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Some exercises

Exercise 0.1 (Chapter 5) Prove that for any f ∈ H1(Rd), there holds

‖ρε ∗ f − f‖L2 ≤ C ε ‖ ∇f‖L2 ,

for a constant C > 0 which only depends on the function ρ ∈ P(Rd) ∩ D(Rd) used in the
definition of the mollifier (ρε). Deduce the Nash inequality. (Hint. Write f = f − ρε ∗ f +
ρε ∗ f).

Exercise 0.2 (Chapter 6) Let S = SL be a strongly continuous semigroup on a Banach
space X ⊂ L1. Show that there is equivalence between
(a) SL is a stochastic semigroup;
(b) L∗1 = 0 and L satisfies Kato’s inequality

(sign f)Lf ≤ L|f |, ∀ f ∈ D(L).

(Hint. In order to prove (b)⇒ (a), consider f ∈ D(L2) and estimate |Stf |−|f | by introducing
a telescopic sum and a Taylor expansion in the time variable).

Exercise 0.3 (Chapter 6) Consider SL∗ a (constant preserving) Markov semigroup and
Φ : R → R a concave function. Prove that L∗Φ(m) ≤ Φ′(m)L∗m. (Hint. Use that Φ(a) =
inf{`(a); ` affine such that ` ≥ Φ} in order to prove S∗t (Φ(m)) ≤ Φ(S∗tm) and Φ(b)−Φ(a) ≥
Φ′(a)(b− a)).

Exercise 0.4 We say that (St)t≥0 is a dynamical system on a metric space (Z, d) if

(S1) ∀t ≥ 0, St ∈ C(Z,Z) (continuously defined on Z);

(S2) ∀x ∈ Z, t 7→ St x ∈ C([0,∞),Z) (trajectories are continuous);

(S3) S0 = I; ∀ s, t ≥ 0, St+s = St Ss (semigroup property).

We say that z̄ ∈ Z is invariant (a steady state, a stationary point) if Stz̄ = z̄ for any t ≥ 0.

Consider a bounded and convex subset Z of a Banach space X which is sequentially compact
when it is endowed with the metric associated to the norm ‖ ·‖X (strong topology), to the weak
topology σ(X,X ′) or to the weak-? topology σ(X, Y ), Y ′ = X. Prove that any dynamical
system (St)t≥0 on Z admits at least one steady state
(Hint. Observe taht for any dyadic number t > 0, there exists zt ∈ Z such that Stzt = zt
thanks to the Schauder point fixed theorem).
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Exercise 0.5 (i) Prove that Lp ∩ Lq ⊂ Lr for any p ≤ r ≤ q and

‖u‖Lr ≤ ‖u‖θLp‖u‖1−θ
Lq ,

1

r
=
θ

p
+

1− θ
q

, ∀u ∈ Lp ∩ Lq.

(ii) Prove that Lp1(Lp2) ∩ Lq1(Lq2) ⊂ Lr1(Lr2), and more precisely

‖u‖Lr1 (Lr2 ) ≤ ‖u‖θLp1 (Lp2 )‖u‖1−θ
Lq1 (Lq2 ),

1

ri
=

θ

pi
+

1− θ
qi

for any u ∈ Lp1(Lp2) ∩ Lq1(Lq2) for a same θ ∈ (0, 1).

(iii) Prove that Ḣs1 ∩ Ḣs2 ⊂ Ḣs for any s1 ≤ s ≤ s2 and

‖u‖Ḣs ≤ ‖u‖θḢs1
‖u‖1−θ

Ḣs2
, s = θs1 + (1− θ)s2, ∀u ∈ Ḣs1 ∩ Ḣs2 .

(iv) Prove that Lp(Ḣa) ∩ Lq(Ḣb) ⊂ Lr(Ḣc), and more precisely

‖u‖Lr(Ḣc) ≤ ‖u‖
θ
Lp(Ḣa)

‖u‖1−θ
Lq(Ḣb)

,
1

r
=
θ

p
+

1− θ
q

, c = θa+ (1− θ)b

for any u ∈ Lp(Ḣa) ∩ Lq(Ḣb) for a same θ ∈ (0, 1).

(v) Prove that Ḣ1/2(R2) ⊂ L4(R2), Ḣ1/2(R3) ⊂ L3(R2). (Hint. We will use the classical
Sobolev embedding and the following interpolation theorem in order to prove (at least when
s ∈ (0, d− 1])

Ḣs(Rd) ⊂ Lp(Rd), with
1

p
=

1

2
− s

d
,

when s ∈ [0, d)).

