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Exercises on chapters 1, 2 & 3

Modifications are written in blue color.

1. About the Gronwall lemma (Chapter 1)

Exercice 1.1. We assume that u ∈ C([0, T );R), T ∈ (0,∞), satisfies the integral inequality

(1.1) u(t) ≤ B(t) +

∫ t

0

a(s)u(s) ds on [0, T ),

for some B ∈ C([0, T )) and 0 ≤ a ∈ L1(0, T ). Prove that u satisfies the pointwise estimate

u(t) ≤ B(t) +

∫ t

0

a(s)B(s)eA(t)−A(s) ds, ∀ t ∈ (0, T ).

1) By considering the function

v(t) :=

∫ t

0

a(s)u(s) ds.

2) By considering the function

v(t) :=

∫ t

0

a(s)u(s) ds e−A(t) −
∫ t

0

a(s)B(s)e−A(s) ds.

Recover the fact that u ∈ C([0, T );R), T ∈ (0,∞), satisfies the integral inequality

u(t) ≤ u0 +

∫ t

0

a(s)u(s) ds+

∫ t

0

b(s) ds on [0, T ),

for some 0 ≤ a ∈ L1(0, T ) and b ∈ L1(0, T ), implies that u satisfies the pointwise estimate

u(t) ≤ u0 eA(t) +

∫ t

0

b(s)eA(t)−A(s) ds, ∀ t ∈ (0, T ),

3) first in the case when b = 0, next in the general case.

Exercice 1.2. We consider the ODE

(1.2) ẋ(t) = a(t, x(t)), x(s) = x ∈ Rd, s ≥ 0,

associated to a vector field a : R+ × Rd → Rd which is C1 and satisfies the globally Lipschitz estimate

(1.3) |a(t, x)− a(t, y)| ≤ L |x− y|, ∀ t ≥ 0, x, y ∈ Rd,
for some constant L ∈ (0,∞). From the Cauchy-Lipschitz theorem we know that this one admits a
unique solution t 7→ x(t) = Φt,s(x) ∈ C1(R+;Rd). Moreover, for any s, t ≥ 0, the vectors valued
function Φt,s : Rd → Rd is a C1-diffeomorphism which satisfies the semigroup properties Φ0,0 = Id,
Φt3,t2 ◦ Φt2,t1 = Φt3,t1 for any t3, t2, t1 ≥ 0. We denote Φt = Φt,0.

1) Establish that |Φt(y)−Φt(x)| ≤ eLt|x− y| for any t ≥ 0, x, y ∈ Rd. (Hint. Use the Gronwall lemma).

2) Establish that |Φt(x)| ≤ (|x|+B(t))etL, with B(t) :=
∫ t
0
|a(s, 0)| ds, for any t ≥ 0, x ∈ Rd.

3) Deduce that |Φt(x) − Φ0(x)| ≤ tC(T )(1 + |x|) for any t ∈ [0, T ], x ∈ Rd. (Hint. A possible choice is
C(T ) := LeLT (1 +B(T )) + ‖a(·, 0)‖L∞(0,T ) and a possible way to proceed is to use 2)).

4) Prove that for any R > 0, there exists Rt such that Φ−1t (BR) ⊂ BRt
and deduce that if supp f0 ⊂ BR

then the function f(t, x) := f0(Φ−1t (x)) is such that supp f(t, ·) ⊂ BRt
. (Hint. Observe that BR ∩

(Φ−1t )−1(BcRt
) = ∅).
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2. About variational solutions (Chapter 2)

Exercice 2.1. Consider f ∈ L1(Rd) such that divf ∈ L1(Rd). Show that∫
Rd

divf dx = 0.

Exercice 2.2. Consider the parabolic type equation

(2.1) ∂tf = ∂i(aij ∂jf) + bi ∂if + ∂i(βiu) + cf +

∫
k(t, x, y) f(t, y) dy +G,

with time dependent coefficients and source term

a, b, β, c ∈ L∞((0, T )× Rd), k ∈ L∞(0, T ;L2(Rd × Rd)), G ∈ L2(0, T ;H−1(Rd)),

and under uniformly elliptic condition

(2.2) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd aij(t, x) ξiξj ≥ α |ξ|2, α > 0.

