An introduction to evolution PDEs October 12, 2020

Exercises on chapters 1 & 2

1. ABouT THE GRONWALL LEMMA

Exercice 1.1. Prove in full generality the following classical differential version of Gronwall lemma.
Lemma. We assume that u € C([0,T);R), T € (0,00), satisfies the differential inequality

(1.1) u <a(t)u+bt) on (0,7),

in the distributional sense, for some a,b € L*(0,T). Then, u satisfies the pointwise estimate

t
(1.2) u(t) < eAMu(0) —l—/ b(s)eA DA ds, Vit e [0,T),
0

where we have defined the primitive function
A(t) == /Ot a(s)ds.
Exercice 1.2. We assume that u € C([0,T);R), T € (0,00), satisfies the integral inequality
(1.3) u(t) < B(t) + /Ot a(s)u(s)ds on [0,T),
for some B € C([0,T)) and 0 < a € L*(0,T). Prove that u satisfies the pointwise estimate
u(t) < B(t) + /Ot a(s)B(s)eA D=4 ds Vi e (0,T).

1) By considering the function
t
v(t) ::/ a(s)u(s) ds.
0
2) By considering the function

v(t) ::/ a(s)u(s) dse”A® —/ a(s)B(s)e™ ) ds.

0 0
Recover the fact that u € C([0,T);R), T € (0,00), satisfies the integral inequality

t t
u(t) < ug +/ a(s)u(s) der/ b(s)ds on [0,T),
0 0
for some 0 < a € LY(0,T) and b € L*(0,T), implies that u satisfies the pointwise estimate

t
u(t) < ug e*® —|—/ b(s)eAW=AE) s Vi e (0,T)
0

3) first in the case when b = 0;
4) next, in the general case.

Exercice 1.3. We consider the ODE

(1.4) i(t) = a(t,z(t)), x(s)=x€cRY 5>0,
associated to a vector field a : Ry x R? — RY which is C' and satisfies the globally Lipschitz estimate
(1.5) la(t,z) —a(t,y)| < L|lz —y|, Vt>0, z,y € RY,

for some constant L € (0,00). From the Cauchy-Lipschitz theorem we know that this one admits a
unique solution t — z(t) = ®;4(x) € CYRy;RY). Moreover, for any s,t > 0, the vectors valued
function ®; ¢ : RT — R is a C'-diffeomorphism which satisfies the semigroup properties ®oo = 1d,
Dy, 1, 0 oy py = Poypy for any tz, ta,t1 > 0. We denote @ = Py .
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1) Establish that |®:(y) — ®¢(z)| < eLtx —y| for any t > 0, x,y € R, (Hint. Use the Gronwall lemma,).
2) Establish that |®.(x)| < (|| + B(t))etE, with B(t) = fot la(s,0)| ds, for anyt >0, x € R4,

3) Deduce that |®;(z) — ®o(z)| < tO(T)(1 + |z|) for any t € [0,T], x € R%. (Hint. A possible choice is
C(T) := Le*T(1 4+ B(T)) + ||a(-, 0)|| = (0,r) and a possible way to proceed is to use 2)).

4) Prove that for any R > 0, there exists Ry such that <I>;1(BR) C Bpg, and deduce that if supp fo C Br
then the function f(t,x) := fo(®;*(x)) is such that supp f(t,-) C Bg,. (Hint. Observe that Bp N
(@7 1)1 (Bg,) =10).

2. ABOUT VARIATIONAL SOLUTIONS

Exercice 2.1. Consider f € L'(R?) such that divf € L*(R?). Show that
divf dzr = 0.
Rd
Exercice 2.2. We consider the nonlinear McKean-Viasov equation
(2.1) Of =Asf=Af+di(agf), f(0)=fo=0,
with
aj=axf, a€cL®RY%
1) Prove that a nonnegative solution f is (at least formally) mass conserving

IOl = Il follzr, vt > 0.

