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Some exercises

Exercise 0.1 (Chapter 5) Prove that for any f € HY(R?), there holds

lpe * f = flleze < Ce |l VL2,

for a constant C > 0 which only depends on the function p € P(R?) N D(R?) used in the
definition of the mollifier (p.). Deduce the Nash inequality. (Hint. Write f = f — p. x f +

pe * f).

Exercise 0.2 (Chapter 6) Let S = S be a strongly continuous semigroup on a Banach
space X C L'. Show that there is equivalence between

(a) S¢ is a stochastic semigroup;

(b) L1 =0 and L satisfies Kato’s inequality

(sign ))Lf < LIfl, VfeD(L).

(Hint. In order to prove (b) = (a), consider f € D(L?) and estimate |S; f|—| f| by introducing
a telescopic sum and a Taylor expansion in the time variable).

Exercise 0.3 (Chapter 6) Consider Sp« a (constant preserving) Markov semigroup and
® : R — R a concave function. Prove that L*®(m) < ®'(m)L*m. (Hint. Use that ®(a) =
inf{¢(a); ¢ affine such that ¢ > ®} in order to prove S;(®(m)) < ®(S;m) and ®(b) — P(a) >
®'(a)(b—a)).

Exercise 0.4 We say that (S;)i>0 is a dynamical system on a metric space (Z,d) if
(S1) ¥t >0, S; € C(Z, 2) (continuously defined on Z);
(S2)Vz € Z, t— Siz € C([0,00), Z) (trajectories are continuous);
(S3) So =1;Vs,t>0, Sis =5 Ss (semigroup property).
We say that z € Z is invariant (a steady state, a stationary point) if Sz = Z for any t > 0.

Consider a bounded and convex subset Z of a Banach space X which is sequentially compact
when it is endowed with the metric associated to the norm || -||x (strong topology), to the weak
topology o(X, X") or to the weak-x topology o(X,Y), Y' = X. Prove that any dynamical
system (Si)i>0 on Z admits at least one steady state
(Hint. Observe taht for any dyadic number t > 0, there exists z; € Z such that S;z; = z
thanks to the Schauder point fixed theorem).



Exercise 0.5 (i) Prove that LP N LY C L" for any p <r < q and
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(i) Prove that LP*(LP?) N L9 (L%) C L™ (L"), and more precisely
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for any u € LP*(LP?) N L9 (L%) for a same 6 € (0,1).
(iii) Prove that Hs'n H2 C HS for any s1 < s < sy and

0

o lullsl, s =0s1+ (1 —0)ss, Yue H" N H*.
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() Prove that LP(H®*) N LY(H") € L"(H®), and more precisely
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for any w € LP(H*) N LY(H®) for a same 0 € (0,1).

(v) Prove that H'/?(R?) ¢ LY(R?), H'/?(R®) c L3(R?). (Hint. We will use the classical
Sobolev embedding and the following interpolation theorem in order to prove (at least when
se (0,d—1])
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when s € [0,d)).

Theorem 0.6 (Interpolation) Assume that T is a linear mapping such that T : W50Po —
Weoo gnd T . WPt — Wb gre bounded, for some po,p1,qo,p1 € [1,00] and some
S0, 81,00,01 € R. Then T : W#oPe — W for any 6 € [0, 1], with
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and
Sp = (1—9)80+Q81, 0'9:<1—¢9)0'0+Q0'1,

when (pg = p1 or so = $1) and (qo = q1 or og = 01).



Exam 2015 - Three problems

Problem I - the fragmentation equation
We consider the fragmentation equation
Ouf(t,x) = (Ff(t,.)(x)

on the density function f = f(¢,z) > 0, t,x > 0, where the fragmentation operator is defined
by

Fle) = [ ) f0) dy — B (o).

We assume that the total fragmentatixon rate B and the fragmentation rate b satisfy
B(z)=a",7>0, bz,y)=2""p(y/z),

with

1 1
0<peC((0,1]), / zp(2)dz =1, /zkp(z)dz<oo, VEk<1.
0 0

1) Prove that for any f, ¢ : R, — R, the following identity

/Ooo(}"f)(m)SO(:c) dr = /OOO f(zx) /O’f b(x,y) ((p(y) - %p(x)) dydz

holds, whenever the two integrales at the RHS are absolutely convergent.

1) We define the moment function

My (f) = /Ooa:kf(x) de, keR

0

Prove that any solution f (€ C*([0,T); L;) N L'(0,T; Ly,,), VT > 0) to the fragmentation
equation formally (rigorously) satisfies

Mi(f(t) = cst, Mu(f(t,)) 2 itk <1, M(f(t,.)\ if k> 1.

Deduce that any solution f € C([0,00); Ly, ) to the fragmentation equation asymptotically
satisfies
ft,z)x — Mi(f(0,.))d,—0 weakly in (C.([0,00))" as t — co.

2) For which values of «, § € R, the function
ft,x) =t*G(t° z)

is a (self-similar) solution of the fragmentation equation such that M;(f(¢,.)) = cst. Prove
then that the profile GG satisfies the stationary equation

N FG = 129,G+2G.