For any g0 ∈ L2(Rd), generalize J.-L. Lions theorem about the existence and uniqueness of variational
solutions f ∈ XT . (Hint. Define

ai :=
n

T

∫ ti

ti−1

a(t, ·) dt, i = 1, . . . , n, ti := iT/n,

and a similar way bi, βi, ci, ki, and prove that there exists a unique variational solution gi ∈ XT/n

associated to the ai, bi, ci, ki and the initial condition g0 when i = 1, gi−1(T/n) when i ≥ 2. Build
next a solution gn ∈ XT to the equation (2.1) associated to the piecewise constant functions an(t) = ai
if t ∈ [ti, ti+1), i = 0, . . . , n − 1, and bn, βn, cn, kn defined similarly. Conclude by passing to the limit
n→∞).

Exercice 2.3. For the above problem, show that f ≥ 0 if f0, G, k ≥ 0. (Hint. Show that the sequence
(gk) defined in step 2 of the proof of the existence part is such that gk ≥ 0 for any k ∈ N).

Exercice 2.4. We consider the nonlinear McKean-Vlasov (McKV) equation

(2.3) ∂tf = Λff := ∆f + div(aff), f(0) = f0 ≥ 0,

with

af := a ∗ f, a ∈ L∞(Rd)d.

1) Prove that a nonnegative solution f is (at least formally) mass conserving

‖f(t)‖L1 = ‖f0‖L1 , ∀ t ≥ 0.

2) We define the weighted Lebesgue space L2
k by its norm ‖f‖L2

k
:= ‖f〈x〉k‖L2 , 〈x〉 := (1 + |x|2)1/2, for

k ≥ 0. For any nice functions f and g, observe that∫
fΛgf〈x〉2k = −

∫
|∇f |2〈x〉2k +

∫
∇f · ag f〈x〉2k −

∫
f2
[1
2

∆〈x〉2k + ag · ∇〈x〉2k
]

≤ −1

2

∫
|∇f |2〈x〉2k + C

∫
f2∇〈x〉2k,

for a constant C := C(k, ‖a‖L∞ , ‖g‖L1). Deduce that a nonnegative solution f satisfies

(2.4) ‖f(t)‖2L2
k

+

∫ t

0

‖∇f(s)‖2L2
k
ds ≤ eC0t ‖f0‖L2

k
, ∀ t ≥ 0,

for a constant C0 := C0(k, ‖a‖L∞ , ‖f0‖L1).

3) We set H := L2
k, k > d/2, and V := H1

k , where we define the weighted Sobolev space H1
k by its norm

‖f‖2
H1

k
:= ‖f‖2

L2
k

+‖∇f‖2
L2

k
. Observe that for any g ∈ H, the distribution Λgf is well defined in V ′ thanks

to the identity

〈Λgf, ϕ〉 := −
∫
Rd

(∇f + agf) · ∇(ϕ〈x〉2k) dx, ∀ϕ ∈ V.
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(Hint. prove that L2
k ⊂ L1) and that −Λg is bounded and satisfies a G̊arding’s inequality. Write the

variational formulation associated to the nonlinear McKV equation in this framework. Establish that if
f ∈ XT (with usual definition) is a nonnegative variational solution to the nonlinear McKV equation then
it is mass conserving and it satisfies (2.4). (Hint. One may observe that ϕ(x) := 〈x〉−2k ∈ V ⊂ XT ).

4) Prove that for any 0 ≤ f0 ∈ H and g ∈ C([0, T ];H) there exists a unique mass preserving variational
solution 0 ≤ f ∈ XT to the linear McKV equation

∂tf = ∆f + div(agf), f(0) = f0.