Theorem 0.6 (Interpolation) Assume that T is a linear mapping such that T : W s0,p0 →
W σ0,q0 and T : W s1,p1 → W σ1,q1 are bounded, for some p0, p1, q0, p1 ∈ [1,∞] and some
s0, s1, σ0, σ1 ∈ R. Then T : W sθ,pθ → W σθ,qθ for any θ ∈ [0, 1], with

1

pθ
=

1− θ
p0

+
θ

p1

,
1

qθ
=

1− θ
q0

+
θ

q1

,

and
sθ = (1− θ)s0 + θs1, σθ = (1− θ)σ0 + θσ1,

when (p0 = p1 or s0 = s1) and (q0 = q1 or σ0 = σ1).
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Exam 2015 - Three problems

Problem I - the fragmentation equation

We consider the fragmentation equation

∂tf(t, x) = (Ff(t, .))(x)

on the density function f = f(t, x) ≥ 0, t, x > 0, where the fragmentation operator is defined
by

(Ff)(x) :=

∫ ∞
x

b(y, x) f(y) dy −B(x)f(x).

We assume that the total fragmentation rate B and the fragmentation rate b satisfy

B(x) = xγ, γ > 0, b(x, y) = xγ−1℘(y/x),

with

0 < ℘ ∈ C((0, 1]),

∫ 1

0

z ℘(z) dz = 1,

∫ 1

0

zk ℘(z) dz <∞, ∀ k < 1.

1) Prove that for any f, ϕ : R+ → R, the following identity∫ ∞
0

(Ff)(x)ϕ(x) dx =

∫ ∞
0

f(x)

∫ x

0

b(x, y)
(
ϕ(y)− y

x
ϕ(x)

)
dydx

holds, whenever the two integrales at the RHS are absolutely convergent.

1) We define the moment function

Mk(f) =

∫ ∞
0

xk f(x) dx, k ∈ R.

Prove that any solution f (∈ C1([0, T );L1
k) ∩ L1(0, T ;L1

k+γ), ∀T > 0) to the fragmentation
equation formally (rigorously) satisfies

M1(f(t)) = cst, Mk(f(t, .))↗ if k < 1, Mk(f(t, .))↘ if k > 1.

Deduce that any solution f ∈ C([0,∞);L1
k+γ) to the fragmentation equation asymptotically

satisfies
f(t, x)x ⇀ M1(f(0, .)) δx=0 weakly in (Cc([0,∞))′ as t→∞.

2) For which values of α, β ∈ R, the function

f(t, x) = tαG(tβ x)

is a (self-similar) solution of the fragmentation equation such that M1(f(t, .)) = cst. Prove
then that the profile G satisfies the stationary equation

γ FG = x ∂xG+ 2G.
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3) Prove that for any solution f to the fragmentation equation, the rescalled density

g(t, x) := e−2t f
(
eγ t − 1, x e−t

)
solves the fragmentation equation in self-similar variable

∂tg + x ∂xg + 2 g = γF g.

Problem II - the discret Fokker-Planck equation

In all the problem, we consider the discrete Fokker-Planck equation

∂tf = Lεf := ∆εf + divx(xf) in (0,∞)× R, (0.1)

where

∆εf =
1

ε2
(kε ∗ f − f) =

∫
R

1

ε2
kε(x− y)(f(y)− f(x)) dx,

and where kε(x) = 1/εk(x/ε), 0 ≤ k ∈ W 1,1(R) ∩ L1
3(R),∫

R
k(x)

 1
x
x2

 dx =

 1
0
1

 ,

that we complement with an initial condition

f(0, x) = ϕ(x) in R. (0.2)

Question 1

Establish the formula∫
(∆εf) β′(f)mdx =

∫
β(f) ∆εmdx−

∫ ∫
1

ε2
kε(y − x)J(x, y)m(x) dydx

with
J(x, y) := β(f(y))− β(f(x))− (f(y)− f(x))β′(f(x)).

Formally prove that the discrete Fokker-Planck equation is mass conservative and satisfies
the (weak) maximum principle. Explain (quickly) why for ϕ ∈ L2

k(Rd), k ≥ 0, the equation
(0.1)-(0.2) has a (unique) solution f(t) in some functional space to be specified. We recall
that

‖g‖Lpk := ‖g 〈·〉k‖Lp , 〈x〉 := (1 + |x|2)1/2.

Establish that if L2
k(Rd) ⊂ L1(Rd), then the solution satisfies

sup
t≥0
‖f(t)‖L1 ≤ ‖ϕ‖L1 .
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Question 2

We define

Mk(t) = Mk(f(t)), Mk(f) :=

∫
R
f(x) 〈x〉k dx.

Prove that if 0 ≤ ϕ ∈ L2
k(Rd) ⊂ L1(Rd), then the solution satisfies

M0(t) ≡M0(ϕ) ∀ t ≥ 0.

Prove that when L2
k(Rd) ⊂ L1

2(Rd), then the solution satisfies

d

dt
M2(t) = M0(0)−M2(t).

Question 3 (discrete Nash inequality)

Prove that there exist θ, η ∈ (0, 1), ρ > 0 such that

|k̂(r)| < θ ∀ |r| > ρ, 1− k̂(r) > ηr2 ∀ |r| < ρ.

Deduce that for any f ∈ L1 ∩ L2 and any R > 0, there holds

‖kε ∗ f‖2
L2 ≤ θ‖f‖2

L2 +R‖f‖2
L1 +

1

ηR2
Iε[f ]

with

Iε[f ] :=

∫
R

1− k̂(εξ)

ε2
|f̂ |2 dξ.