2) We define the weighted Lebesque space L2 by its norm Ifllzz == £ (@)* 2, (@) := (1 + |2|2)'/2, for
k > 0. Observe that

1
[ s = = [1vipa® s [9f s - [ LAWY +ap 9@
1
< -5 [IVrP@P [ Pyw,
for a constant C = C(k,||a||re, || fllL1). Deduce that a nonnegative solution f satisfies the a priori
estimate
1 t
22) I£OI; +5 [ VA ds << ally Ve =0,

for a constant Cy := Cy(k, ||a||r=, || follL1)-

3) We set H := L%, k>d/2, and V := H,i, where we define the weighted Sobolev space H,% by its norm
”fH%(i = HfH%i + ”Vf”%i Observe that for any g € H, the distribution A, f is well defined in V' thanks
to the identity

(Agf,h) := —/Rd @)V f +agf) - (VR(z)* + h2ka(z)* ) dz, VheV.

(Hint. Prove that Li C L') and that —A, is bounded and satisfies a Gdrding’s inequality. Write the
variational formulation associated to the nonlinear McKean-Viasov equation in this framework. Establish
that if f € Xr (with the usual definition) is a nonnegative variational solution to the nonlinear McKean-
Viasov equation then it is mass conserving and it satsifies (2.2). (Hint. For proving the mass consevation,
take xar (x) 7% as a test function in the variational formulation, with xn(x) == x(x/M), x € D(R?),
10,1 <X < 1B(0,2)

4) Prove that for any 0 < fo € H and g € C([0,T]; H) there exists a unique mass preserving variational
solution 0 < f € X to the linear McKean-Viasov equation

Onf = Af + div(agf),  f(0) = fo.



For two solutions f1 and fo associated respectively to g1 and go, observe that f = fo — f1 satisfies
Opf = Af +div(ag f2) + div(ay, f),
with g := g2 — g1, and prove that

d
I felli < Crllfillfy + Callgeliire™ | foll

Deduce that the mapping g — f is a contraction in C([0,T); H) for T > 0 small enough. Conclude to
the existence and uniqueness of a global (in time) variational solution to the nonlinear McKean-Viasov
equation.

Exercice 2.3. Fora,c € L®(RY), fo € LP(R?%), 1 < p < 0o, we consider the linear parabolic equation

(2.3) hf=Af:=Af+a-Vf+cf, f(0)=fo.
We introduce the usual notations H := L?, V := H' and Xr the associated space for some given T > 0.

1) Prove that for v € C*(R), v(0) = 0, v/ € L>, there holds v(f) € H for any f € H and y(f) €V for
any feV.

2) Prove that f € X is a variational solution to (2.3) if and only if
d
af =Afin V' a.e. on (0,T).

3) On the other hand, prove that for any f € Xr and any function 3 € C?*(R), 5(0) = B'(0) = 0,
B" € L, there holds

/ B(f f,ﬁ’(f»v,,v ae. on (0,T).

(Hint. Consider f- = f x; p. € C*([0,T); Hl) and pass to the limit e — 0).

4) Consider a convex function B € C*(R) such that 8(0) = 8'(0) = 0 and B € L>. Prove that any
variational solution f € Xp to the above linear parabolic equation satisfies

/ B(f) dx</ B(fo) d;v+/ / {cfB'(f) — (diva) B(f)} dzds,

for any t > 0.

5) Assuming moreover that there exists a constant K € (0,00) such that 0 < s3'(s) < Kp(s) for any
s € R, deduce that for some constant C := C(a,c, K), there holds

/ﬂft d:c<eCt/5fo x, Vit>0.

6) Prove that for any p € [1,2], for some constant C := C(a,c) and for any fo € L?> N LP, there holds

IF@Ollee < e““llfollze,  VE=0.

(Hint. Define B on Ry and extend it to R by symmetry. More precisely, define B0 (s) = 2015<4 + p(p —
1)sP 21450, with 20 = p(p — 1)aP~2 and then the primitives which vanish at the origin, which are thus
defined by B(s) = 20sls<q + (psP™! + p(p — 2)aP ) 1ssq, Bals) = 0521s<q + (sP + p(p — 2)aP s +
AaP)lssa, A =pp—1)/2 =1 —p(p —2). Observe that sB.,(s) < 2B4(s) because spl(s) < Bl(s) and
Bals) < Bs) because B1(s) < B"(s)).