5) For two solutions f1 and f2 associated respectively to g1 and g2, observe that f = f2 − f1 satisfies

∂tf = ∆f + div(agf2) + div(ag1f),

with g := g2 − g1, and prove that

d

dt
‖ft‖2H ≤ C1(1 + ‖g1t‖2L1)‖ft‖2H + C2‖gt‖2L1‖f2t‖2H .

(Hint. Write

1

2

d

dt
‖f‖2H = −‖∇f‖2H −

∫
∇f · agf2〈x〉2k −

∫
∇f · ag1f〈x〉2k

+
1

2

∫
f2∆〈x〉2k −

∫
ff2ag · ∇〈x〉2k −

∫
f2ag1 · ∇〈x〉2k,

and in the three first terms kill the ∇f contribution). We define

ET := {f ∈ C([0, T ];H); f ≥ 0, ‖ft‖L1 = ‖f0‖L1},

that we endow with the C([0, T ];H) norm. Deduce that the mapping g 7→ f is a contraction in ET for
T > 0 small enough. Conclude to the existence and uniqueness of a global (in time) variational solution
to the nonlinear McKean-Vlasov equation.

Exercice 2.5. For a, c ∈ L∞(Rd), f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, we consider the linear parabolic equation

(2.5) ∂tf = Λf := ∆f + a · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space for some given T > 0.

1) Prove that for γ ∈ C1(R), γ(0) = 0, γ′ ∈ L∞, there holds γ(f) ∈ H for any f ∈ H and γ(f) ∈ V for
any f ∈ V .

2) Prove that f ∈ XT is a variational solution to (2.5) if and only if

d

dt
f = Λf in V ′ a.e. on (0, T ).

3) On the other hand, prove that for any f ∈ XT and any function β ∈ C2(R), β(0) = β′(0) = 0,
β′′ ∈ L∞, there holds

d

dt

∫
Rd

β(f) = 〈 d
dt
f, β′(f)〉V ′,V a.e. on (0, T ).

(Hint. Consider fε = f ∗t ρε ∈ C1([0, T ];H1) and pass to the limit ε→ 0).

4) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞. Prove that any
variational solution f ∈ XT to the above linear parabolic equation satisfies∫

Rd

β(ft) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c f β′(f)− (div a)β(f)} dxds,

for any t ≥ 0.

5) Assuming moreover that β ≥ 0 and there exists a constant K ∈ (0,∞) such that 0 ≤ s β′(s) ≤ Kβ(s)
for any s ∈ R, deduce that for some constant C := C(a, c,K), there holds∫

Rd

β(ft) dx ≤ eCt
∫
Rd

β(f0) dx, ∀ t ≥ 0.
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6) Prove that for any p ∈ [1, 2], for some constant C := C(a, c) and for any f0 ∈ L2 ∩ Lp, there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β on R+ and extend it to R by symmetry. More precisely, define β′′α(s) = 2θ1s≤α + p(p−
1)sp−21s>α, with 2θ = p(p − 1)αp−2 and then the primitives which vanish at the origin, which are thus
defined by β′α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) = θs21s≤α + (sp + p(p − 2)αp−1s +
Aαp)1s>α, A := p(p − 1)/2 − 1 − p(p − 2). Observe that sβ′α(s) ≤ 2βα(s) because sβ′′α(s) ≤ β′α(s) and
βα(s) ≤ β(s) because β′′α(s) ≤ β′′(s)).

7) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β′′R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2, and then the primitives
which vanish in the origin and which are thus defined by β′R(s) = psp−11s≤R + (pRp−1 + 2θ(s−R))1s>R,
βR(s) = sp1s≤R + (Rp + pRp−1(s − R) + θ(s − R)2)1s>R. Observe that sβ′R(s) ≤ pβR(s) because
sβ′′R(s) ≤ (p − 1)β′R(s) and βR(s) ≤ β(s) because β′′R(s) ≤ β′′(s). Pass to the limit p → ∞ in order to
deal with the case p =∞).

8) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the sense of distributions)
solution to the linear parabolic equation (2.5). (Hint: Consider f0,n ∈ L1 ∩ L∞ such that f0,n → f0 in
Lp, 1 ≤ p < ∞, and prove that the associate variational solution fn ∈ XT is a Cauchy sequence in
C([0, T ];Lp). Conclude the proof by passing to the limit p→∞).

9) Prove that if 0 ≤ f0 ∈ Lp(Rd), p ∈ (1,∞), there exists a weak solution f ∈ C([0, T ];Lp(Rd)) such that
f(t, ·) ≥ 0 for any t ∈ (0, T ). (Hint. Choose β(s) := sp−). Generalize to the case p ∈ [1,∞]. Discuss the
“a posteriori result”: f0 ≥ 0 implies f(t) ≥ 0 for any t ∈ (0, T ).

10) Prove the existence of a weak solution to the McKean-Vlasov equation (2.3) for any initial datum
f0 ∈ L1(Rd).
11) Establish the Lp estimates with “optimal” constant C (that is the one given by the formal computa-
tions).

12) Extend the above result to an equation with an integral term and/or a source term.

3. About transport equations (Chapter 3)

Exercice 3.1. Make explicit the construction and formulas in the three following cases:
(1) a(x) = a ∈ Rd is a constant vector. (Hint. One must find f(t, x) = f0(x− at)).
(2) a(x) = x. (Hint. One must find f(t, x) = f0(e−tx)).
(3) a(x, v) = v, f0 = f0(x, v) ∈ C1(Rd×Rd) and look for a solution f = f(t, x, v) ∈ C1((0,∞)×Rd×Rd).
(Hint. One must find f(t, x, v) = f0(x− vt, v)).

Exercice 3.2. (1) Show that for any characteristics solution f to the transport equation associated to an
initial datum f0 ∈ C1

c (Rd), for any times T > 0 and radius R, there exists some constants CT , RT ∈ (0,∞)
such that

sup
t∈[0,T ]

∫
BR

|f(t, x)| dx ≤ CT
∫
BRT

|f0(x)| dx.

(Hint. Use the property of finite speed propagation of the transport equation).

(2) Adapt the proof of existence to the case f0 ∈ L∞.

(3) Prove that for any f0 ∈ C0(Rd) there exists a global weak solution f to the transport equation which
furthermore satisfies f ∈ C([0, T ];C0(Rd)).

Exercice 3.3. Consider the relaxation equation

∂tf + v · ∇xf = M(v)ρf − f
on the function f = f(t, x, v), t ≥ 0, x, v ∈ Rd, where we denote

ρf :=

∫
Rd

f dv, M(v) := (2π)−d/2 exp(−|v|2/2).
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Prove the existence and uniqueness of a solution f ∈ C(R+;L1(Rd × Rd)) to the relaxation equation for
any initial datum f0 ∈ L1(Rd × Rd).

Exercice 3.4. 1) Consider the transport equation with boundary condition

(3.1)

{
∂tf + ∂xf + af = 0
f(t, 0) = b(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0. Assume a ∈ L∞(R+). For any f0 ∈ L1(R+) and b ∈ C([0, T ]), establish
that there exists a unique weak solution f ∈ C([0, T ];L1(R+)) associated to equation (3.1). (Hint. One
may observe that both

d

dt
(eA(t+x)f(t, t+ x)) = 0,

d

dx
(eA(x)f(t+ x, x)) = 0, A(x) :=

∫ x

0

a(u) du,

and a possible solution is

f̄(t, x) := eA(x−t)−A(x)f0(x− t)1x>t + e−A(x)b(t− x)1t>x).

2) Consider the renewal equation

(3.2)

{
∂tf + ∂xf + af = 0
f(t, 0) = ρf(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, and

ρg :=

∫ ∞
0

g(y) a(y) dy.

Assume a ∈ L∞(R+). For any f0 ∈ L1(R+), establish that there exists a unique weak solution f ∈
C([0, T ];L1(R+)) associated to equation (3.2).
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