Question 4

Prove that for any α > 0, the solution satisfies

d

dt

∫
R
f 2 = −(

1

ε2
− α)

∫ ∫
kε(y − x) (f(y)− f(x))2 dxdy

+2α

∫
(kε ∗ f)f − 2α

∫
f 2 +

∫
f 2,

and then

d

dt

∫
R
f 2 ≤ −(1− αε2) Iε[f ] + α‖kε ∗ f‖2

L2 − (α− 1)‖f‖2
L2 .

Deduce that for ε ∈ (0, ε0), ε0 > 0 small enough, the solution satisfies

d

dt
‖f‖2

L2 ≤ −
1

2
Iε[f ]− C1‖f‖2

L2 + C2‖f‖2
L1 .

Also prove that

d

dt

∫
R
f 2|x|2 ≤

∫
R
f 2 −

∫
R
f 2|x|2.
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Question 5

Prove that there exists a constant C such that the set

Z := {f ∈ L2
1(R); f ≥ 0, ‖f‖L1 = 1, ‖f‖L2

1
≤ C}

is invariant under the action of the semigroup associated to discrete Fokker-Planck equation.
Deduce that there exists a unique solution Gε to

0 < Gε ∈ L2
1, ∆εGε + div(xGε) = 0, M0(Gε) = 1.

Prove that for any ϕ ∈ L2
1, M0(ϕ) = 1, the associated solution satisfies

f(t) ⇀ G as t→∞.

Problem III - the Fokker-Planck equation with weak confinement

In all the problem, we consider the Fokker-Planck equation

∂tf = Λf := ∆xf + divx(f ∇a(x)) in (0,∞)× Rd (0.3)

for the confinement potential

a(x) =
〈x〉γ

γ
, γ ∈ (0, 1), 〈x〉2 := 1 + |x|2,

that we complement with an initial condition

f(0, x) = ϕ(x) in Rd. (0.4)

Question 1

Exhibit a stationary solution G ∈ P(Rd). Formally prove that this equation is mass conser-
vative and satisfies the (weak) maximum principle. Explain (quickly) why for ϕ ∈ Lpk(Rd),
p ∈ [1,∞], k ≥ 0, the equation (0.3)-(0.4) has a (unique) solution f(t) in some functional
space to be specified. Establish that if Lpk(Rd) ⊂ L1(Rd) then the solution satisfies

sup
t≥0
‖f(t)‖L1 ≤ ‖ϕ‖L1 .

Can we affirm that f(t)→ G as t→∞? and that convergence is exponentially fast?

Question 2

We define
Bf := Λf −MχRf

with χR(x) := χ(x/R), χ ∈ D(Rd), 0 ≤ χ ≤ 1, χ(x) = 1 for any |x| ≤ 1, and with M,R > 0
to be fixed.
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We denote by fB(t) = SB(t)ϕ the solution associated to the evolution PDE corresponding
to the operator B and the initial condition (0.4).
(1) Why such a solution is well defined (no more than one sentence of explanation)?
(2) Prove that there exists M,R > 0 such that for any k ≥ 0 there holds

d

dt

∫
Rd
fB(t)〈x〉k dx ≤ −ck

∫
Rd
fB(t)〈x〉k+γ−2 ≤ 0,

for some constant ck ≥ 0, ck > 0 if k > 0, and

‖SB(t)‖L1
k→L

1
k
≤ 1.

(3) Establish that if u ∈ C1(R+) satisfies

u′ ≤ −c u1+1/α, c, α > 0,

there exists C = C(c, α, u(0)) such that

u(t) ≤ C/tα ∀ t > 0.

(4) Prove that for any k1 < k < k2 there exists θ ∈ (0, 1) such that

∀ f ≥ 0 Mk ≤M θ
k1
M1−θ

k2
, M` :=

∫
Rd
f(x) 〈x〉` dx

and write θ as a function of k1, k and k2.
(5) Prove that if ` > k > 0 there exists α > 0 such that

‖SB(t)‖L1
`→L1 ≤ ‖SB(t)‖L1

`→L
1
k
≤ C/〈t〉α,

and that α > 1 if ` is large enough (to be specified).
(6) Prove that

SL = SB + SB ∗ (ASL),

and deduce that for k large enough (to be specified)

‖SL‖L1
k→L

1
k
≤ C.

Remark. You have recovered (with a simpler and more general proof) a result established
by Toscani and Villani in 2001.

Question 3 (difficult)

Establish that there exists κ > 0 such that for any h ∈ D(Rd) satisfying

〈h〉µ :=

∫
Rd
h dµ = 0, µ(dx) := G(x) dx,

there holds ∫
Rd
|∇h|2 dµ ≥ κ

∫
Rd
h2 〈x〉2(γ−1) dµ.
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Question 4

Establish that for any ϕ ∈ D(Rd) and any convex function j ∈ C2(R) the associated solution
f(t) = SΛ(t)ϕ satisfies

d

dt

∫
Rd
j(f(t)/G)Gdx = −Dj ≤ 0

and give the expression of the functional Dj. Deduce thgat

‖f(t)/G‖|L∞ ≤ ‖f0/G‖|L∞ ∀ t ≥ 0.