7) Prove that for any p € [2,00] and for some constant C := C(a, ¢, p) there holds

1fOllze < e“NfollLe, V>0

(Hint. Define Bi(s) = p(p — 1)sP 213<g + 20155 g, with 20 = p(p — 1)RP~2, and then the primitives
which vanish in the origin and which are thus defined by By (s) = psP ' 1s<p+ (pRP' +20(s — R)) 15> g,
Br(s) = sPle<r + (RP + pRP71(s — R) + 0(s — R)*)14=r. Observe that sBr(s) < pBr(s) because
sB%(s) < (p—1)BR(s) and Br(s) < B(s) because B(s) < B(s). Pass to the limit p — oo in order to
deal with the case p = o).

8) Prove that for any fo € LP(RY), 1 < p < oo, there exists at least one weak (in the sense of distributions)
solution to the linear parabolic equation (2.3). (Hint: Consider fo, € L* N L such that fon, — fo in
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LP, 1 < p < o0, and prove that the associate variational solution f, € X7 is a Cauchy sequence in
C([0,T]; LP). Conclude the proof by passing to the limit p — 00).

9) Establsih the LP estimates with “optimal” constant C (that is the one given by the formal computa-
tions).

10) Extend the above result to an equation with an integral term and/or a source term.

11) Prove the existence of a weak solution to the McKean-Viasov equation (2.1) for any initial datum
fo € LY(R%).
12) Prove that fo > 0 implies f(t) > 0 for any t € (0,T). (Hint. Choose (s) :=s_).

3. ABOUT TRANSPORT EQUATIONS

Exercice 3.1. Make explicit the construction and formulas in the three following cases:

(1) a(z) = a € R? is a constant vector. (Hint. One must find f(t,x) = fo(z — at)).

(2) a(z) = x. (Hint. One must find f(t,z) = fo(e tx)).

(3) a(x,v) = v, fo = folz,v) € CL(RIxR?) and look for a solution f = f(t,z,v) € C*((0,00) x R x RY).
(Hint. One must find f(t,z,v) = fo(x — vt,v)).

Exercice 3.2. (1) Show that for any characterictics solution f to the transport equation associated to an

initial datum fo € CH(RY), for any times T > 0 and radius R, there exists some constants Cp, Ry € (0, 00)
such that

sup/B |f(t,x)|d:c§CT/ | fo(x)] dz.

t€[0,T] Ry
(Hint. Use the property of finite speed propagation of the transport equation).
(2) Adapt the proof of existence to the case fo € L.
(3) Prove that for any fo € Co(R?) there exists a global weak solution f to the transport equation which
furthermore satisfies f € C([0,T); Co(R?)).
Exercice 3.3. Consider the relazation equation

Of +v-Vof =M)ps — f

on the function f = f(t,xz,v), t >0, z,v € R%, where we denote

pf = /d fdv, M():= 2m)"¥2exp(—|v|*/2).
R
Prove the existence and uniqueness of a solution f € C(Ry; L' (R? x R?)) to the relaxation equation for
any initial datum fo € L'(R? x RY).

Exercice 3.4. 1) Consider the transport equation with boundary condition

(3.1) {atf+axf+af=0
f(t,0) =b(t),  f(0,2) = folx),
where f = f(t,x), t >0, x > 0. Assume a € L®(R,). For any fo € L'(Ry) and b € L*(0,T), establish
that there exists a unique weak solution f € C([0,T); L*(Ry)) associated to equation (3.1).
2) Consider the renewal equation
(3.2) {8tf+8mf+af:0
f(t,0) =pray,  f(0,2) = fo(x),
where f = f(t,x), t >0, z >0, and

pg = /OOO 9(y) a(y) dy.

Assume a € L*=(R,). For any fo € L*(Ry), establish that there exists a unique weak solution f €
C([0,T); LY (Ry)) associated to equation (3.2).
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