3) Prove that for any solution f to the fragmentation equation, the rescalled density
glt,z) =e > f (e —1ze™)
solves the fragmentation equation in self-similar variable

O g+x0,9+2g9=1Fg.

Problem II - the discret Fokker-Planck equation

In all the problem, we consider the discrete Fokker-Planck equation
Of =L.f :=Af +dive(zf) in (0,00) x R, (0.1)

where

Buf = Stk f =)= [ Shie -9 - f@)d

R
and where k.(z) = 1/ek(z/¢), 0 <k € WHH(R) N Li(R),

—_
—_

that we complement with an initial condition
f(0,2) = ¢(x) inR. (0.2)

Question 1

Establish the formula
/(Aaf) B'(fymdx = /B(f) A.mdxr — // éka(y —x)J(z,y) m(z) dydx

with

J(@,y) = B(f(y) = B(f(x)) = (f(y) = f(2))B'(f(2)).
Formally prove that the discrete Fokker-Planck equation is mass conservative and satisfies
the (weak) maximum principle. Explain (quickly) why for ¢ € LZ(R%), k > 0, the equation
(0.1)-(0.2) has a (unique) solution f(t) in some functional space to be specified. We recall
that

lollzg = llg (Yollee, (2} = (1 + |2)!2.
Establish that if LZ(RY) C L*(R?), then the solution satisfies

sup [|f(D)[r < llellzr-
t>0



Question 2
We define
Milt) = M(F(O) ()= [ fle) (o)t do
Prove that if 0 < ¢ € LZ(R?) C L'(R?), then the solution satisfies
My(t) = My(p) Vit > 0.
Prove that when L2(R?) C L1(R?), then the solution satisfies

d
aMQ(t) = My(0) — My(t).

Question 3 (discrete Nash inequality)
Prove that there exist 6,17 € (0,1), p > 0 such that

k(r)| <OV |r|>p, 1—k(r)>nr?Vr| <p.
Deduce that for any f € L' N L? and any R > 0, there holds

1
o= S5 < O3+ RIS + g L]

1—k(€) | 5
ni) = [ SR e

with

Question 4

Prove that for any o > 0, the solution satisfies

g /RF -~z / / k(y — ) (F(y) — f(2)? dady

+2a/(k€*f)f—2a/f2+/f27

d
G| = —a—a) L+ alltos i — (= DI

and then

Deduce that for € € (0,e), g9 > 0 small enough, the solution satisfies

1
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Also prove that



Question 5
Prove that there exists a constant C' such that the set
Z={feLiR); f>0, Iflle=1, [fllz2 <C}

is invariant under the action of the semigroup associated to discrete Fokker-Planck equation.
Deduce that there exists a unique solution G, to

0<G.eLli AG.+div(zG.) =0, My(G.)=1.
Prove that for any ¢ € L?, My(p) = 1, the associated solution satisfies

ft) = G as t— oc.

Problem III - the Fokker-Planck equation with weak confinement
In all the problem, we consider the Fokker-Planck equation

Of =Af = A, f +div.(f Va(z)) in (0,00) x R (0.3)
for the confinement potential

a@;):%, Ve (O01), (@) =1+ |

that we complement with an initial condition

f(0,2) = p(x) in R% (0.4)

Question 1

Exhibit a stationary solution G' € P(R?). Formally prove that this equation is mass conser-
vative and satisfies the (weak) maximum principle. Explain (quickly) why for ¢ € LF(R?),
p € [1,00], k > 0, the equation (0.3)-(0.4) has a (unique) solution f(¢) in some functional
space to be specified. Establish that if L} (R?) C L'(R?) then the solution satisfies

sup || f(£)][r < [lellzr-
>0
Can we affirm that f(f) — G as t — oco? and that convergence is exponentially fast?

Question 2

We define

Bf:=Af—Mxrf
with xr(z) := x(z/R), x € D(R?), 0 < x <1, x(x) =1 for any |z| < 1, and with M, R >0
to be fixed.



We denote by fs(t) = Sp(t)e the solution associated to the evolution PDE corresponding
to the operator B and the initial condition (0.4).

(1) Why such a solution is well defined (no more than one sentence of explanation)?

(2) Prove that there exists M, R > 0 such that for any & > 0 there holds

L)) de < —en | ity <o,
dt Rd Rd

for some constant ¢, > 0, ¢, > 0 if £ > 0, and
IS0l gy < 1.
(3) Establish that if u € C*(R,) satisfies
u < —cuttV e a0 >0,
there exists C' = C(c, a, u(0)) such that
u(t) < C/t* Vit >0.
(4) Prove that for any k; < k < ks there exists 6 € (0, 1) such that

V>0 My <M, M M= [ f(z)(z)de
Rd

and write 6 as a function of ki, k and k».
(5) Prove that if £ > k > 0 there exists o > 0 such that

158Dy < 198(0) L2y < C/{H,

and that o > 1 if ¢ is large enough (to be specified).
(6) Prove that
SL = SB + SB * (AS[;),

and deduce that for k large enough (to be specified)
1Sl < C.

Remark. You have recovered (with a simpler and more general proof) a result established
by Toscani and Villani in 2001.

