An introduction to evolution PDEs November 1, 2021

Exercises on chapters 1, 2 & 3

Modifications are written in blue color.

1. ABOUT THE GRONWALL LEMMA (CHAPTER 1)

Exercice 1.1. We assume that u € C([0,T);R), T € (0,00), satisfies the integral inequality

(1.1) u(t) < B(t) + /Ot a(s)u(s)ds on [0,T),

for some B € C([0,T)) and 0 < a € L*(0,T). Prove that u satisfies the pointwise estimate
u(t) < B(t) + /Ot a(s)B(s)eAW=A46) ds Vi e (0,T).

1) By considering the function

u(t) == /ta(s)u(s) ds.
2) By considering the function ’
u(t) == /Ot a(s)u(s)dse A0 — /Ot a(s)B(s)e= ) ds.
Recover the fact that w € C([0,T);R), T € (0,00), satisfies the integral inequality
u(t) <ug + /Ot a(s)u(s)ds + /Ot b(s)ds on [0,T),
for some 0 < a € LY(0,T) and b € L*(0,T), implies that u satisfies the pointwise estimate

t
u(t) < ug e?® —|—/ b(s)eA D=4 ds, Vi e (0,T),
0

3) first in the case when b =0, next in the general case.

Exercice 1.2. We consider the ODE

(1.2) i(t) = a(t,z(t)), z(s)=xcR?Y 5>0,
associated to a vector field a : Ry x R — RY which is C' and satisfies the globally Lipschitz estimate
(1.3) la(t,z) —a(t,y)| < Llz —y|, Vt>0, z,y € RY,

for some constant L € (0,00). From the Cauchy-Lipschitz theorem we know that this one admits a
unique solution t — z(t) = & 4(x) € CYR;RY). Moreover, for any s,t > 0, the vectors valued
function @, 5 : R? — RY is a C'-diffeomorphism which satisfies the semigroup properties P = Id,
Dy, 0Py, = Doy py for any tz,ta,t1 > 0. We denote @y = Py .

1) Establish that |®4(y) — ®4(x)| < elt|x —y| for any t > 0, x,y € R%. (Hint. Use the Gronwall lemma,).
2) Establish that |®(z)| < (|z| + B(t))e', with B(t) := fot la(s,0)|ds, for anyt >0, v € R%.

3) Deduce that |®;(z) — ®o(z)| < tO(T)(1 + |z|) for any t € [0,T], x € R%. (Hint. A possible choice is
C(T) := Le*" (14 B(T)) + ||a(:, 0)|| = (0,r) and a possible way to proceed is to use 2)).

4) Prove that for any R > 0, there exists Ry such that fI)t_l(BR) C Bp, and deduce that if supp fo C Br
then the function f(t,x) := fo(®; " (x)) is such that supp f(t,-) C Bg,. (Hint. Observe that Br N
(@7 1) (Bg,) =10).



2. ABOUT VARIATIONAL SOLUTIONS (CHAPTER 2)
Exercice 2.1. Consider f € L*(R?) such that divf € L*(R?). Show that

/ divfdz = 0.
R4

Exercice 2.2. Consider the parabolic type equation

(2.1) Onf = 0i(aij 0;f) + b; 0i f + 0i(Biu) + cf + /k(ta z,y) f(t,y)dy + G,
with time dependent coefficients and source term

a, b, B, c€ L=¥((0,T) xRY), ke L®0,T;L*(R? xRY), GeL*0,T; H *(RY),
and under uniformly elliptic condition

(2.2) Vi€ (0,T), Vo € R, VEERY ayi(t,z) &€ > alé’, a>0.

For any go € L*(RY), generalize J.-L. Lions theorem about the existence and uniqueness of variational
solutions f € Xr. (Hint. Define

t;

a; == — a(t,)dt, i=1,...,n, t;:=iT/n,

ti—1

and a similar way b;, 3;,c;, ki, and prove that there exists a unique variational solution g; € X,
associated to the a;,b;,c;,k; and the initial condition gy when @ = 1, g;_1(T/n) when i > 2. Build
next a solution g™ € Xt to the equation (2.1) associated to the piecewise constant functions a™(t) = a;
ift € [tiytiy1), ¢ = 0,...,n — 1, and b", 5", ", k™ defined similarly. Conclude by passing to the limit
n— 00).

Exercice 2.3. For the above problem, show that f > 0 if fo,G,k > 0. (Hint. Show thatl the sequence
(g9r) defined in step 2 of the proof of the existence part is such that g, > 0 for any k € N).

