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Exercises on chapters 1 & 2

1. About the Gronwall lemma

Exercice 1.1. Prove in full generality the following classical differential version of Gronwall lemma.
Lemma. We assume that u ∈ C([0, T );R), T ∈ (0,∞), satisfies the differential inequality

(1.1) u′ ≤ a(t)u+ b(t) on (0, T ),

in the distributional sense, for some a, b ∈ L1(0, T ). Then, u satisfies the pointwise estimate

(1.2) u(t) ≤ eA(t)u(0) +

∫ t

0

b(s)eA(t)−A(s) ds, ∀ t ∈ [0, T ),

where we have defined the primitive function

A(t) :=

∫ t

0

a(s) ds.

Exercice 1.2. We assume that u ∈ C([0, T );R), T ∈ (0,∞), satisfies the integral inequality

(1.3) u(t) ≤ B(t) +

∫ t

0

a(s)u(s) ds on [0, T ),

for some B ∈ C([0, T )) and 0 ≤ a ∈ L1(0, T ). Prove that u satisfies the pointwise estimate

u(t) ≤ B(t) +

∫ t

0

a(s)B(s)eA(t)−A(s) ds, ∀ t ∈ (0, T ).

1) By considering the function

v(t) :=

∫ t

0

a(s)u(s) ds.

2) By considering the function

v(t) :=

∫ t

0

a(s)u(s) ds e−A(t) −
∫ t

0

a(s)B(s)e−A(s) ds.

Recover the fact that u ∈ C([0, T );R), T ∈ (0,∞), satisfies the integral inequality

u(t) ≤ u0 +

∫ t

0

a(s)u(s) ds+

∫ t

0

b(s) ds on [0, T ),

for some 0 ≤ a ∈ L1(0, T ) and b ∈ L1(0, T ), implies that u satisfies the pointwise estimate

u(t) ≤ u0 eA(t) +

∫ t

0

b(s)eA(t)−A(s) ds, ∀ t ∈ (0, T )

3) first in the case when b = 0;
4) next, in the general case.

Exercice 1.3. We consider the ODE

(1.4) ẋ(t) = a(t, x(t)), x(s) = x ∈ Rd, s ≥ 0,

associated to a vector field a : R+ × Rd → Rd which is C1 and satisfies the globally Lipschitz estimate

(1.5) |a(t, x)− a(t, y)| ≤ L |x− y|, ∀ t ≥ 0, x, y ∈ Rd,
for some constant L ∈ (0,∞). From the Cauchy-Lipschitz theorem we know that this one admits a
unique solution t 7→ x(t) = Φt,s(x) ∈ C1(R+;Rd). Moreover, for any s, t ≥ 0, the vectors valued
function Φt,s : Rd → Rd is a C1-diffeomorphism which satisfies the semigroup properties Φ0,0 = Id,
Φt3,t2 ◦ Φt2,t1 = Φt3,t1 for any t3, t2, t1 ≥ 0. We denote Φt = Φt,0.
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1) Establish that |Φt(y)−Φt(x)| ≤ eLt|x− y| for any t ≥ 0, x, y ∈ Rd. (Hint. Use the Gronwall lemma).

2) Establish that |Φt(x)| ≤ (|x|+B(t))etL, with B(t) :=
∫ t
0
|a(s, 0)| ds, for any t ≥ 0, x ∈ Rd.

3) Deduce that |Φt(x) − Φ0(x)| ≤ tC(T )(1 + |x|) for any t ∈ [0, T ], x ∈ Rd. (Hint. A possible choice is
C(T ) := LeLT (1 +B(T )) + ‖a(·, 0)‖L∞(0,T ) and a possible way to proceed is to use 2)).

4) Prove that for any R > 0, there exists Rt such that Φ−1t (BR) ⊂ BRt
and deduce that if supp f0 ⊂ BR

then the function f(t, x) := f0(Φ−1t (x)) is such that supp f(t, ·) ⊂ BRt
. (Hint. Observe that BR ∩

(Φ−1t )−1(BcRt
) = ∅).

2. About variational solutions

Exercice 2.1. Consider f ∈ L1(Rd) such that divf ∈ L1(Rd). Show that∫
Rd

divf dx = 0.

Exercice 2.2. We consider the nonlinear McKean-Vlasov equation

(2.1) ∂tf = Λff := ∆f + div(aff), f(0) = f0 ≥ 0,

with

af := a ∗ f, a ∈ L∞(Rd)d.

1) Prove that a nonnegative solution f is (at least formally) mass conserving

‖f(t)‖L1 = ‖f0‖L1 , ∀ t ≥ 0.

