ∈ Lq,

for any p, q ∈ [1,+∞] such that 1/p+ 1/q < 1 and with

1

β
:=

1

q
+

1

p
− 1,

the HLS inequality can be seen as a critical case of the Young inequality in the case
when f = K /∈ L2(R2).

Let us start the uniqueness proof and thus consider two solutions ωi, i = 1, 2, to
the vortex equation that we write in mild form

ωit = et∆ω0 −
∫ t

0

e(t−s)∆(div (usωs)) ds.

Introducing the difference ω := ω2 − ω1 and u = u2 − u1, we have

ωt =

∫ t

0

e(t−s)∆(div (usω
2
s)) ds+

∫ t

0

e(t−s)∆(div (u1
sωs)) ds =: Q2

t +Q1
t .

Let us fix p ∈ (1,min(ρ, 2)) and observe that

‖ωi‖p,t ≤ t1−1/p‖ω0‖Lp → 0, as t→ 0,

where we have set

‖f‖p,t := sup
s∈(0,t)

[s1−1/p‖fs‖Lp ].

We estimate

‖Q1
t‖Lp ≤

∫ t

0

‖e(t−s)∆(div (u1
sωs))‖Lp ds

.
∫ t

0

1

(t− s)
1
2 + 1

r−
1
p

‖u1
sωs‖Lr ds

.
∫ t

0

1

(t− s)
1
p

‖u1
s‖Lβ‖ωs‖Lp ds

.
∫ t

0

1

(t− s)
1
p

‖ω1
s‖Lq‖ωs‖Lp ds,
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where we have successively used the second estimate on the heat semigroup as
stated in Lemma 4.2 with r defined by

1

r
=

2

p
− 1

2
,

next the Holder inequality (4.5) with

1

β
=

1

r
− 1

p
,

and finally the HLS inequality with

1

β
=

1

q
− 1

2
.

From the three above definitions, we have

1

q
=

1

β
+

1

2
=

1

r
− 1

p
+

1

2
=

1

p
.

As a consequence q = p, and we may write

‖Q1
t‖Lp .

∫ t

0

ds

(t− s)
1
p s2(1− 1

p )
‖ω1‖p,t‖ω‖p,t

. C
1

t1−
1
p

‖ω1‖p,t‖ω‖p,t

with the constant

C :=

∫ 1

0

du

(1− u)
1
pu2(1− 1

p )

is finite because of the choice of p ∈ (1, 2). The same computations lead to As a
consequence q = p, and we may write

‖Q2
t‖Lp . C

1

t1−
1
p

‖ω2‖p,t‖ω‖p,t

Coming back to the estimate on the mild formulation, we deduc e

t1−
1
p ‖ωt‖Lp ≤ C[‖ω1‖p,t + ‖ω1‖p,t] ‖ω‖p,t

≤ C[t1−1/p‖ω0‖Lp ] ‖ω‖p,t,

so that

‖ω‖p,t ≤
1

2
‖ω‖p,t,

for t > 0 small enough, and that ends the proof of the uniqueness.

5. Interpolation inequalities

About interpolation inequalities :

• Lp ∩ Lq ⊂ Lr for any p ≤ r ≤ q and

‖u‖Lr ≤ ‖u‖θLp‖u‖1−θLq ,
1

r
=
θ

p
+

1− θ
q

, ∀u ∈ Lp ∩ Lq.
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We use the Holder inequality and we then write

‖u‖Lr =
(∫
|u|rθ|u|r(1−θ)

)1/r

≤
(∫
|u|rθs

)1/(rs)(∫
|u|s

′r(1−θ)
)1/(rs′)

,

with 1/s + 1/s′ = 1 choosen in such a way that rθs = p. As a consequence,
1/(rs) = θ/p and

1

rs′
=

1

r

(
1− 1

s

)
=

1

r

(
1− θr

p

)
=

1

r
− θ

p
=

1− θ
q

,

and that ends the proof of the first interpolation inequality.