Exercice 2.4. We consider the nonlinear McKean-Viasov (McKV) equation

(2.3) Of =Apf :=Af +div(asf), f(0)=fo=>0,
with
aj:=ax*f, acL®RY%

1) Prove that a nonnegative solution f is (at least formally) mass conserving
If @l = llfollr,  VE=0.

2) We define the weighted Lebesgue space L2 by its norm [ fllzz = I f(@)F|| L2, (x) == (14 |z[>)V/2, for
k > 0. For any nice functions f and g, observe that

[ = = [197P@* + [ V10, 1@~ [ £LAG +a,- 9]
—5 [19rPw o [ poE,

for a constant C := C(k, ||al|L=, ||g||L1). Deduce that a nonnegative solution f satisfies

IN

t
(2.4) O3 + [ 1971 ds < € folzz. Ve 0.

for a constant Cy := Cy(k, |||, || follL1)-

3) We set H:= L2, k > d/2, and V := H}, where we define the weighted Sobolev space H,% by its norm
”fH%I; = HfH%i + ”Vf”QLi Observe that for any g € H, the distribution A, f is well defined in V' thanks

to the identity
(o 9) == [ (VS +a,)- Viple)™)du, VoeV.
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(Hint. prove that L3 C L') and that —A, is bounded and satisfies a Gdrding’s inequality. Write the
variational formulation associated to the nonlinear McKV equation in this framework. FEstablish that if
f € X (with usual definition) is a nonnegative variational solution to the nonlinear McKV equation then
it is mass conserving and it satisfies (2.4). (Hint. One may observe that p(z) = (z)~?* € V. C Xr).

4) Prove that for any 0 < fo € H and g € C([0,T); H) there exists a unique mass preserving variational
solution 0 < f € Xy to the linear McKV equation

Of = Af + div(agf), f(0) = fo.

5) For two solutions f1 and fo associated respectively to g1 and ga, observe that f = fo — f1 satisfies
O = Af + divlag fz) + div(ay, f).

with g :== g — g1, and prove that

d
Sl < O+ llgne O fell 7 + CollgellZal foe -
(Hint. Write

Sl = —IVSIE = [ Vi aufala — [9F st

4y [P = [ thay @ - [ £a, 9@,

and in the three first terms kill the YV f contribution). We define

Er:={fe€C([0,T];H); f >0, |[feller = [lfollL},

that we endow with the C([0,T); H) norm. Deduce that the mapping g — [ is a contraction in Er for
T > 0 small enough. Conclude to the existence and uniqueness of a global (in time) variational solution
to the nonlinear McKean-Viasov equation.

Exercice 2.5. Fora,c € L*(RY), fo € LP(R?%), 1 < p < 0o, we consider the linear parabolic equation
(2.5) hf=Af:=Af+a-Vf+ecf, f(0)=fo.
We introduce the usual notations H := L?, V := H' and X the associated space for some given T > 0.

1) Prove that for v € C1(R), v(0) =0, v' € L, there holds v(f) € H for any f € H and v(f) € V for
any feV.

2) Prove that f € Xp is a variational solution to (2.5) if and only if
d
%f =Af inV' a.e. on (0,T).

3) On the other hand, prove that for any f € Xr and any function 3 € C?*(R), B(0) = p'(0) = 0,
B" € L, there holds

/ B(f £B())vey ae. on (0,T).

(Hint. Consider f. = f x; p- € C*([0,T); Hl) and pass to the limit € — 0).

4) Consider a convex function 8 € C%*(R) such that 3(0) = '(0) = 0 and 3" € L. Prove that any
variational solution f € X to the above linear parabolic equation satisfies

/ﬁft d:v</ B(fo) da:+//{cf5 (diva) B(f)} dxds,

for any t > 0.

5) Assuming moreover that 8 > 0 and there exists a constant K € (0,00) such that 0 < s '(s) < Kj3(s)
for any s € R, deduce that for some constant C := C(a,c, K), there holds

B(f,) dx < e©t / B(f)dz, Vt>0.
R4 Rd
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6) Prove that for any p € [1,2], for some constant C := C(a,c) and for any fo € L?> N LP, there holds
1FO e < e““NfollLr, V>0

(Hint. Define B on Ry and extend it to R by symmetry. More precisely, define Bl (s) = 2015<, + p(p —
1)sP" 21454, with 20 = p(p — 1)aP~2 and then the primitives which vanish at the origin, which are thus
defined by BL(s) = 20sls<q + (psP™! + p(p — 2)aP V) 1ssa, Bals) = 0521s<q + (8P + p(p — 2)aP s +
AcP) g, A:=pp—1)/2 =1 —p(p —2). Observe that sB.,(s) < 2B4(s) because sBl(s) < BL(s) and
Ba(s) < B(s) because By (s) < 5"(s)).
7) Prove that for any p € [2,00] and for some constant C := C(a, ¢, p) there holds

