Exercises on chapters 1, 2 \& 3

Modifications are written in blue color.

1. About the Gronwall lemma (Chapter 1)

Exercice 1.1. We assume that $u \in C([0, T) ; \mathbb{R}), T \in(0, \infty)$, satisfies the integral inequality

$$
\begin{equation*}
u(t) \leq B(t)+\int_{0}^{t} a(s) u(s) d s \quad \text { on } \quad[0, T) \tag{1.1}
\end{equation*}
$$

for some $B \in C([0, T))$ and $0 \leq a \in L^{1}(0, T)$. Prove that u satisfies the pointwise estimate

$$
u(t) \leq B(t)+\int_{0}^{t} a(s) B(s) e^{A(t)-A(s)} d s, \quad \forall t \in(0, T)
$$

1) By considering the function

$$
v(t):=\int_{0}^{t} a(s) u(s) d s
$$

2) By considering the function

$$
v(t):=\int_{0}^{t} a(s) u(s) d s e^{-A(t)}-\int_{0}^{t} a(s) B(s) e^{-A(s)} d s
$$

Recover the fact that $u \in C([0, T) ; \mathbb{R}), T \in(0, \infty)$, satisfies the integral inequality

$$
u(t) \leq u_{0}+\int_{0}^{t} a(s) u(s) d s+\int_{0}^{t} b(s) d s \quad \text { on } \quad[0, T)
$$

for some $0 \leq a \in L^{1}(0, T)$ and $b \in L^{1}(0, T)$, implies that u satisfies the pointwise estimate

$$
u(t) \leq u_{0} e^{A(t)}+\int_{0}^{t} b(s) e^{A(t)-A(s)} d s, \quad \forall t \in(0, T)
$$

3) first in the case when $b=0$, next in the general case.

Exercice 1.2. We consider the $O D E$

$$
\begin{equation*}
\dot{x}(t)=a(t, x(t)), \quad x(s)=x \in \mathbb{R}^{d}, \quad s \geq 0 \tag{1.2}
\end{equation*}
$$

associated to a vector field $a: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which is C^{1} and satisfies the globally Lipschitz estimate

$$
\begin{equation*}
|a(t, x)-a(t, y)| \leq L|x-y|, \quad \forall t \geq 0, x, y \in \mathbb{R}^{d} \tag{1.3}
\end{equation*}
$$

for some constant $L \in(0, \infty)$. From the Cauchy-Lipschitz theorem we know that this one admits a unique solution $t \mapsto x(t)=\Phi_{t, s}(x) \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$. Moreover, for any $s, t \geq 0$, the vectors valued function $\Phi_{t, s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a C^{1}-diffeomorphism which satisfies the semigroup properties $\Phi_{0,0}=\operatorname{Id}$, $\Phi_{t_{3}, t_{2}} \circ \Phi_{t_{2}, t_{1}}=\Phi_{t_{3}, t_{1}}$ for any $t_{3}, t_{2}, t_{1} \geq 0$. We denote $\Phi_{t}=\Phi_{t, 0}$.

1) Establish that $\left|\Phi_{t}(y)-\Phi_{t}(x)\right| \leq e^{L t}|x-y|$ for any $t \geq 0, x, y \in \mathbb{R}^{d}$. (Hint. Use the Gronwall lemma).
2) Establish that $\left|\Phi_{t}(x)\right| \leq(|x|+B(t)) e^{t L}$, with $B(t):=\int_{0}^{t}|a(s, 0)| d s$, for any $t \geq 0, x \in \mathbb{R}^{d}$.
3) Deduce that $\left|\Phi_{t}(x)-\Phi_{0}(x)\right| \leq t C(T)(1+|x|)$ for any $t \in[0, T], x \in \mathbb{R}^{d}$. (Hint. A possible choice is $C(T):=L e^{L T}(1+B(T))+\|a(\cdot, 0)\|_{L^{\infty}(0, T)}$ and a possible way to proceed is to use 2)).
4) Prove that for any $R>0$, there exists R_{t} such that $\Phi_{t}^{-1}\left(B_{R}\right) \subset B_{R_{t}}$ and deduce that if supp $f_{0} \subset B_{R}$ then the function $f(t, x):=f_{0}\left(\Phi_{t}^{-1}(x)\right)$ is such that $\operatorname{supp} f(t, \cdot) \subset B_{R_{t}}$. (Hint. Observe that $B_{R} \cap$ $\left.\left(\Phi_{t}^{-1}\right)^{-1}\left(B_{R_{t}}^{c}\right)=\emptyset\right)$.