Question 3 (difficult)
Establish that there exists x > 0 such that for any h € D(R?) satisfying

(h)y = /Rd hdp =0, p(dr):=G(x)dr,

there holds
/ IVh]*du > & / h2 ()20~ dp.
Rd RY
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Question 4

Establish that for any ¢ € D(R?) and any convex function j € C?(R) the associated solution
f(t) = Sa(t)p satisfies
d

%Rd

and give the expression of the functional D;. Deduce thgat

1F(£)/Gll[Lee < [[fo/Gll|Lee VEZ 0.

J(f()/G)Gdr = =D; <0

Question 5 (difficult)
Prove that for any ¢ € D(R?) and for any o > 0 there exists C such that

1f () = () G2 < C/t°.

Exam 2016 - Two problems

Problem I - Nash estimates

We consider the evolution PDE
o f = div(AV ), (0.1)

on the unknown f = f(t,x), t > 0, x € RY with A = A(z) a symmetric, uniformly bounded
and coercive matrix, in the sense that

v[E? <€Al < CIEP, Va, & e RY

It is worth emphasizing that we do not make any regularity assumption on A. We comple-
ment the equation with an initial condition

f(0,2) = folx).

1) Existence. What strategy can be used in order to exhibit a semigroup S(¢) in LP(R?),
p =2, p =1, which provides solutions to (0.1) for initial date in LP(R%)? Is the semigroup
positive? mass conservative?

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or C; some constants which may differ from line to line.

2) Uniform estimate. a) Prove that any solution f to (0.1) satisfies

1f@)lz < CEY | follpa, VE>0.



b) We define the dual semigroup S*(¢) by
(S*(t)g0, fo) = (90, S() fo), ¥t >0, fo€ LP, go € LV,
Identify S*(¢) and deduce that any solution f to (0.1) satisfies

IfF@)llz= < Ct N follg2s VE>0.

c¢) Conclude that any solution f to (0.1) satisfies

If Ol < [C222179 | folle, Vit >0.

3) Entropy and first moment. For a given and (nice) probability measure f, we define the
(mathematical) entropy and the first moment functional by

H:= flog fdx, M ::/ f x| dx.
Rd Rd

a) Prove that for any A € R, there holds

. S
Ig(l)l{slogs—l—)\s}— e :

Deduce that there exists a constant D = D(d) such that for any (nice) probability measure
f and any a € Ry, b € R, there holds

H4aM+b>—e""a™D.
b) Making the choice a := d/M and e := (¢/D) a?, deduce that
M > ke /4, (0.2)

for some k = k(d) > 0.
From now on, we restrict ourself to consider an initial datum which is a (nice) probability
measure:

f020> dex:L

Rd
and we denote by f(t) the nonnegative and normalized solution to the evolution PDE (0.1)
corresponding to fo. We also denote by H = H(t), M = M(t) the associated entropy and
first moment.

3) Dynamic estimate on the entropy. Deduce from 2) that f satisfies
d
H(t)SK—§logt, Vit >0, (0.3)

for some constant K € R (independent of f).



4) Dynamic estimate on the entropy and the first moment. a) Prove that

L] < 1950

for some positive constant C' = C'(A).
b) Deduce that there exists a constant § = 6(C,v) > 0 such that

’th)’<9< dH(t)>1/2 Vit >0 (0.4)
dt - dt ’ ' '
c¢) Prove that for the heat equation (when A = I), we have

/f]x\Q dx =2,

M(t) < C Y2 t>0. (0.5)

and next

From now on, we will always restrict ourself to consider the Dirac mass initial datum

Jo= 50(d9€),

and our goal is to establish a similar estimate as (0.5) (and in fact, a bit sharper estimate
than (0.5)) for the corresponding solution.

5) Dynamic estimate on the first moment. a) Deduce from 1) that there exists (at least) one
function f € C((0,00); L') N L72.((0, 00); L) which is a solution to the evolution PDE (0.1)
associated to the initial datum dy. Why does that solution satisfy the same above estimates

for positive times?
b) We define

R=R(t):= K/d— H(t)/d - %logt >0,

where K is defined in (0.3). Observing that M (0) = 0, deduce from the previous estimates

that

L1 dR\12
Cltl/26R§M§02/<—+—R> ds, VYt>D0.
0 \25 ds

c) Observe that for a > 0 and a + b > 0, we have (a + b)'/2 < a'/? +b/(2a"/?), and deduce
that
Cref < Mt™1? < Cy(14 R), Vt>0.

d) Deduce from the above estimate that R must be bounded above, and then

Cit'2 < M < Cyot'?, Vit>0.

You have recovered one of the most crucial step of Nash’s article “Continuity of solutions of
parabolic and elliptic equations”, Amer. J. Math. (1958).
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Problem II - The fractional Fokker-Planck equation

We consider the fractional Fokker-Planck equation
of=Lf:=1I[f]+div.(Ef) in (0,00) xR, (0.1)

where
1

1) = [ Ko=) (10) = f@)dy. Ke) = o o (0.1),
and where F is a smooth vectors field such that
Viz| > 1, |B(x)| <C(z), divE(x)<C, z-E>|z|*
We complement the equation with an initial condition

f(0,2) =¢(x) in R (0.2)

We denote by F the Fourier transform operator, and next f = Ff for a given function f on
the real line.