• Lp1(Lp2) ∩ Lq1(Lq2) ⊂ Lr1(Lr2), and more precisely

‖u‖Lr1 (Lr2 ) ≤ ‖u‖θLp1 (Lp2 )‖u‖
1−θ
Lq1 (Lq2 ),

1

ri
=

θ

pi
+

1− θ
qi

for any u ∈ Lp1(Lp2) ∩ Lq1(Lq2) for a same θ ∈ (0, 1).
We proceed similarly as above. Thanks to the first interpolation inequality and the
Holder inequality, we then write

‖u‖Lr1 (Lr2 ) =
(∫
|‖u‖r1Lr2

)1/r1

≤
(∫
‖u‖r1θLp2‖u‖

r1(1−θ)
Lq2

)1/r1

≤
(∫
‖u‖r1θsLp2

)1/(r1s)(∫
‖u‖r1(1−θ)s′

Lq2

)1/(r1s
′)

,

with 1/s + 1/s′ = 1 choosen in such a way that r1θs = p1. As a consequence,
1/(r1s) = θ/p1 and

1

r1s′
=

1

r1

(
1− 1

s

)
=

1

r1

(
1− θr1

p1

)
=

1

r
− θ

p 1

=
1− θ
q1

,

and that ends the proof of the second interpolation inequality.

• Ḣs1 ∩ Ḣs2 ⊂ Ḣs for any s1 ≤ s ≤ s2 and

‖u‖Ḣs ≤ ‖u‖
θ
Ḣs1
‖u‖1−θ

Ḣs2
, s = θs1 + (1− θ)s2, ∀u ∈ Ḣs1 ∩ Ḣs2 .

On the Fourier side, we have

‖u‖2
Ḣs

=

∫
|û|2θ|ξ|2θs1 |û|2(1−θ)|ξ|2(1−θ)s2 dξ

≤
(∫
|û|2|ξ|2s1 dξ

)θ(∫
|û|2|ξ|2s2 dξ

)1−θ
,

by using the Holder inequality with exponent p = 1/θ and p′ = 1/(1− θ).
• Lp(Ḣa) ∩ Lq(Ḣb) ⊂ Lr(Ḣc), and more precisely

‖u‖Lr(Ḣc) ≤ ‖u‖
θ
Lp(Ḣa)

‖u‖1−θ
Lq(Ḣb)

,
1

r
=
θ

p
+

1− θ
q

, c = θa+ (1− θ)b

for any u ∈ Lp(Ḣa) ∩ Lq(Ḣb) for a same θ ∈ (0, 1).
We write indeed

‖u‖Lr(Ḣc) ≤ ‖‖u‖
θ
Ḣa
‖u‖1−θ

Ḣb
‖Lr

and we argue exactly as in the proof of the second interpolation inequality.
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• Sobolev embedding. For any s ∈ (0, d/2), there holds

(5.1) Ḣs(Rd) ⊂ Lp(Rd), with
1

p
=

1

2
− s

d
.

In particular, Ḣ1/2(R2) ⊂ L4(R2) and Ḣ1/2(R3) ⊂ L3(R2). The proof of (5.1) is a
bit tricky and it is presented below. We start with the Cavalieri’s principle

(5.2) ‖f‖pLp = p

∫ ∞
0

tp−1|{|f(x)| > t}| dt

because∫
Rd
|f(x)|p dx =

∫
Rd

∫ ∞
0

1t<|f(x)|pt
p−1 dt dx = p

∫ ∞
0

{∫
Rd

1|f(x)|>t dx
}
tp−1 dt,

by the Fubini theorem. We then introduce the splitting

f = fA + fA,

with
fA := F−1(1|ξ|≤Af̂), fA := F−1(1|ξ|≥Af̂),

where for a function g : Rd → C we define its Fourier transform ĝ = Fg and its
inverse Fourier transform F−1g by

Fg(ξ) :=
1

(2π)d/2

∫
Rd
g(x) e−ix·ξ dx, F−1g(x) :=

1

(2π)d/2

∫
Rd
g(ξ) e−ix·ξ dξ.

We observe that

‖fA‖∞ ≤ (2π)−d/2‖f̂A‖1 = (2π)−d/2
∫

1|ξ|≤A|f̂ | dξ

≤ (2π)−d/2
(∫

1|ξ|≤A|ξ|−2s dξ
)1/2(∫

|ξ|2s|f̂ |2 dξ
)1/2

≤ (C1/2)Ad/2−s‖f‖Ḣs ,
where we have used the Cauchy-Schwartz inequality and we denote here and below
by Ci some constant which only depend on p, s and d. We deduce that

{|fA| > t/2} = ∅ if t ≥ tA := C1A
d/2−s‖f‖Ḣs .

Together with the inclusion

{|f(x)| > t} ⊂ {|fA(x)| > t/2} ∪ {|fA(x)| > t/2},
we get

{|f(x)| > t} ⊂ {|fAt(x)| > t/2},
where we have defined

At :=
(
C1t/‖f‖Ḣs

)1/(d/2−s)
.