2. About variational solutions (Chapter 2)

Exercice 2.1. Consider $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{div} f \in L^{1}\left(\mathbb{R}^{d}\right)$. Show that

$$
\int_{\mathbb{R}^{d}} \operatorname{div} f d x=0
$$

Exercice 2.2. Consider the parabolic type equation

$$
\begin{equation*}
\partial_{t} f=\partial_{i}\left(a_{i j} \partial_{j} f\right)+b_{i} \partial_{i} f+\partial_{i}\left(\beta_{i} u\right)+c f+\int k(t, x, y) f(t, y) d y+G \tag{2.1}
\end{equation*}
$$

with time dependent coefficients and source term

$$
a, b, \beta, c \in L^{\infty}\left((0, T) \times \mathbb{R}^{d}\right), \quad k \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)\right), \quad G \in L^{2}\left(0, T ; H^{-1}\left(\mathbb{R}^{d}\right)\right)
$$

and under uniformly elliptic condition

$$
\begin{equation*}
\forall t \in(0, T), \forall x \in \mathbb{R}^{d}, \forall \xi \in \mathbb{R}^{d} \quad a_{i j}(t, x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2}, \quad \alpha>0 \tag{2.2}
\end{equation*}
$$

For any $g_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$, generalize J.-L. Lions theorem about the existence and uniqueness of variational solutions $f \in X_{T}$. (Hint. Define

$$
a_{i}:=\frac{n}{T} \int_{t_{i-1}}^{t_{i}} a(t, \cdot) d t, \quad i=1, \ldots, n, \quad t_{i}:=i T / n
$$

and a similar way $b_{i}, \beta_{i}, c_{i}, k_{i}$, and prove that there exists a unique variational solution $g_{i} \in X_{T / n}$ associated to the $a_{i}, b_{i}, c_{i}, k_{i}$ and the initial condition g_{0} when $i=1, g_{i-1}(T / n)$ when $i \geq 2$. Build next a solution $g^{n} \in X_{T}$ to the equation (2.1) associated to the piecewise constant functions $a^{n}(t)=a_{i}$ if $t \in\left[t_{i}, t_{i+1}\right), i=0, \ldots, n-1$, and $b^{n}, \beta^{n}, c^{n}, k^{n}$ defined similarly. Conclude by passing to the limit $n \rightarrow \infty)$.
Exercice 2.3. For the above problem, show that $f \geq 0$ if $f_{0}, G, k \geq 0$. (Hint. Show that the sequence $\left(g_{k}\right)$ defined in step 2 of the proof of the existence part is such that $g_{k} \geq 0$ for any $k \in \mathbb{N}$).
Exercice 2.4. We consider the nonlinear McKean-Vlasov (McKV) equation

$$
\begin{equation*}
\partial_{t} f=\Lambda_{f} f:=\Delta f+\operatorname{div}\left(a_{f} f\right), \quad f(0)=f_{0} \geq 0 \tag{2.3}
\end{equation*}
$$