Question 1. Preliminary issues (if not proved, theses identities can be accepted). Here all
the functions (f, ¢, ) are assumed to be suitably nice so that all the calculations are licit.

a) - Establish the formula

Jaine@eds = [ s 116de~ [ Ky - 0300 o) duds

J(z,y) == B(f(y) — B(f(x)) = (f(y) = f(2))B'(f(=)).

b) - Prove that there exists a positive constant C such that

i cos(z§) — B L
/f E/R BER dz}dx_01|§y (&), VEeR.

c) - Denote s := «//2. Prove that

|f(x) = fW)* f(z
s - / y|1+2 d:cd /H |Z|s+1/2

and then that there exists a positive constant Cy such that

with

2

AN

dz,
L2(R)

Il £l

Hs-

20 =G [ 1O P dE = Gl
R

d) - Prove that

[ 11w = =3l111

Hs*

11



From questions 2 to 4, we consider f (and g) a solution to the fractional Fokker-Planck
equation (0.1) and we establish formal a priori estimates.

Question 2. Moment estimates. For any k > 0, we define
My, = My (t) = Mi(f(t)), with My = My(f) := /Rf(x) (z)F d.
Prove that the solution f satisfies
My(t) = Mo(p), Vt>0.
Prove that for any k € (0, ), there exists C' > 0 such that
CH () — ()] < |lyf? = |22 < € (ly — 2" 22 + |y — al*) ,

and deduce that there exist C7, Cy > 0 such that the solution f satisfies

d
EM]C < Cy Myyy — Cy M.

Conclude that there exists Ay = Ar(My(yp)) such that the solution f satisfies

sup My (t) < max(M(0), Ax). (0.3)

t>0

Question 3. Fractional Nash inequality and L? estimate. Prove that there exists a constant
C > 0 such that .

Tra

Hs °

VheDR), |hllzz < C Nl A
Deduce that the square of the L?-norm u := || f(¢)||3, of the solution f satisfies

d
EU S _Clu1+a + 027

for some constants C; = C;(My(¢)) > 0. Conclude that there exists Ay = As(My(y)) such
that
sup u(t) < max(u(0), Ay). (0.4)

t>0

Question 4. Around generalized entropies and the L'-norm. Consider a convex function j3
and define the entropy H and the associated dissipation of entropy D by

H(flg) = / B(X)gdz,

D(flg) = / / kg {B(X.) — B(X) — B(X)(X. — X)} dude..

12



where k£ = k(z — z,), g« = g(z.), X = f(x)/g(x) and X, = f(x.)/g(xs). Why do two
solutions f and g satisfy

d
5 U @lg(®) < =D(f(1)lg(t))? (0.5)
Deduce that for f(s) = s, and B(s) = |s|, any solution f satisfies

/,B(f(t,-))dxg/ﬁ(go)dx, Vit >0. (0.6)

Question 5. Well-posedness. Explain briefly how one can establish the existence of a weakly
continuous semigroup S; defined in the space X = L! N L? such that it is a contraction for
the L' norm and such that for any ¢ € X the function f(¢) := S;(t)p is a (weak) solution
to the fractional Fokker-Planck equation (0.1). Why is S, mass and positivity preserving
and why does any associated trajectory satisfy (0.3), (0.4) and (0.6)7

(Ind. One may consider the sequence of kernels k,(2) := k(2) n-1<|2<n)-

Question 6. Prove that there exists a constant C' such that the set

Z:={feLl'R); f20, [[fle=1 [fllx <C}

is invariant under the action of S,. Deduce that there exists at least one function G € X
such that
IG+div,(FG) =0, G>0, MyG)=1. (0.7)

Question 7. We accept that for any convex function [, any nonnegative solution f(t) and
any nonnegative stationary solution GG the following inequality holds

H(F(1)]G) + / D(f(5)|G) ds < H(¢|G). (0.8)

Deduce that D(g|G) = 0 for any (other) stationary solution g. (Ind. First consider the case
when 3 € WH*(R) and next use an approximation argument). Deduce that

G(y) (% — gf(z)))z =0 fora.e. x,y€R,

and then that the solution to (0.7) is unique. Prove that for any ¢ € X, there holds
Se(t)p = My(p) G weakly in X, as t — oo.

Question 8. (a) Introducing the splitting
A=), NeR, B:=L-A,

explain why

Sr =S+ SgA xS,

13



and next for any n > 1
Se =S+ ... + (SpA) "V xS+ (SpA)™ xS,

where the convolution on R, is defined by

(ux*v)(t) := /0 u(t — s)v(s)ds,

and the itareted convolution by u*! = u, u** = w**=1 sy if k > 2.
(b) Prove that for A > 0, large enough, there holds

1Ssllyoy <€, Y =1L, ke (0,a), Y =L

as well as

C o0
IS5()l2s2 < g e Vi 20 /0 1S5(8)|2a. . ds < C.

and deduce that for n large enough

/0 H(ASB)(*H)<3)’|L1—>HS ds < C.