Coming back to (5.2), we then have

‖f‖pLp ≤ p
∫ ∞

0

tp−1|{|fAt(x)| > t/2}| dt

We recall the Tchebychev inequality

|{|g| > λ}| ≤
∫
|g|2

λ2
1{|g|>λ} dx ≤

1

λ2
‖g‖L2

and the Plancherel idenitity
‖g‖L2 = ‖ĝ‖L2 .
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The three last inequalities together, we have

‖f‖pLp ≤ p
∫ ∞

0

tp−1 4

t2
‖f̂At‖2L2dt.

We then write∫ ∞
0

tp−3‖f̂At‖2L2dt =

∫ ∞
0

tp−3

∫
Rd
|f̂ |21|ξ|≥At dξdt

=

∫
Rd
|f̂ |2

(∫ t|ξ|

0

tp−3 dt
)
dξ

=
1

p− 2

∫
Rd
|f̂ |2

(
C1|ξ|d/2−s‖f‖Ḣs

)p−2

dξ,

where we have used the Fubini theorem at the second line. From the very definition
p := 2d/(d− 2s), we have(d

2
− s
)
(p− 2) = (d− 2s)

( d

d− 2s
− 1
)

= d− (d− 2s) = 2s.

Putting together the three last estimates and identities, we thus obtain

‖f‖pLp ≤ C2

∫
Rd
|f̂ |2 |ξ|2s dξ‖f‖p−2

Ḣs
= C2‖f‖pḢs ,

which is nothing but the announced estimate. �

• Young inequality for convolution. For any p, q ∈ [1,+∞] such that 1/p+ 1/q < 1,
there holds

(5.3) ‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq , ∀ f ∈ Lp, g ∈ Lq,
where r ∈ (1,∞) is defined by

1

p
+

1

q
= 1 +

1

r
.

We fix 0 ≤ f ∈ Lp, 0 ≤ g ∈ Lq, 0 ≤ h ∈ Lr′ , and observing that

1

r
+

1

q′
=

1

p
,

1

r
+

1

p′
=

1

q
,

1

p′
+

1

q′
=

1

r′
,

we may write∫
(f ∗ g)h dx =

∫ ∫
(f(x− y)

p
r g(y)

q
r )(g(y)

q
p′ h(y)

r′
p′ )(f(x− y)

p
q′ h(x)

r′
q′ ) dxdy.

Because
1

p′
+

1

q′
+

1

r
= 1,

we may use the generalized Holder inequality and we get∫
(f ∗ g)h dx ≤

(∫ ∫
fpgqdxdy

)1/r(∫ ∫
gqhr

′
dxdy

)1/p′(∫ ∫
fphr

′
dxdy

)1/q′

= ‖f‖p/rLp ‖g‖
q/r
Lq ‖g‖

q/p′

Lq ‖h‖
r′/p′

Lr′
‖f‖p/q

′

Lp ‖h‖
r′/q′

Lr′
= ‖f‖Lp‖g‖Lq‖h‖Lr′ .

Together with the duality estimate

‖f ∗ g‖Lr = sup
‖h‖

Lr
′≤1

∫
(f ∗ g)h dx,

we immedialtely conclude that (6.11) for positive functions, and then for any func-
tions. �
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6. The Hardy-Littlewood-Sobolev inequality

We establish now a slight but fundamental improvement of the Young inequality.
The proof uses smart and accurate arguments of real harmonic analysis.

6.1. The maximal function.

Lemma 6.1 (Covering lemma). Let E ⊂ Rd measurable which is covered by a
familly of balls {Bj} of volume bounded by a same constant. Then we can select a
(disjoint finite or denombrable) subsequence denoted by B1, ...,Bk, ... so that

(6.1)
∑
k

λ(Bk) ≥ K−1 λ(E),

where λ stands for the Lebesgue measure and K := 5d is a convenient choice.

Proof of Lemma 6.1 . We note J the set of indices for the set of distinct balls
{Bj}? As a first step, we choose B1 in the family {Bj}j∈J which satisfies

diamB1 ≥
1

2
sup{diamBj ; j ∈ J}.