Question 5 (difficult)

Prove that for any ϕ ∈ D(Rd) and for any α > 0 there exists C such that

‖f(t)− 〈ϕ〉G‖L2 ≤ C/tα.

Exam 2016 - Two problems

Problem I - Nash estimates

We consider the evolution PDE
∂tf = div(A∇f), (0.1)

on the unknown f = f(t, x), t ≥ 0, x ∈ Rd, with A = A(x) a symmetric, uniformly bounded
and coercive matrix, in the sense that

ν |ξ|2 ≤ ξ · A(x)ξ ≤ C |ξ|2, ∀x, ξ ∈ Rd.

It is worth emphasizing that we do not make any regularity assumption on A. We comple-
ment the equation with an initial condition

f(0, x) = f0(x).

1) Existence. What strategy can be used in order to exhibit a semigroup S(t) in Lp(Rd),
p = 2, p = 1, which provides solutions to (0.1) for initial date in Lp(Rd)? Is the semigroup
positive? mass conservative?

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or Ci some constants which may differ from line to line.

2) Uniform estimate. a) Prove that any solution f to (0.1) satisfies

‖f(t)‖L2 ≤ C t−d/4 ‖f0‖L1 , ∀ t > 0.
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b) We define the dual semigroup S∗(t) by

〈S∗(t)g0, f0〉 = 〈g0, S(t)f0〉, ∀ t ≥ 0, f0 ∈ Lp, g0 ∈ Lp
′
.

Identify S∗(t) and deduce that any solution f to (0.1) satisfies

‖f(t)‖L∞ ≤ C t−d/4 ‖f0‖L2 , ∀ t > 0.

c) Conclude that any solution f to (0.1) satisfies

‖f(t)‖L∞ ≤ [C22d/2] t−d/2 ‖f0‖L1 , ∀ t > 0.

3) Entropy and first moment. For a given and (nice) probability measure f , we define the
(mathematical) entropy and the first moment functional by

H :=

∫
Rd
f log f dx, M :=

∫
Rd
f |x| dx.

a) Prove that for any λ ∈ R, there holds

min
s≥0
{s log s+ λ s} = −e−λ−1.

Deduce that there exists a constant D = D(d) such that for any (nice) probability measure
f and any a ∈ R+, b ∈ R, there holds

H + aM + b ≥ −e−b−1 a−dD.

b) Making the choice a := d/M and e−b := (e/D) ad, deduce that

M ≥ κ e−H/d, (0.2)

for some κ = κ(d) > 0.

From now on, we restrict ourself to consider an initial datum which is a (nice) probability
measure:

f0 ≥ 0,

∫
Rd
f0 dx = 1,

and we denote by f(t) the nonnegative and normalized solution to the evolution PDE (0.1)
corresponding to f0. We also denote by H = H(t), M = M(t) the associated entropy and
first moment.

3) Dynamic estimate on the entropy. Deduce from 2) that f satisfies

H(t) ≤ K − d

2
log t, ∀ t > 0, (0.3)

for some constant K ∈ R (independent of f0).
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4) Dynamic estimate on the entropy and the first moment. a) Prove that∣∣∣ d
dt
M(t)

∣∣∣ ≤ C

∫
|∇f(t)|,

for some positive constant C = C(A).

b) Deduce that there exists a constant θ = θ(C, ν) > 0 such that∣∣∣ d
dt
M(t)

∣∣∣ ≤ θ
(
− d

dt
H(t)

)1/2

, ∀ t > 0. (0.4)

c) Prove that for the heat equation (when A = I), we have

d

dt

∫
f |x|2 dx = 2,

and next
M(t) ≤ C 〈t〉1/2, t ≥ 0. (0.5)

From now on, we will always restrict ourself to consider the Dirac mass initial datum

f0 = δ0(dx),

and our goal is to establish a similar estimate as (0.5) (and in fact, a bit sharper estimate
than (0.5)) for the corresponding solution.

5) Dynamic estimate on the first moment. a) Deduce from 1) that there exists (at least) one
function f ∈ C((0,∞);L1)∩L∞loc((0,∞);L∞) which is a solution to the evolution PDE (0.1)
associated to the initial datum δ0. Why does that solution satisfy the same above estimates
for positive times?

b) We define

R = R(t) := K/d−H(t)/d− 1

2
log t ≥ 0,

where K is defined in (0.3). Observing that M(0) = 0, deduce from the previous estimates
that

C1 t
1/2 eR ≤M ≤ C2

∫ t

0

( 1

2s
+
dR

ds

)1/2

ds, ∀ t > 0.

c) Observe that for a > 0 and a + b > 0, we have (a + b)1/2 ≤ a1/2 + b/(2a1/2), and deduce
that

C1 e
R ≤Mt−1/2 ≤ C2(1 +R), ∀ t > 0.

d) Deduce from the above estimate that R must be bounded above, and then

C1 t
1/2 ≤M ≤ C2 t

1/2, ∀ t > 0.