(c) Establish that for any ¢ € L!, k > 0, the associated solution f(t) = S, (t)p splits as
f&)=gt) +ht), lNg@®le <e™, N pinm: < C(Mo(0)).
(d) Conclude that
Voe L'(R), |[|Sc(t)p — Mo(p)Gllr =0 as ¢ — oo.

Question 9. Justification of (0.8). We define the regularized operator
»Ce,nf = gAxf + In[f] + dlvx(Ef)

with € > 0, n € N* and [, associated to the kernel k, (introduced in question 5). Why is
there a (unique) solution G, to the stationary problem

Gs,n € X; ‘Cs,nGe,n = 07 Gs,n > 07 MO(GE,n) = 17

and why does a similar inequality as (0.8) hold? Prove that there exist G, G € X, ¢ > 0,
such that (up to the extraction of a subsequence) G, . — G. and G. — G strongly in
L'. Prove that a similar strong convergence result holds for the familly S;_ (t)p, ¢ € X.
Conclude that (0.8) holds.
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Exam 2017 - Two problems

Problem I - A general Fokker-Planck equation with strong confinement

We consider the evolution PDE
of =Af+div(Ef), (0.1)

on the unknown f = f(t,z),t > 0, z € RY, with F = E(x) a given smooth force field which
satisfies for some v > 1

Viz| > 1, |E(@)| <Clz|"!, divE(x) < Cla|"™%, x-E > |a|.
We complement the equation with an initial condition

f(0,z) = fo(x).

Question 1. Which strategy can be used in order to exhibit a semigroup S(t) in LP(R?),
which provides solutions to (0.1) for initial data in LP(R?)? Is the semigroup positive? mass
conservative? Explain briefly why there exists a function G = G(z) such that

0<GelL*m), (G) ::/G:1, LG =0.

We accept that G > 0. For any nice function f : R — R we denote h := f/G and,
reciprocally, for any nice function h : R? — R we denote f := Gh.

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C' or C; some constants which may differ from line to line.

Question 2. Prove that for any weight function m : R? — [1,00) and any nice function

f:R% — R, there holds
[engm== [1vipm s [ 2em

where we will make explicit the expression of L*.

Question 3. Prove that there exist w : R? — [1,00), @ > 0 and b, Ry > 0 such that

Lrw < —aw+b13RO.

Question 4. For some constant A > 0 to be specified later, we define W := w + A. Deduce
from the previous question that

1
/hsz < —/h2 (b1p, — LW)G,
!
for any nice function h : R — R.
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Question 5. Take a nice function h : R? — R such that (hG) = 0 and denote G(Q) :=
(G 1q). Prove that for any R > Ry there exists kg € (0,00) such that

1
h?1lp G <k / Vh|*G + /
/ Brt = h BR| | G(BR)< B
and deduce that

G(B%)
27 < KR / 2 R / 2 '
/h BRG_1+)\ |Vh| WG—I—G(BR) hwG

hG>2

c
R

Question 6. Establish finally that there exist some constants A, K; € (0, 00) such that
i/iﬁwa < /(W]Vh|2 - 1h%*W)G - /(—Ef)fG‘lw
K, - 2 ’

for all nice function h such that (hG) = 0.

Question 7. Consider a nice solution f to (0.1) associated to an initial datum f such that

(fo) = 0. Establish that f satisfies

1 d 2 _ 2 1 2 *
5 71 htWG——/\Vh] WG+2/hG£W
Deduce that there exists Ky € (0,00) such that f satisfies the decay estimate

/ fEWG e < e 1 / fowG tdr, Vt>0.

Problem II - Estimates for the relaxation equation

We consider the relaxation equation

Of=Lf=—v-Vf+psM—f in (0,00)xR* (0.1)
on the unknown f = f(t,x,v), t > 0, z,v € R with
1 2
prte) = [ flt oo, M) i= oo exp(-lul/2).

We complement the equation with an initial condition

£(0,2,v) = fo(z,v) in R (0.2)

Question 1. A priori estimates and associated semigroup. We denote by f a nice solution
to the relaxation equation (0.1)—(0.2).

(a) Prove that f is mass conserving.
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(b) Prove that
0g] < Mgl a2y, Vg = g(v) € LI(M?)
and deduce that
1 ez, (ar-1r2) < N follpz, 172y

(c) Consider m = (v)¥, k > d/2. Prove that there exists a constant C' € (0, o00) such that

‘pgl < CHgHLg(m)a Vg= g(v) S L£<m), p=1,2,
and deduce that
||f(t, ')HL’;U(m) < eAt“f()HLgv(m),

for a constant A € [0, 00) that we will express in function of C.

(d) What strategy can be used in order to exhibit a semigroup S(t) in L2, (m), p=2,p =1,
which provides solutions to (0.1) for initial date in L?, (m)? Is the semigroup positive? mass
conservative? a contraction in some spaces?

The aim of the problem is to prove that the associated semigroup S, to (0.1) is
bounded in LP(m), p = 1,2, without using the estimate proved in question (1b).

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.

We define
Af =psM, Bf=Lf— Af.