We proceed recursively by choosing Bk, k ≥ 2, such that

diamBk ≥
1

2
sup{diamBj , j ∈ J and Bj ∩ Bi = ∅ ∀ i = 1, ..., k − 1),

and build in that way a finite or denombrable sequence B1, ...,Bk, ... . We can
assume

(6.2)
∑
k

λ(Bk) <∞,

otherwise inequality (6.1) is trivial. We define B∗k as the ball having same center as
Bk but whose radius is five times larger and we claim that

E ⊂
⋃
k

B∗k,

from what we immediately deduce (6.1) with K = 5d. It is thus enough to prove
that for any Bj in the familly {Bj} which is not in the family {Bk}, we have

Bj ⊂
⋃
k

B∗k.

We fix such a ball Bj . From (6.2), we clearly have λ(Bk) → 0 when k → ∞, and
we then may choose k as the first integer such that

diamBk+1 <
1

2
diamBj .

From the definition of (B`) we must have Bj ∩ Bi 6= ∅ for some i ∈ {1, ..., k} (oth-
erwise we have Bj = Bk+1 because of the diameter condition and that contradict
our choice of Bj which precisely not belongs to that family). We conclude that
Bj ⊂ B∗i , and that ends the proof. �

For a function f ∈ L1
loc(Rd), we define the maximal function

Mf(x) := sup
r>0

1

λ(B(x, r))

∫
B(x,r)

|f(y)| dy.

The maximal function Mf is measurable (take r ∈ Q+
∗ ) and positive whenever

f 6≡ 0.
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Theorem 6.2 (Maximal function). For any p ∈ (1,∞) and any f ∈ Lp(Rd), we
have

(6.3) ‖Mf‖Lp ≤ C ‖f‖Lp ,

for some positive constant C which only depends on p and d.

Proof of Theorem 6.2 . Step 1. We prove that for g ∈ L1(Rd), there holds

(6.4) λ({x ∈ Rd; (Mg)(x) > α}) ≤ K

α
‖g‖L1 , ∀α > 0,

for the same constant K as in the covering Lemma 6.1. Let us then fix g ∈ L1(Rd).
For any α > 0, we define

Eα := {x;Mg(x) > α}.
By definition of the maximal function, for any x ∈ Eα, there exists a least one ball
Bx with center x such that

(6.5) αλ(Bx) <

∫
Bx

|g(y)| dy.

Because the right hand side is bounded by ‖g‖L1 the volume of Bx is necessarily
smaller than ‖g‖L1/α independently of x ∈ Eα. Since the union of the balls Bx
obviously covers Eα, we may make use of the covering Lemma 6.1 and deduce that
there exists a sequence of balls Bk (extracted from the previous family) such that
they are mutually disjoint and

(6.6) λ(Eα) ≤ C
∑
k

λ(Bk)

Putting together (6.5), (6.6) and the fact that the balls (Bk) are disjoint, we get

αλ(Eα) ≤ C
∑
k

αλ(Bk) ≤
∑
k

∫
Bk

|g(y)| dy =

∫
∪Bk
|g(y)| dy,

from which (6.4) immediately follows.

Step 2. We prove (6.3). Let us fix f ∈ Lp(Rd). For any given α > 0, we define

g(x) := f(x)1|f(x)|≥α/2 and Eα := {x;Mf(x) > α}.

From |f(x)| ≤ |g(x)|+ α/2, we deduce Mf(x) ≤Mg(x) + α/2, and therefore

Eα ⊂ {x;Mg(x) > α/2}.

Applying (6.4) to the function g (which belongs to L1(Rd)), we have

(6.7) λ(Eα) ≤ λ({x ∈ Rd; (Mg)(x) > α}) ≤ 2K

α
‖g‖L1 =

2K

α

∫
|f |≥α/2

|f | dx.

On the other hand, we observe that thanks to the Fubini Theorem, we have∫
Rd

(Mf)p dx =

∫
Rd

∫ Mf(x)

0

pαp−1 dα dx =

∫ ∞
0

∫
Rd

1Mf(x)>α dx pα
p−1 dα

=

∫ ∞
0

λ({x ∈ Rd; (Mg)(x) > α}) pαp−1 dα.
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Together with (6.7) and using again the Fubini Theorem, we deduce∫
Rd

(Mf)p dx ≤
∫ ∞

0

2K

α

∫
|f |≥α/2

|f | dx pαp−1 dα.