You have recovered one of the most crucial step of Nash’s article “Continuity of solutions of
parabolic and elliptic equations”, Amer. J. Math. (1958).
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Problem II - The fractional Fokker-Planck equation

We consider the fractional Fokker-Planck equation

∂tf = Lf := I[f ] + divx(Ef) in (0,∞)× R, (0.1)

where

I[f ](x) =

∫
R
k(y − x) (f(y)− f(x)) dy, k(z) =

1

|z|1+α
, α ∈ (0, 1),

and where E is a smooth vectors field such that

∀ |x| ≥ 1, |E(x)| ≤ C 〈x〉, divE(x) ≤ C, x · E ≥ |x|2.

We complement the equation with an initial condition

f(0, x) = ϕ(x) in R. (0.2)

We denote by F the Fourier transform operator, and next f̂ = Ff for a given function f on
the real line.

Question 1. Preliminary issues (if not proved, theses identities can be accepted). Here all
the functions (f , ϕ, β) are assumed to be suitably nice so that all the calculations are licit.

a) - Establish the formula∫
(I[f ]) β′(f)ϕdx =

∫
β(f) I[ϕ] dx−

∫ ∫
k(y − x)J(x, y)ϕ(x) dydx

with
J(x, y) := β(f(y))− β(f(x))− (f(y)− f(x))β′(f(x)).

b) - Prove that there exists a positive constant C1 such that

F(I[f ])(ξ) =

∫
R
f(x) e−ixξ

{∫
R

cos(zξ)− 1

|z|1+α
dz
}
dx = C1 |ξ|αf̂(ξ), ∀ ξ ∈ R.

c) - Denote s := α/2. Prove that

|||f |||2
Ḣs :=

∫
R2

|f(x)− f(y)|2

|x− y|1+2s
dxdy =

∫
R

∥∥∥f(z + ·)− f(·)
|z|s+1/2

∥∥∥2

L2(R)
dz,

and then that there exists a positive constant C2 such that

|||f |||2
Ḣs = C2

∫
R
|ξ|2s |f̂(ξ)|2 dξ =: C2‖f‖2

Ḣs .

d) - Prove that ∫
R
I[f ] f dx = −1

2
|||f |||2

Ḣs .
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From questions 2 to 4, we consider f (and g) a solution to the fractional Fokker-Planck
equation (0.1) and we establish formal a priori estimates.

Question 2. Moment estimates. For any k ≥ 0, we define

Mk = Mk(t) = Mk(f(t)), with Mk = Mk(f) :=

∫
R
f(x) 〈x〉k dx.

Prove that the solution f satisfies

M0(t) ≡M0(ϕ), ∀ t ≥ 0.

Prove that for any k ∈ (0, α), there exists C > 0 such that

C−1 |〈y〉k − 〈x〉k| ≤
∣∣|y|2 − |x|2∣∣k/2 ≤ C

(
|y − x|k/2 |x|k/2 + |y − x|k

)
,

and deduce that there exist C1, C2 > 0 such that the solution f satisfies

d

dt
Mk ≤ C1Mk/2 − C2Mk.

Conclude that there exists Ak = Ak(M0(ϕ)) such that the solution f satisfies

sup
t≥0

Mk(t) ≤ max(Mk(0), Ak). (0.3)

Question 3. Fractional Nash inequality and L2 estimate. Prove that there exists a constant
C > 0 such that

∀h ∈ D(R), ‖h‖L2 ≤ C ‖h‖
α

1+α

L1 ‖h‖
1

1+α

Ḣs .

Deduce that the square of the L2-norm u := ‖f(t)‖2
L2 of the solution f satisfies

d

dt
u ≤ −C1u

1+α + C2,

for some constants Ci = Ci(M0(ϕ)) > 0. Conclude that there exists A2 = A2(M0(ϕ)) such
that

sup
t≥0

u(t) ≤ max(u(0), A2). (0.4)

Question 4. Around generalized entropies and the L1-norm. Consider a convex function β
and define the entropy H and the associated dissipation of entropy D by

H(f |g) :=

∫
R
β(X) g dx,

D(f |g) :=

∫
R

∫
R
k g∗ {β(X∗)− β(X)− β′(X)(X∗ −X)} dxdx∗,
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where k = k(x − x∗), g∗ = g(x∗), X = f(x)/g(x) and X∗ = f(x∗)/g(x∗). Why do two
solutions f and g satisfy

d

dt
H(f(t)|g(t)) ≤ −D(f(t)|g(t))? (0.5)

Deduce that for β(s) = s+ and β(s) = |s|, any solution f satisfies∫
β(f(t, ·)) dx ≤

∫
β(ϕ) dx, ∀ t ≥ 0. (0.6)

Question 5. Well-posedness. Explain briefly how one can establish the existence of a weakly
continuous semigroup SL defined in the space X = L1

s ∩ L2 such that it is a contraction for
the L1 norm and such that for any ϕ ∈ X the function f(t) := SL(t)ϕ is a (weak) solution
to the fractional Fokker-Planck equation (0.1). Why is SL mass and positivity preserving
and why does any associated trajectory satisfy (0.3), (0.4) and (0.6)?