2) We define the weighted Lebesgue space L2
k by its norm ‖f‖L2

k
:= ‖f〈x〉k‖L2 , 〈x〉 := (1 + |x|2)1/2, for

k ≥ 0. Observe that∫
fΛff〈x〉2k = −

∫
|∇f |2〈x〉2k +

∫
∇f · af f〈x〉2k −

∫
f2
[1
2

∆〈x〉2k + af · ∇〈x〉2k
]

≤ −1

2

∫
|∇f |2〈x〉2k + C

∫
f2∇〈x〉2k,

for a constant C := C(k, ‖a‖L∞ , ‖f‖L1). Deduce that a nonnegative solution f satisfies the a priori
estimate

(2.2) ‖f(t)‖2L2
k

+
1

2

∫ t

0

‖∇f(s)‖2L2
k
ds ≤ eC0t ‖f0‖L2

k
∀ t ≥ 0,

for a constant C0 := C0(k, ‖a‖L∞ , ‖f0‖L1).

3) We set H := L2
k, k > d/2, and V := H1

k , where we define the weighted Sobolev space H1
k by its norm

‖f‖2
H1

k
:= ‖f‖2

L2
k

+‖∇f‖2
L2

k
. Observe that for any g ∈ H, the distribution Λgf is well defined in V ′ thanks

to the identity

〈Λgf, h〉 := −
∫
Rd

〈x〉k(∇f + agf) · (∇h〈x〉k + h2kx〈x〉k−2) dx, ∀h ∈ V.

(Hint. Prove that L2
k ⊂ L1) and that −Λg is bounded and satisfies a G̊arding’s inequality. Write the

variational formulation associated to the nonlinear McKean-Vlasov equation in this framework. Establish
that if f ∈ XT (with the usual definition) is a nonnegative variational solution to the nonlinear McKean-
Vlasov equation then it is mass conserving and it satsifies (2.2). (Hint. For proving the mass consevation,
take χM 〈x〉−2k as a test function in the variational formulation, with χM (x) := χ(x/M), χ ∈ D(Rd),
1B(0,1) ≤ χ ≤ 1B(0,2)).

4) Prove that for any 0 ≤ f0 ∈ H and g ∈ C([0, T ];H) there exists a unique mass preserving variational
solution 0 ≤ f ∈ XT to the linear McKean-Vlasov equation

∂tf = ∆f + div(agf), f(0) = f0.
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For two solutions f1 and f2 associated respectively to g1 and g2, observe that f = f2 − f1 satisfies

∂ff = ∆f + div(agf2) + div(ag1f),

with g := g2 − g1, and prove that

d

dt
‖ft‖2H ≤ C1‖ft‖2H + C2‖gt‖2Hebt‖f0‖2H .

Deduce that the mapping g 7→ f is a contraction in C([0, T ];H) for T > 0 small enough. Conclude to
the existence and uniqueness of a global (in time) variational solution to the nonlinear McKean-Vlasov
equation.

Exercice 2.3. For a, c ∈ L∞(Rd), f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, we consider the linear parabolic equation

(2.3) ∂tf = Λf := ∆f + a · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space for some given T > 0.

1) Prove that for γ ∈ C1(R), γ(0) = 0, γ′ ∈ L∞, there holds γ(f) ∈ H for any f ∈ H and γ(f) ∈ V for
any f ∈ V .

2) Prove that f ∈ XT is a variational solution to (2.3) if and only if

d

dt
f = Λf in V ′ a.e. on (0, T ).

3) On the other hand, prove that for any f ∈ XT and any function β ∈ C2(R), β(0) = β′(0) = 0,
β′′ ∈ L∞, there holds

d

dt

∫
Rd

β(f) = 〈 d
dt
f, β′(f)〉V ′,V a.e. on (0, T ).

(Hint. Consider fε = f ∗t ρε ∈ C1([0, T ];H1) and pass to the limit ε→ 0).

4) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞. Prove that any
variational solution f ∈ XT to the above linear parabolic equation satisfies∫

Rd

β(ft) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c f β′(f)− (div a)β(f)} dxds,

for any t ≥ 0.

5) Assuming moreover that there exists a constant K ∈ (0,∞) such that 0 ≤ s β′(s) ≤ Kβ(s) for any
s ∈ R, deduce that for some constant C := C(a, c,K), there holds∫

Rd

β(ft) dx ≤ eCt
∫
Rd

β(f0) dx, ∀ t ≥ 0.