= 2Kp

∫
Rd
|f(x)|

(∫ 2|f(x)|

0

αp−2 dα
)
dx

= K
p

p− 1
2p
∫
Rd
|f(x)|p dx,

which ends the proof of (6.3). �

6.2. Hardy-Littlewood-Sobolev inequality.

(6.8)
∥∥∥ 1

|z|
∗ f
∥∥∥
L2r/(2−r)(R2)

≤ Cr ‖f‖Lr(R2), ∀ r ∈ (1, 2),

For d ≥ 2, we define the functional I by

I[f ](x) :=

∫
Rd

f(y)

|x− y|d−1
dy, ∀ f ∈ D(Rd).

For d ≥ 1, α ∈ (0, d), we define the functional F by

F (x) :=

∫
Rd

f(y)

|x− y|α
dy, ∀ f ∈ D(Rd).

We assume that p, q > 1 are such that

(6.9)
1

p
+
α

d
= 1 +

1

q
.

In particular, for d ≥ 2 and α = d− 1, we have

1

p
− 1

d
=

1

q
,

so that q = p∗ is the classical Sobolev exponent associated to W 1,p(Rd) when
p ∈ (1, d).

Theorem 6.3. For any p ∈ (1, d), there holds

I : Lp(Rd)→ Lq(Rd),
1

q
:=

1

p
− 1

d
.

In particular, there exists a constant C such that

(6.10)
∥∥f ∗ K∥∥

L4(R2)
≤ C ‖f‖L4/3(R2), ∀ f ∈ L4/3(R2).

• Hardy-Littlewood-Sobolev inequality. For any p ∈ (1, d), there holds

(6.11) ‖f ∗G‖Lp∗ ≤ Cp‖f‖Lp , ∀ f ∈ Lp,
where G and p∗ ∈ (1,∞) are defined by

G(x) :=
1

|x|d−1
,

1

p∗
=

1

p
− 1

d
.

It is worth emphasizing that it is a critical case of the Young inequality since G
almost belongs to the Lq Lebesgue space with q := d/(d − 1) and that for such a
exponent q the exponent r associated to the Young inequality satisfies

1

p
+
d− 1

d
= 1 +

1

r
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which is precisely r = p∗.

We take 0 ≤ f ∈ Lp and we define

F (x) :=

∫
Rd

f(y)

|x− y|d−1
dy.

For a fixed δ > 0, we define F = Fδ + F δ with

Fδ(x) :=

∫
|x−y|<δ

f(y)

|x− y|d−1
dy, F δ(x) :=

∫
|x−y|≥δ

f(y)

|x− y|d−1
dy.

On the one hand, for Fδ, we write

Fδ(x) :=

∫
|x−y|<δ

f(y)

|x− y|α
dy

=

∫
|x−y|<δ

f(y)
( 1

1 + α

∫ ∞
|x−y|

r−α−1dr
)
dy

=
1

1 + α

∫ δ

0

rd−α−1
( 1

rd

∫
|x−y|<r

f(y)dy
)
dr

≤ λd(B1)

1 + α

∫ δ

0

rd−α−1drMf(x)

= C1 δ
d−αMf(x), C1 :=

λd(B1)

(1 + α)(d− α)
,

where we have used the Fubini theorem at the third line and the definition of the
maximal function Mf at the fourth line.

On the other hand, for F δ, we write

F δ(x) :=

∫
|x−y|>δ

f(y)

|x− y|α
dy

≤ ‖f‖Lp
(∫
|x−y|>δ

1

|x− y|αp′
dy
)1/p′

= C2 δ
d/p′−α‖f‖Lp ,

where we have used(∫
|z|>δ

dz

|z|αp′
dy
)1/p′

= λd−1(S1)1/p′
(∫ ∞

δ

rd−1−αp′dr
)1/p′

=
λd−1(S1)1/p′

(αp′ − d)1/p′
δ(d−αp′)/p′ .

It is worth emphasizing that the last integral converges because from (6.9), there
holds

d− αp′ = dp′(1/p′ − α/d) = −dp′/q < 0.

Both estimates together imply

F (x) . δd−αMf(x) + δd/p
′−α‖f‖Lp

. (Mf(x))1−(p/d)(d−α)‖f‖(p/d)(d−α)
Lp

= (Mf(x))p(1/p−1+α/d)‖f‖p(1−α/d)
Lp
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with the choice δ := (‖f‖Lp/Mf(x))p/d. As a consequence, we have∫
F r dx =

∫
F ( 1

p+α
p−1)−1

dx

.
∫

(Mf(x))p dx‖f‖r−pLp .

We immediately conclude thanks to Theorem 6.2. �
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