(Ind. One may consider the sequence of kernels kn(z) := k(z) n−1<|z|<n).

Question 6. Prove that there exists a constant C such that the set

Z := {f ∈ L1(R); f ≥ 0, ‖f‖L1 = 1, ‖f‖X ≤ C}

is invariant under the action of SL. Deduce that there exists at least one function G ∈ X
such that

IG+ divx(E G) = 0, G ≥ 0, M0(G) = 1. (0.7)

Question 7. We accept that for any convex function β, any nonnegative solution f(t) and
any nonnegative stationary solution G the following inequality holds

H(f(t)|G) +

∫ t

0

D(f(s)|G) ds ≤ H(ϕ|G). (0.8)

Deduce that D(g|G) = 0 for any (other) stationary solution g. (Ind. First consider the case
when β ∈ W 1,∞(R) and next use an approximation argument). Deduce that

G(y)
( g(y)

G(y)
− g(x)

G(x)

)2

= 0 for a.e. x, y ∈ R,

and then that the solution to (0.7) is unique. Prove that for any ϕ ∈ X, there holds

SL(t)ϕ ⇀ M0(ϕ)G weakly in X, as t→∞.

Question 8. (a) Introducing the splitting

A := λ I, λ ∈ R, B := L −A,

explain why
SL = SB + SBA ∗ SL,
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and next for any n ≥ 1

SL = SB + ...+ (SBA)∗(n−1) ∗ SL + (SBA)∗n ∗ SL,

where the convolution on R+ is defined by

(u ∗ v)(t) :=

∫ t

0

u(t− s) v(s) ds,

and the itareted convolution by u∗1 = u, u∗k = u∗(k−1) ∗ u if k ≥ 2.
(b) Prove that for λ > 0, large enough, there holds

‖SB‖Y→Y ≤ e−t, Y = L1
k, k ∈ (0, α), Y = L2,

as well as

‖SB(t)‖L1→L2 ≤ C

t1/(2α)
e−t, ∀ t ≥ 0,

∫ ∞
0

‖SB(s)‖2
L2→Ḣs ds ≤ C,

and deduce that for n large enough∫ ∞
0

‖(ASB)(∗n)(s)‖L1→Ḣs ds ≤ C.

(c) Establish that for any ϕ ∈ L1
s, k > 0, the associated solution f(t) = SL(t)ϕ splits as

f(t) = g(t) + h(t), ‖g(t)‖L1 ≤ e−t, ‖h(t)‖L1
k∩Ḣs ≤ C(M0(ϕ)).

(d) Conclude that

∀ϕ ∈ L1(R), ‖SL(t)ϕ−M0(ϕ)G‖L1 → 0 as t→∞.

Question 9. Justification of (0.8). We define the regularized operator

Lε,nf := ε∆xf + In[f ] + divx(Ef)

with ε > 0, n ∈ N∗ and In associated to the kernel kn (introduced in question 5). Why is
there a (unique) solution Gε,n to the stationary problem

Gε,n ∈ X, Lε,nGε,n = 0, Gε,n ≥ 0, M0(Gε,n) = 1,

and why does a similar inequality as (0.8) hold? Prove that there exist Gε, G ∈ X, ε > 0,
such that (up to the extraction of a subsequence) Gn,ε → Gε and Gε → G strongly in
L1. Prove that a similar strong convergence result holds for the familly SLε,n(t)ϕ, ϕ ∈ X.
Conclude that (0.8) holds.

14



Exam 2017 - Two problems

Problem I - A general Fokker-Planck equation with strong confinement

We consider the evolution PDE

∂tf = ∆f + div(Ef), (0.1)

on the unknown f = f(t, x), t ≥ 0, x ∈ Rd, with E = E(x) a given smooth force field which
satisfies for some γ ≥ 1

∀ |x| ≥ 1, |E(x)| ≤ C |x|γ−1, divE(x) ≤ C|x|γ−2, x · E ≥ |x|γ.

We complement the equation with an initial condition

f(0, x) = f0(x).

Question 1. Which strategy can be used in order to exhibit a semigroup S(t) in Lp(Rd),
which provides solutions to (0.1) for initial data in Lp(Rd)? Is the semigroup positive? mass
conservative? Explain briefly why there exists a function G = G(x) such that

0 ≤ G ∈ L2(m), 〈G〉 :=

∫
G = 1, LG = 0.

We accept that G > 0. For any nice function f : Rd → R we denote h := f/G and,
reciprocally, for any nice function h : Rd → R we denote f := Gh.

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.
We denote by C or Ci some constants which may differ from line to line.