Question 2. Prove that Sy satisfies a growth estimate O(e™") in any L?, (m) space. Using
the Duhamel formula

Sy =8+ SgA xS,
prove that S, is bounded in L! (m).
Question 3. Establish that A : L} (m) — LLL3(m) where

19l ey = / 19 oy .
]Rd
Prove that

% ( / fpdx)l/pdv: / ( / @) de) / fpdx>1/p_1dv.

Deduce that Sy satisfies a growth estimate O(e™) in any Ll LP(m) space for p € (1,00), and
then in LLL°(m). Finally prove that Sg(t).A is appropriately bounded in Z(L', LLL>(m))
and that S, is bounded in L L (m).

Question 4. We define u(t) := ASg(t). Establish that

(u(t) fo)(z,v) = M(v)e™ » fo(z — vit, vy) du,.
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Deduce that L,

[Ju(t )f0||L;3<; (m) < C " HfoHLlLoo(m)

Question 5. Establish that there exists some constants n > 1 and C' € [1, 00) such that

[uC™ ()| 1, )= L2, (my < C €72,

Deduce that S, is bounded in L (m).

Question 6. How to prove that S, is bounded in L2 (m) in a similar way? How to shorten
the proof of that last result by using question (1b)? Same question for the space L3°(m).

Exam 2018 - Local in time estimate (from Nash)

Consider a smooth and fast decaying initial datum fy, the associated solution f = f(¢,x),
t >0, z € R% to heat equation

of =3 Af F0.) =

and for a given o € R?, define

(1) Establish that
1 1,
g = éAg—a Vg + §|04’ g.

(2) Establish that || g(,.)||z: < e*¥2|| go||z1 for any t > 0.
(3) Establish that

2
112 —a2t<m Vi 0.
|| g( )HL26 = (Q/dCNt)d/Qa
(4) Denoting by T'(t) the semigroup associated to the parabolic equation satisfies by g, prove
successively that
Tt): L' - L* L[*—L> L'—L>,
for some constants Ct~#4e®*t/2 Ct=4/4e2®t/2 and Ct—4/2e2°t/2,
5) Denoting by S the heat semigroup and by F(t,x,y) := (S(t)d, the fundamental
g by g y Yy Y
solution associated to the heat equation when starting from the Dirac function in z € R,
deduce

C
F(t,z,y) < ) e W2y 5 0,V 2, y,a € RY,

and then o ,
\z—y| d
F(t,z,y) < 2 © -, Vit>0,Va,y e R
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(6) May we prove a similar result for the parabolic equation

O f =divy(A(x)V.f), O0<v<AeL>*?

Exam 2019 - two problems about subgeometric convergence

Problem I - Subgeometric Harris estimate

In this part, we consider a Markov semigroup S = S, on L!(R?) which fulfills
(H1) there exist some weight functions m; : R — [1,00) satisfying m; > myg, mg(z) — oo
as * — oo and there exists constant b > 0 such that

E*ml < —mg + b;

(H2) there exists a constant 7" > 0 and for any R > Ry > 0 there exists a positive and not
zero measure v such that

Srf>v | f. VfelLl, f>0

Br
(H3) there exists my > my such that and for any A > 0 there exists £, such that
my < Amg +&Ema,  E— 0 as A — oo.
(H4) We also assume that
Stg]g’ 1SefllLromy < Mil| fllorvmy, M > 1, i=1,2.
(1) Prove
1Sz follr < [ follzr, VYT >0, VfoelL

In the sequel, we fix fo € L'(my) such that (fo) = 0 and we denote f; := S, fo.
(2) Prove that

d
EHftHLl(ml) < = fell 22 gmoy + Ol fell 21
and deduce that

T
1S foll Lt (my) + MOHSTJCOHLl(mo) < folltmyy + K|l follz1-

We define
1flls = Ifllr + Bl fllzrgnyys, 8> 0.

We fix R > R, large enough such that A := m(R)/4 > 3My/T, and we observe that the
following alternative holds

[ foll 2t (mey < All foll 1 (0.1)
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or

[ foll1(moy > All follz1- (0.2)
(3) We assume that condition (0.1) holds. Prove that

157 follzr < mll foll e,
with 71 € (0,1). Deduce that

6T
ISt follg < Ml follzr — VOHSTfOHLl(mo) + Bl foll 2t (myy + BK]| foll 1
and next
BT
1St folls + HHSTJFOHLl(mo) < | foll3,
0

for # > 0 small enough.
(4) We assume that condition (0.2) holds. Prove that

T T
157 foll £t (my) + EHSTJCOHLl(mo) < | follzr(my) + 3—%||f0||L1(mo)»

and deduce

6T BT
S’ —||S 1 < —_— 1 .
IS0l + S 1Sz ol < Wflls + ol

(5) Observe that in both cases (0.1) and (0.2), there holds

157 follg + 3l St foll Lt me) < W folls + all foll L1 (mo);

where from now S and « are fixed constants. Deduce that
3
Z(uy + avy) < ug+ avy + onwl,
with
Up = ||San0H57 Up = ||SanOHL1(m0)7 Wy = HSanOHLl(mg)
and for A > A\g > 1 large enough

Z=1+-<2 §:=

Deduce that for any n > 1, there holds

7
Uy < Z_"(UO + CYU()) + ﬂf)\Ta Sig?wi,

and next

ISrfols < (54 + &) Cllfollrma, VA2 o
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(6) Prove that
1S:follr <O follLromay, YE>0, ¥V fo € L' (my), (f) =0,

for the function © given by
o(t) :== Cing{e*“t/’\ + &0}
>

What is the value of © when my =1, m; = (x), mg = (2)??