6) Prove that for any p ∈ [1, 2], for some constant C := C(a, c) and for any f0 ∈ L2 ∩ Lp, there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β on R+ and extend it to R by symmetry. More precisely, define β′′α(s) = 2θ1s≤α + p(p−
1)sp−21s>α, with 2θ = p(p − 1)αp−2 and then the primitives which vanish at the origin, which are thus
defined by β′α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) = θs21s≤α + (sp + p(p − 2)αp−1s +
Aαp)1s>α, A := p(p − 1)/2 − 1 − p(p − 2). Observe that sβ′α(s) ≤ 2βα(s) because sβ′′α(s) ≤ β′α(s) and
βα(s) ≤ β(s) because β′′α(s) ≤ β′′(s)).

7) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β′′R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2, and then the primitives
which vanish in the origin and which are thus defined by β′R(s) = psp−11s≤R + (pRp−1 + 2θ(s−R))1s>R,
βR(s) = sp1s≤R + (Rp + pRp−1(s − R) + θ(s − R)2)1s>R. Observe that sβ′R(s) ≤ pβR(s) because
sβ′′R(s) ≤ (p − 1)β′R(s) and βR(s) ≤ β(s) because β′′R(s) ≤ β′′(s). Pass to the limit p → ∞ in order to
deal with the case p =∞).

8) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the sense of distributions)
solution to the linear parabolic equation (2.3). (Hint: Consider f0,n ∈ L1 ∩ L∞ such that f0,n → f0 in



4

Lp, 1 ≤ p < ∞, and prove that the associate variational solution fn ∈ XT is a Cauchy sequence in
C([0, T ];Lp). Conclude the proof by passing to the limit p→∞).

9) Establsih the Lp estimates with “optimal” constant C (that is the one given by the formal computa-
tions).

10) Extend the above result to an equation with an integral term and/or a source term.

11) Prove the existence of a weak solution to the McKean-Vlasov equation (2.1) for any initial datum
f0 ∈ L1(Rd).
12) Prove that f0 ≥ 0 implies f(t) ≥ 0 for any t ∈ (0, T ). (Hint. Choose β(s) := s−).

3. About transport equations

Exercice 3.1. Make explicit the construction and formulas in the three following cases:
(1) a(x) = a ∈ Rd is a constant vector. (Hint. One must find f(t, x) = f0(x− at)).
(2) a(x) = x. (Hint. One must find f(t, x) = f0(e−tx)).
(3) a(x, v) = v, f0 = f0(x, v) ∈ C1(Rd×Rd) and look for a solution f = f(t, x, v) ∈ C1((0,∞)×Rd×Rd).
(Hint. One must find f(t, x, v) = f0(x− vt, v)).

Exercice 3.2. (1) Show that for any characterictics solution f to the transport equation associated to an
initial datum f0 ∈ C1

c (Rd), for any times T > 0 and radius R, there exists some constants CT , RT ∈ (0,∞)
such that

sup
t∈[0,T ]

∫
BR

|f(t, x)| dx ≤ CT
∫
BRT

|f0(x)| dx.

(Hint. Use the property of finite speed propagation of the transport equation).

(2) Adapt the proof of existence to the case f0 ∈ L∞.

(3) Prove that for any f0 ∈ C0(Rd) there exists a global weak solution f to the transport equation which
furthermore satisfies f ∈ C([0, T ];C0(Rd)).

Exercice 3.3. Consider the relaxation equation

∂tf + v · ∇xf = M(v)ρf − f
on the function f = f(t, x, v), t ≥ 0, x, v ∈ Rd, where we denote

ρf :=

∫
Rd

f dv, M(v) := (2π)−d/2 exp(−|v|2/2).

Prove the existence and uniqueness of a solution f ∈ C(R+;L1(Rd × Rd)) to the relaxation equation for
any initial datum f0 ∈ L1(Rd × Rd).

Exercice 3.4. 1) Consider the transport equation with boundary condition

(3.1)

{
∂tf + ∂xf + af = 0
f(t, 0) = b(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0. Assume a ∈ L∞(R+). For any f0 ∈ L1(R+) and b ∈ L1(0, T ), establish
that there exists a unique weak solution f ∈ C([0, T ];L1(R+)) associated to equation (3.1).

2) Consider the renewal equation

(3.2)

{
∂tf + ∂xf + af = 0
f(t, 0) = ρf(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, and

ρg :=

∫ ∞
0

g(y) a(y) dy.

Assume a ∈ L∞(R+). For any f0 ∈ L1(R+), establish that there exists a unique weak solution f ∈
C([0, T ];L1(R+)) associated to equation (3.2).
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