with

$$
a_{f}:=a * f, \quad a \in L^{\infty}\left(\mathbb{R}^{d}\right)^{d}
$$

1) Prove that a nonnegative solution f is (at least formally) mass conserving

$$
\|f(t)\|_{L^{1}}=\left\|f_{0}\right\|_{L^{1}}, \quad \forall t \geq 0
$$

2) We define the weighted Lebesgue space L_{k}^{2} by its norm $\|f\|_{L_{k}^{2}}:=\left\|f\langle x\rangle^{k}\right\|_{L^{2}},\langle x\rangle:=\left(1+|x|^{2}\right)^{1 / 2}$, for $k \geq 0$. For any nice functions f and g, observe that

$$
\begin{aligned}
\int f \Lambda_{g} f\langle x\rangle^{2 k} & =-\int|\nabla f|^{2}\langle x\rangle^{2 k}+\int \nabla f \cdot a_{g} f\langle x\rangle^{2 k}-\int f^{2}\left[\frac{1}{2} \Delta\langle x\rangle^{2 k}+a_{g} \cdot \nabla\langle x\rangle^{2 k}\right] \\
& \leq-\frac{1}{2} \int|\nabla f|^{2}\langle x\rangle^{2 k}+C \int f^{2} \nabla\langle x\rangle^{2 k}
\end{aligned}
$$

for a constant $C:=C\left(k,\|a\|_{L^{\infty}},\|g\|_{L^{1}}\right)$. Deduce that a nonnegative solution f satisfies

$$
\begin{equation*}
\|f(t)\|_{L_{k}^{2}}^{2}+\int_{0}^{t}\|\nabla f(s)\|_{L_{k}^{2}}^{2} d s \leq e^{C_{0} t}\left\|f_{0}\right\|_{L_{k}^{2}}, \quad \forall t \geq 0 \tag{2.4}
\end{equation*}
$$

for a constant $C_{0}:=C_{0}\left(k,\|a\|_{L^{\infty}},\left\|f_{0}\right\|_{L^{1}}\right)$.
3) We set $H:=L_{k}^{2}, k>d / 2$, and $V:=H_{k}^{1}$, where we define the weighted Sobolev space H_{k}^{1} by its norm $\|f\|_{H_{k}^{1}}^{2}:=\|f\|_{L_{k}^{2}}^{2}+\|\nabla f\|_{L_{k}^{2}}^{2}$. Observe that for any $g \in H$, the distribution $\Lambda_{g} f$ is well defined in V^{\prime} thanks to the identity

$$
\left\langle\Lambda_{g} f, \varphi\right\rangle:=-\int_{\mathbb{R}^{d}}\left(\nabla f+a_{g} f\right) \cdot \nabla\left(\varphi\langle x\rangle^{2 k}\right) d x, \quad \forall \varphi \in V
$$

(Hint. prove that $L_{k}^{2} \subset L^{1}$) and that $-\Lambda_{g}$ is bounded and satisfies a Gairding's inequality. Write the variational formulation associated to the nonlinear McKV equation in this framework. Establish that if $f \in X_{T}$ (with usual definition) is a nonnegative variational solution to the nonlinear McKV equation then it is mass conserving and it satisfies (2.4). (Hint. One may observe that $\varphi(x):=\langle x\rangle^{-2 k} \in V \subset X_{T}$).
4) Prove that for any $0 \leq f_{0} \in H$ and $g \in C([0, T] ; H)$ there exists a unique mass preserving variational solution $0 \leq f \in X_{T}$ to the linear McKV equation

$$
\partial_{t} f=\Delta f+\operatorname{div}\left(a_{g} f\right), \quad f(0)=f_{0}
$$

5) For two solutions f_{1} and f_{2} associated respectively to g_{1} and g_{2}, observe that $f=f_{2}-f_{1}$ satisfies

$$
\partial_{t} f=\Delta f+\operatorname{div}\left(a_{g} f_{2}\right)+\operatorname{div}\left(a_{g_{1}} f\right)
$$

with $g:=g_{2}-g_{1}$, and prove that

$$
\frac{d}{d t}\left\|f_{t}\right\|_{H}^{2} \leq C_{1}\left(1+\left\|g_{1 t}\right\|_{L^{1}}^{2}\right)\left\|f_{t}\right\|_{H}^{2}+C_{2}\left\|g_{t}\right\|_{L^{1}}^{2}\left\|f_{2 t}\right\|_{H}^{2}
$$