1F@Ollee < el follees  VE=0.
(Hint. Define B%(s) = p(p — 1)sP 2 15<p + 2015~ g, with 20 = p(p — 1)RP~2, and then the primitives
which vanish in the origin and which are thus defined by Bir(s) = psP ' 1<+ (PRP™! +20(s — R))1s> R,
Br(s) = sPls<p + (RP + pRP™Y(s — R) + 0(s — R)*)1ssp. Observe that sBr(s) < pBr(s) because
sBh(s) < (p—1)BR(s) and Br(s) < B(s) because S%(s) < B"(s). Pass to the limit p — oo in order to
deal with the case p = ).
8) Prove that for any fo € LP(R?), 1 < p < oo, there exists at least one weak (in the sense of distributions)
solution to the linear parabolic equation (2.5). (Hint: Consider fo, € L' N L> such that fo, — fo in
LP, 1 < p < o0, and prove that the associate variational solution f, € Xp is a Cauchy sequence in
C([0,T); L?). Conclude the proof by passing to the limit p — o).
9) Prove that if 0 < fo € LP(R?), p € (1,00), there exists a weak solution f € C([0,T]; LP(R%)) such that
f(t,) >0 for any t € (0,T). (Hint. Choose B(s) := s ). Generalize to the case p € [1,00]. Discuss the
“a posteriori result”: fo > 0 implies f(t) > 0 for any t € (0,T).
10) Prove the existence of a weak solution to the McKean-Viasov equation (2.3) for any initial datum
fo € LY(RY).
11) Establish the LP estimates with “optimal” constant C (that is the one given by the formal computa-
tions).
12) Extend the above result to an equation with an integral term and/or a source term.

3. ABOUT TRANSPORT EQUATIONS (CHAPTER 3)

Exercice 3.1. Make explicit the construction and formulas in the three following cases:

(1) a(z) = a € R? is a constant vector. (Hint. One must find f(t,x) = fo(z — at)).

(2) a(z) = x. (Hint. One must find f(t,z) = fo(e tx)).

(3) a(z,v) = v, fo = folz,v) € CLRIxR?) and look for a solution f = f(t,z,v) € C*((0,00) x R% x RY).
(Hint. One must find f(t,z,v) = fo(x —vt,v)).

Exercice 3.2. (1) Show that for any characteristics solution f to the transport equation associated to an
initial datum fy € CL(R?), for any times T > 0 and radius R, there exists some constants Cp, Ry € (0,00)
such that

sup/B |f(t,x)|dx§CT/ | fol)] da.

t€[0,T] Br,
(Hint. Use the property of finite speed propagation of the transport equation,).
(2) Adapt the proof of existence to the case fo € L.
(3) Prove that for any fo € Co(R?) there exists a global weak solution f to the transport equation which
furthermore satisfies f € C([0,T]; Co(R?)).
Exercice 3.3. Consider the relaxation equation

Of +v-Vaf = MW)ps — f

on the function f = f(t,z,v), t >0, z,v € R, where we denote

pri= [ Fav M) = @m0 exp(=hl?/2).
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Prove the existence and uniqueness of a solution f € C(Ry; L' (R? x R?)) to the relaxation equation for
any initial datum fo € L'(R? x RY).
Exercice 3.4. 1) Consider the transport equation with boundary condition
(3.1) {atf+axf+af=0
f(t,O) :b(t)’ f(O,l‘) :fO(x)’
where f = f(t,x), t >0, 2 > 0. Assume a € L*®(Ry). For any fo € L*(R4) and b € C([0,T]), establish

that there exists a unique weak solution f € C([0,T]; L*(Ry)) associated to equation (3.1). (Hint. One
may observe that both
d d 1
— (At 2) =0, — (AP f(t+a,2)=0, A=) ;:/ a(u) du,
dt dx 0
and a possible solution is
ft,z) = eA@D=A@ g — )1,oy 4+ e @bt — 2)145,).
2) Consider the renewal equation
(3.2) {atf+8zf+af=0
f(tvo):pf(t)a f(07$):f0(x)a
where f = f(t,x), t >0, z >0, and

Py = /OOO 9(y) a(y) dy.

Assume a € L*®(Ry). For any fo € L'(R.y), establish that there exists a unique weak solution f €
C([0,T); L*(R,)) associated to equation (3.2).
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