Question 2. Prove that for any weight function m : Rd → [1,∞) and any nice function
f : Rd → R, there holds ∫

(Lf)fm = −
∫
|∇f |2m+

1

2

∫
f 2L∗m,

where we will make explicit the expression of L∗.
Question 3. Prove that there exist w : Rd → [1,∞), α > 0 and b, R0 ≥ 0 such that

L∗w ≤ −αw + b1BR0
.

Question 4. For some constant λ ≥ 0 to be specified later, we define W := w + λ. Deduce
from the previous question that∫

h2wG ≤ 1

α

∫
h2 (b1BR0

− L∗W )G,

for any nice function h : Rd → R.
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Question 5. Take a nice function h : Rd → R such that 〈hG〉 = 0 and denote G(Ω) :=
〈G1Ω〉. Prove that for any R ≥ R0 there exists κR ∈ (0,∞) such that∫

h2 1BR G ≤ κR

∫
BR

|∇h|2G+
1

G(BR)

(∫
BcR

hG
)2

and deduce that ∫
h2 1BR G ≤

κR
1 + λ

∫
|∇h|2W G+

G(Bc
R)

G(BR)

∫
h2wG.

Question 6. Establish finally that there exist some constants λ,K1 ∈ (0,∞) such that

2

K1

∫
h2wG ≤

∫ (
W |∇h|2 − 1

2
h2L∗W

)
G =

∫
(−Lf)fG−1W,

for all nice function h such that 〈hG〉 = 0.

Question 7. Consider a nice solution f to (0.1) associated to an initial datum f0 such that
〈f0〉 = 0. Establish that f satisfies

1

2

d

dt

∫
h2
t WG = −

∫
|∇h|2WG+

1

2

∫
h2GL∗W.

Deduce that there exists K2 ∈ (0,∞) such that f satisfies the decay estimate∫
f 2
t WG−1 dx ≤ e−K2t

∫
f 2

0 WG−1 dx, ∀ t ≥ 0.

Problem II - Estimates for the relaxation equation

We consider the relaxation equation

∂tf = Lf := −v · ∇f + ρfM − f in (0,∞)× R2d, (0.1)

on the unknown f = f(t, x, v), t ≥ 0, x, v ∈ Rd, with

ρf (t, x) =

∫
Rd
f(t, x, v) dv, M(v) :=

1

(2π)d/2
exp(−|v|2/2).

We complement the equation with an initial condition

f(0, x, v) = f0(x, v) in R2d. (0.2)

Question 1. A priori estimates and associated semigroup. We denote by f a nice solution
to the relaxation equation (0.1)–(0.2).

(a) Prove that f is mass conserving.
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(b) Prove that
|ρg| ≤ ‖g‖L2

v(M−1/2), ∀ g = g(v) ∈ L2
v(M

−1/2)

and deduce that
‖f(t, ·)‖L2

xv(M−1/2) ≤ ‖f0‖L2
xv(M−1/2).

(c) Consider m = 〈v〉k, k > d/2. Prove that there exists a constant C ∈ (0,∞) such that

|ρg| ≤ C‖g‖Lpv(m), ∀ g = g(v) ∈ Lpv(m), p = 1, 2,

and deduce that
‖f(t, ·)‖Lpxv(m) ≤ eλt‖f0‖Lpxv(m),

for a constant λ ∈ [0,∞) that we will express in function of C.

(d) What strategy can be used in order to exhibit a semigroup S(t) in Lpxv(m), p = 2, p = 1,
which provides solutions to (0.1) for initial date in Lpxv(m)? Is the semigroup positive? mass
conservative? a contraction in some spaces?

The aim of the problem is to prove that the associated semigroup SL to (0.1) is
bounded in Lp(m), p = 1, 2, without using the estimate proved in question (1b).

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but
we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.

We define
Af := ρfM, Bf = Lf −Af.

Question 2. Prove that SB satisfies a growth estimate O(e−t) in any Lpxv(m) space. Using
the Duhamel formula

SL = SB + SBA ∗ SL
prove that SL is bounded in L1

xv(m).

Question 3. Establish that A : L1
xv(m)→ L1

xL
∞
v (m) where

‖g‖L1
xL

p
v(m) :=

∫
Rd
‖g(x, )‖Lp(m) dx.

Prove that

d

dt

∫ (∫
fp dx

)1/p

dv =

∫ (∫
(∂tf)fp−1 dx

)(∫
fp dx

)1/p−1

dv.

Deduce that SB satisfies a growth estimate O(e−t) in any L1
xL

p
v(m) space for p ∈ (1,∞), and

then in L1
xL
∞
v (m). Finally prove that SB(t)A is appropriately bounded in B(L1, L1

xL
∞
v (m))

and that SL is bounded in L1
xL
∞
v (m).

Question 4. We define u(t) := ASB(t). Establish that

(u(t)f0)(x, v) = M(v)e−t
∫
Rd
f0(x− v∗t, v∗) dv∗.
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Deduce that

‖u(t)f0‖L∞xv(m) ≤ C
e−t

td
‖f0‖L1

xL
∞
v (m).

Question 5. Establish that there exists some constants n ≥ 1 and C ∈ [1,∞) such that

‖u(∗n)(t)‖L1
xv(m)→L∞xv(m) ≤ C e−t/2.