(Hint. Write

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|f\|_{H}^{2}= & -\|\nabla f\|_{H}^{2}-\int \nabla f \cdot a_{g} f_{2}\langle x\rangle^{2 k}-\int \nabla f \cdot a_{g_{1}} f\langle x\rangle^{2 k} \\
& +\frac{1}{2} \int f^{2} \Delta\langle x\rangle^{2 k}-\int f f_{2} a_{g} \cdot \nabla\langle x\rangle^{2 k}-\int f^{2} a_{g_{1}} \cdot \nabla\langle x\rangle^{2 k}
\end{aligned}
$$

and in the three first terms kill the ∇f contribution). We define

$$
\mathcal{E}_{T}:=\left\{f \in C([0, T] ; H) ; f \geq 0,\left\|f_{t}\right\|_{L^{1}}=\left\|f_{0}\right\|_{L^{1}}\right\}
$$

that we endow with the $C([0, T] ; H)$ norm. Deduce that the mapping $g \mapsto f$ is a contraction in \mathcal{E}_{T} for $T>0$ small enough. Conclude to the existence and uniqueness of a global (in time) variational solution to the nonlinear McKean-Vlasov equation.
Exercice 2.5. For $a, c \in L^{\infty}\left(\mathbb{R}^{d}\right)$, $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, we consider the linear parabolic equation

$$
\begin{equation*}
\partial_{t} f=\Lambda f:=\Delta f+a \cdot \nabla f+c f, \quad f(0)=f_{0} \tag{2.5}
\end{equation*}
$$

We introduce the usual notations $H:=L^{2}, V:=H^{1}$ and X_{T} the associated space for some given $T>0$. 1) Prove that for $\gamma \in C^{1}(\mathbb{R}), \gamma(0)=0, \gamma^{\prime} \in L^{\infty}$, there holds $\gamma(f) \in H$ for any $f \in H$ and $\gamma(f) \in V$ for any $f \in V$.
2) Prove that $f \in X_{T}$ is a variational solution to (2.5) if and only if

$$
\frac{d}{d t} f=\Lambda f \text { in } V^{\prime} \text { a.e. on }(0, T)
$$

3) On the other hand, prove that for any $f \in X_{T}$ and any function $\beta \in C^{2}(\mathbb{R}), \beta(0)=\beta^{\prime}(0)=0$, $\beta^{\prime \prime} \in L^{\infty}$, there holds

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}} \beta(f)=\left\langle\frac{d}{d t} f, \beta^{\prime}(f)\right\rangle_{V^{\prime}, V} \text { a.e. on }(0, T)
$$

(Hint. Consider $f_{\varepsilon}=f *_{t} \rho_{\varepsilon} \in C^{1}\left([0, T] ; H^{1}\right)$ and pass to the limit $\left.\varepsilon \rightarrow 0\right)$.
4) Consider a convex function $\beta \in C^{2}(\mathbb{R})$ such that $\beta(0)=\beta^{\prime}(0)=0$ and $\beta^{\prime \prime} \in L^{\infty}$. Prove that any variational solution $f \in X_{T}$ to the above linear parabolic equation satisfies

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\{c f \beta^{\prime}(f)-(\operatorname{div} a) \beta(f)\right\} d x d s
$$

for any $t \geq 0$.
5) Assuming moreover that $\beta \geq 0$ and there exists a constant $K \in(0, \infty)$ such that $0 \leq s \beta^{\prime}(s) \leq K \beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant $C:=C(a, c, K)$, there holds

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq e^{C t} \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x, \quad \forall t \geq 0
$$