Problem II - An application to the Fokker-Planck equation with weak confine-
ment

In all the problem, we consider the Fokker-Planck equation
Of =Lf = A, f +div,(fE) in (0,00) x R? (0.3)

for the confinement potential E := V¢, ¢ := (z)7 /7, (x)? :== 1 + |z|?, that we complement
with an initial condition

f(0,2) = folx) in R% (0.4)
Question 1

Give a strategy in order to build solutions to (0.3) when fy € LE(R?), p € [1,00], k > 0.

We assume from now on that fy € Li(R%), k > 0, and that we are able to build a unique
weak (and renormalized) solution f € C(]0,00); L}.) to equation (0.3)-(0.4).

We also assume that v > 2.

Question 2

Prove

(f@#) = (fo) and f(t,.)>0if fo > 0.

Question 3
Prove that there exist o« > 0 and K > 0 such that
L) < —alz)* + K,

and deduce that
sup £ ) < Cill follzr-

(Hint. A possible constant is C := max(1, K/«a)).
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Question 4
Prove that
sup £ 2z < Coll foll e

at least for k > 0 large enough.

Question 5
Prove that
sup || f(t, )y < Cal foll

at least for k£ > 0 large enough.

Question 6

Prove that

C
() < t—fl!foHL;,

at least for k£ > 0 large enough and for some constant o > 0 to be specified.
(Hint. Consider the functional F(t) := || f(t)[|p2 + t*[[Vaf(D)[172)-

We assume from now on that d = 1, so that C%%/2 ¢ H'.

Question 7

We fix fy € L' such that fy > 0 and supp fy C Bg, R > 0. Using question 3, prove that

=<
By

=3/,

for any ¢t > 0 by choosing p > 0 large enough. Using question 6, prove that there exist
r,k > 0 and for any t > 0 there exists o € Br such that

f(t) >k, VYzxe B(xg,r).

We accept the spreading of the positivity property, namely that for ant ro,r; > 0, 7o € R,
there exist £1, k1 > 0 such that

fO Z 1B(mo,r0) = f(tla ) Z "il]-B(xo,rl)'

Deduce that there exist § > 0 and 7" > 0 such that

J(T,-) > 01por [ fodz.

Br
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Question 8

Prove that for any k > 0, there exists C, A > 0 such that fy € Lj satisfying (fs) = 0, there
holds
Vi>0,  [f(t )l < Ce|follLy-

Question 9

We assume now 7 € (0,2). We define

Bf:=Lf— Mxrf

with xr(z) := x(z/R), x € D(R?), 0 < x <1, x(z) =1 for any |z| < 1, and with M, R >0
to be fixed.

We denote by fz(t) = Sp(t)fo the solution associated to the evolution PDE corresponding
to the operator B and the initial condition fj.

(1) Why such a solution is well defined (no more than one sentence of explanation)?

(2) Prove that there exists M, R > 0 such that for any k£ > 0 there holds

@Y de < —e [ fa)@) <o,
dt Jpa R

for some constant ¢, > 0, ¢, > 0if £ > 0, and
1S8(O)lrsr: < 1.

(3) Prove that for any k; < k < ks there exists 6 € (0, 1) such that
V>0 My <M M M= [ f(x){x)ds
Rd

and write 6 as a function of ki, k and k».
(4) Prove that if ¢ > k > 0 there exists a > 0 such that

158Dy < 1980212y < C/{H,

and that o > 1 if £ is large enough (to be specified).
(6) Prove that
S[; = SB + SB * (.AS[;),

and deduce that for k large enough (to be specified)

1Sellpy o < C.

Question 10

Still in the case v € (0,2), what can we say about the decay of
1 )z
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when fo € Ly, k > 0, satisfies (fy) = 07

Exam 2020 - On the Landau equation

We aim to establish the existence of solutions to the Landau equation

8tf(t7 U) = Q(fa f)(t> U)v f(07 U) = fO(U)a (01)

on the density function f = f(t,v) > 0,t > 0, v € R4 d > 2, where the Landau kernel is
defined by the formula

Qf, f)(v) == a(zi{/Rd a;;(v— U*)(f(v*)g—g](v) — f(v)g—g](v*)) dv*}.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The
matrix a = (a;;) is defined by

a(z) = |z|2H(2), I (2) == 6;5 — 225, 2k = m,

so that II is the is the orthogonal projection on the hyperplan z+ := {y € R%; y - 2 = 0}.

Part I - Physical properties and a priori estimates.

(1) Observe that a(z)z = 0 for any z € R? and a(2)é€ > 0 for any 2, € R% Here and
below, we use the bilinear form notation auv = wau = v - au. In particular, the symmetric
matrix a is positive but not strictly positive.