6) Prove that for any $p \in[1,2]$, for some constant $C:=C(a, c)$ and for any $f_{0} \in L^{2} \cap L^{p}$, there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define β on \mathbb{R}_{+}and extend it to \mathbb{R} by symmetry. More precisely, define $\beta_{\alpha}^{\prime \prime}(s)=2 \theta \mathbf{1}_{s \leq \alpha}+p(p-$ 1) $s^{p-2} \mathbf{1}_{s>\alpha}$, with $2 \theta=p(p-1) \alpha^{p-2}$ and then the primitives which vanish at the origin, which are thus defined by $\beta_{\alpha}^{\prime}(s)=2 \theta s \mathbf{1}_{s \leq \alpha}+\left(p s^{p-1}+p(p-2) \alpha^{p-1}\right) \mathbf{1}_{s>\alpha}, \beta_{\alpha}(s)=\theta s^{2} \mathbf{1}_{s \leq \alpha}+\left(s^{p}+p(p-2) \alpha^{p-1} s+\right.$ $\left.A \alpha^{p}\right) \mathbf{1}_{s>\alpha}, A:=p(p-1) / 2-1-p(p-2)$. Observe that $s \beta_{\alpha}^{\prime}(s) \leq 2 \beta_{\alpha}(s)$ because $s \beta_{\alpha}^{\prime \prime}(s) \leq \beta_{\alpha}^{\prime}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\left.\beta_{\alpha}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)\right)$.
7) Prove that for any $p \in[2, \infty]$ and for some constant $C:=C(a, c, p)$ there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define $\beta_{R}^{\prime \prime}(s)=p(p-1) s^{p-2} \mathbf{1}_{s \leq R}+2 \theta \mathbf{1}_{s>R}$, with $2 \theta=p(p-1) R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta_{R}^{\prime}(s)=p s^{p-1} \mathbf{1}_{s \leq R}+\left(p R^{p-1}+2 \theta(s-R)\right) \mathbf{1}_{s>R}$, $\beta_{R}(s)=s^{p} \mathbf{1}_{s \leq R}+\left(R^{p}+p R^{p-1}(s-R)+\theta(s-R)^{2}\right) \mathbf{1}_{s>R}$. Observe that $s \beta_{R}^{\prime}(s) \leq p \beta_{R}(s)$ because $s \beta_{R}^{\prime \prime}(s) \leq(p-1) \beta_{R}^{\prime}(s)$ and $\beta_{R}(s) \leq \beta(s)$ because $\beta_{R}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)$. Pass to the limit $p \rightarrow \infty$ in order to deal with the case $p=\infty$).
8) Prove that for any $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (2.5). (Hint: Consider $f_{0, n} \in L^{1} \cap L^{\infty}$ such that $f_{0, n} \rightarrow f_{0}$ in $L^{p}, 1 \leq p<\infty$, and prove that the associate variational solution $f_{n} \in X_{T}$ is a Cauchy sequence in $C\left([0, T] ; L^{p}\right)$. Conclude the proof by passing to the limit $\left.p \rightarrow \infty\right)$.
9) Prove that if $0 \leq f_{0} \in L^{p}\left(\mathbb{R}^{d}\right)$, $p \in(1, \infty)$, there exists a weak solution $f \in C\left([0, T] ; L^{p}\left(\mathbb{R}^{d}\right)\right)$ such that $f(t, \cdot) \geq 0$ for any $t \in(0, T)$. (Hint. Choose $\beta(s):=s_{-}^{p}$). Generalize to the case $p \in[1, \infty]$. Discuss the "a posteriori result": $f_{0} \geq 0$ implies $f(t) \geq 0$ for any $t \in(0, T)$.
10) Prove the existence of a weak solution to the McKean-Vlasov equation (2.3) for any initial datum $f_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$.
11) Establish the L^{p} estimates with "optimal" constant C (that is the one given by the formal computations).
12) Extend the above result to an equation with an integral term and/or a source term.

3. About transport equations (Chapter 3)

Exercice 3.1. Make explicit the construction and formulas in the three following cases:
(1) $a(x)=a \in \mathbb{R}^{d}$ is a constant vector. (Hint. One must find $f(t, x)=f_{0}(x-a t)$).
(2) $a(x)=x$. (Hint. One must find $f(t, x)=f_{0}\left(e^{-t} x\right)$).
(3) $a(x, v)=v, f_{0}=f_{0}(x, v) \in C^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and look for a solution $f=f(t, x, v) \in C^{1}\left((0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.
(Hint. One must find $f(t, x, v)=f_{0}(x-v t, v)$).
Exercice 3.2. (1) Show that for any characteristics solution f to the transport equation associated to an initial datum $f_{0} \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, for any times $T>0$ and radius R, there exists some constants $C_{T}, R_{T} \in(0, \infty)$ such that

$$
\sup _{t \in[0, T]} \int_{B_{R}}|f(t, x)| d x \leq C_{T} \int_{B_{R_{T}}}\left|f_{0}(x)\right| d x
$$

(Hint. Use the property of finite speed propagation of the transport equation).
(2) Adapt the proof of existence to the case $f_{0} \in L^{\infty}$.
(3) Prove that for any $f_{0} \in C_{0}\left(\mathbb{R}^{d}\right)$ there exists a global weak solution f to the transport equation which furthermore satisfies $f \in C\left([0, T] ; C_{0}\left(\mathbb{R}^{d}\right)\right)$.

Exercice 3.3. Consider the relaxation equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=M(v) \rho_{f}-f
$$

on the function $f=f(t, x, v), t \geq 0, x, v \in \mathbb{R}^{d}$, where we denote

$$
\rho_{f}:=\int_{\mathbb{R}^{d}} f d v, \quad M(v):=(2 \pi)^{-d / 2} \exp \left(-|v|^{2} / 2\right)
$$

Prove the existence and uniqueness of a solution $f \in C\left(\mathbb{R}_{+} ; L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)\right)$ to the relaxation equation for any initial datum $f_{0} \in L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.
Exercice 3.4. 1) Consider the transport equation with boundary condition

$$
\left\{\begin{array}{l}
\partial_{t} f+\partial_{x} f+a f=0 \tag{3.1}\\
f(t, 0)=b(t), \quad f(0, x)=f_{0}(x)
\end{array}\right.
$$

where $f=f(t, x), t \geq 0, x \geq 0$. Assume $a \in L^{\infty}\left(\mathbb{R}_{+}\right)$. For any $f_{0} \in L^{1}\left(\mathbb{R}_{+}\right)$and $b \in C([0, T])$, establish that there exists a unique weak solution $f \in C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right)$associated to equation (3.1). (Hint. One may observe that both

$$
\frac{d}{d t}\left(e^{A(t+x)} f(t, t+x)\right)=0, \quad \frac{d}{d x}\left(e^{A(x)} f(t+x, x)\right)=0, \quad A(x):=\int_{0}^{x} a(u) d u
$$

and a possible solution is

$$
\left.\bar{f}(t, x):=e^{A(x-t)-A(x)} f_{0}(x-t) \mathbf{1}_{x>t}+e^{-A(x)} b(t-x) \mathbf{1}_{t>x}\right)
$$

2) Consider the renewal equation

$$
\left\{\begin{array}{l}
\partial_{t} f+\partial_{x} f+a f=0 \tag{3.2}\\
f(t, 0)=\rho_{f(t)}, \quad f(0, x)=f_{0}(x)
\end{array}\right.
$$

where $f=f(t, x), t \geq 0, x \geq 0$, and

$$
\rho_{g}:=\int_{0}^{\infty} g(y) a(y) d y
$$

Assume $a \in L^{\infty}\left(\mathbb{R}_{+}\right)$. For any $f_{0} \in L^{1}\left(\mathbb{R}_{+}\right)$, establish that there exists a unique weak solution $f \in$ $C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right)$associated to equation (3.2).