(2) For any nice functions f,¢ : R? — R, f > 0, prove that
Jaunedo= [ [ aw - o)1Vt~ LYV - Vg dudo.
where f, = f(v.), Vath = (V¢)(v,). Deduce that
[t edo=o0. torp=1u ol

and

~D() = [ QU oz s o <o
Establish then

|[eu.ppdr] < D (5 [ [ 50— 00 = V.0 (Vi = Vo) o) "
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(3) For Hy € R, we define Ep, the set of functions
Ey, = {f € Ly(RY; f >0, /fdv =1, /fvdv =0,
/f|v|2dv <d, H(f) = /f log fdv < Ho}.
Prove that there exists a constant Cy such that

fﬂﬂ:/NMﬂdww@Vfﬂ%,

and define Dy := Hy + Cy. Deduce that for any nice positive solution f to the Landau
equation such that fy € £p,, there holds

feFr:= {g c O([0,T); Ly); g(t) € En,, ¥t € (0,T), /TD(g(t)) dt < DO}.

We say that f € C([0,T); L') is a weak solution to the Landau equation if f € Fr and (0.1)
holds in the distributional sense. Why the definition is meaningful?

(4) Prove that
QUf, f) = 0i(ai;0; f — bif) = 81'2]'(@ijf) —20,(bif) = &ijaz?jf —cf,

with o
(i = Ay = i * f, bi=bl=bixf, c=c =cxf (0.2)
and
d d
bi = Zﬁjaij = —(d — 1)ZZ, C = Z@lbl = —(d — 1)d
Jj=1 i=1

Prove that there existe C' € (0, 00) such that

jai;] < C(L+[o*),  [bi] < C(1+ o)),

Part II - On the ellipticity of a.

We fix Hy € R and f € &p,.
(ba) Show that there exists a function > 0 (only depending of Dy) such that

vAcR, [ fav<y(a)
and n(r) — 0 when r — 0. Here |A| denotes the Lebesgue measure of A. Deduce that
VR, e>0, /f 1jyj<r L, <c dv < ng(e)
and ngr(r) — 0 when r — 0.
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(5b) Show that
d
/f1|v|<R >1- izh

(5¢) Deduce from the two previous questions that
Vi=1,...,d, T,-::/fv?dUZ)\,
for some constant A > 0 which only depends on Dj. Generalize the last estimate into
VEERY ()= [ flo-€Pdv 2 AP

(6) Deduce that

d

Vo8 €RY a(u)ed =Y ay(v)&&; > (d— DALELR

1,7=1

Prove that any weak solution formally satisfies

%H(f)z—/@ij@—/éf,

and thus the following bound on the Fisher information

I(f) ::/@ € L'(0,T)

Part III - Weak stability.

We consider here a sequence of weak solutions ( f,,) to the Landau equation such that f,, € Fr

for any n > 1.
T
/ /|van|dvdt < Cr
0

(7) Prove that
and that p
p / fautp dv is bounded in L*(0,T), V¢ € C*(R?).

Deduce that (f,,) belongs to a compact set of L'((0,7) x R?). Up to the extraction of a
subsequence, we then have

fn — f strongly in L'((0,T) x RY).

Deduce that
Q(fn, fn) = Q(f, f) weakly in D((0,T) x R)
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and that f is a weak solution to the Landau equation.

(8) (Difficult, here d = 3) Take f € £, with energy equals to d. Establish that D(f) = 0 if,

and only if,

va N vff = Av,v.)(v—v,), Vo, €RY

for some scalar function (v, v.) — A(v,v,). Establish then that the last equation is equivalent
to

log f = M[v]2/2 4+ Av + A3, Vv e R
for some constants \; € R, Ay € R? A3 € R. Conclude that

D(f) = 0if, and only if, f = M(v) := (21)"*? exp(—|v[*/2).

(9) (very difficult, because needs many steps) Prove that for any global weak solution f
associated to fo € LiN Eg, with energy equals d, there holds f(t) — M when ¢ — oo.
(Hint. Accept that the energy My(f(t)) = d and prove that the third moment M;3(f(t)) is
uniformly bounded).

Part IV - Existence.

(10) We fix k = d + 4. Show that H := L2 C L} and that Hy:= H(fy) e Rif 0 < fy € L2,
In the sequel, we first assume that fy € £y, N H.

(11) For f € C([0,TY); En,), we define a, b and ¢ thanks to (0.2) and then

= - d+2
Qi = gy + e|vdyy, b= b — s%vi, £€(0,)\).

We define V := H}_, and then

VgeV, Lg:=0/(a;;0;9—big) eV
Show that for some constant C; € (0, 00), there hold
(Lg, g < —ellgls+ Cullgl, 1L, myul < Callglvlbllv, ¥g,he V.
Deduce that there exists a unique variational solution
g€ Xp:=C(0,T);H)N L*0,T;V)n H(0,T;V)

to the parabolic equation

g =Lg, ¢(0)= fo.
Prove furthermore that g € Fr.
(12) Prove that there exists a unique fonction

f- € C([0,T]; L2) N L*(0,T; H) N Fr
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solution to the nonlinear parabolic equation
Ouf- = 0(a; 0 f- + b[* f2), [.(0) = fo,

where dlfj denotes the

(13) For fy € Ep, and T > 0, prove that there exists at least one weak solution f € Fr to
the Landau equation.
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