Deduce that SL is bounded in L∞xv(m).

Question 6. How to prove that SL is bounded in L2
xv(m) in a similar way? How to shorten

the proof of that last result by using question (1b)? Same question for the space L∞xv(m).

Exam 2018 - Local in time estimate (from Nash)

Consider a smooth and fast decaying initial datum f0, the associated solution f = f(t, x),
t ≥ 0, x ∈ Rd, to heat equation

∂tf =
1

2
∆f, f(0, .) = f0,

and for a given α ∈ Rd, define

g := f eψ, ψ(x) := α · x.

(1) Establish that

∂tg =
1

2
∆g − α · ∇g +

1

2
|α|2g.

(2) Establish that ‖ g(t, .)‖L1 ≤ eα
2t/2 ‖ g0‖L1 for any t ≥ 0.

(3) Establish that

‖ g(t)‖2
L2 e−α

2t ≤
‖ g0‖2

L1

(2/dCN t)d/2
, ∀ t > 0.

(4) Denoting by T (t) the semigroup associated to the parabolic equation satisfies by g, prove
successively that

T (t) : L1 → L2, L2 → L∞, L1 → L∞,

for some constants Ct−d/4eα
2t/2, Ct−d/4eα

2t/2 and Ct−d/2eα
2t/2.

(5) Denoting by S the heat semigroup and by F (t, x, y) := (S(t)δx)(y) the fundamental
solution associated to the heat equation when starting from the Dirac function in x ∈ Rd,
deduce

F (t, x, y) ≤ C

td/2
eα·(x−y)+α2t/2, ∀ t > 0,∀x, y, α ∈ Rd,

and then

F (t, x, y) ≤ C

td/2
e−
|x−y|2

2t , ∀ t > 0,∀x, y ∈ Rd.
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(6) May we prove a similar result for the parabolic equation

∂tf = divx(A(x)∇xf), 0 < ν ≤ A ∈ L∞ ?

Exam 2019 - two problems about subgeometric convergence

Problem I - Subgeometric Harris estimate

In this part, we consider a Markov semigroup S = SL on L1(Rd) which fulfills

(H1) there exist some weight functions mi : Rd → [1,∞) satisfying m1 ≥ m0, m0(x) → ∞
as x→∞ and there exists constant b > 0 such that

L∗m1 ≤ −m0 + b;

(H2) there exists a constant T > 0 and for any R ≥ R0 ≥ 0 there exists a positive and not
zero measure ν such that

STf ≥ ν

∫
BR

f, ∀ f ∈ L1, f ≥ 0;

(H3) there exists m2 ≥ m1 such that and for any λ > 0 there exists ξλ such that

m1 ≤ λm0 + ξλm2, ξλ → 0 as λ→∞.

(H4) We also assume that

sup
t≥0
‖Stf‖L1(mi) ≤Mi‖f‖L1(mi), Mi ≥ 1, i = 1, 2.

(1) Prove
‖STf0‖L1 ≤ ‖f0‖L1 , ∀T > 0, ∀ f0 ∈ L1.

In the sequel, we fix f0 ∈ L1(m2) such that 〈f0〉 = 0 and we denote ft := Stf0.

(2) Prove that
d

dt
‖ft‖L1(m1) ≤ −‖ft‖L1(m0) + b‖ft‖L1 ,

and deduce that

‖STf0‖L1(m1) +
T

M0

‖STf0‖L1(m0) ≤ ‖f0‖L1(m1) +K‖f0‖L1 .

We define
‖f‖β := ‖f‖L1 + β‖f‖L1(m1), β > 0.

We fix R ≥ R0 large enough such that A := m(R)/4 ≥ 3M0/T , and we observe that the
following alternative holds

‖f0‖L1(m0) ≤ A‖f0‖L1 (0.1)
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or
‖f0‖L1(m0) > A‖f0‖L1 . (0.2)

(3) We assume that condition (0.1) holds. Prove that

‖STf0‖L1 ≤ γ1‖f0‖L1 ,

with γ1 ∈ (0, 1). Deduce that

‖STf0‖β ≤ γ1‖f0‖L1 − βT

M0

‖STf0‖L1(m0) + β‖f0‖L1(m1) + βK‖f0‖L1

and next

‖STf0‖β +
βT

M0

‖STf0‖L1(m0) ≤ ‖f0‖β,

for β > 0 small enough.

(4) We assume that condition (0.2) holds. Prove that

‖STf0‖L1(m1) +
T

M0

‖STf0‖L1(m0) ≤ ‖f0‖L1(m1) +
T

3M0

‖f0‖L1(m0),

and deduce

‖STf0‖β +
βT

M0

‖STf0‖L1(m0) ≤ ‖f0‖β +
βT

3M0

‖f0‖L1(m0).

(5) Observe that in both cases (0.1) and (0.2), there holds

‖STf0‖β + 3α‖STf0‖L1(m0) ≤ ‖f0‖β + α‖f0‖L1(m0),

where from now β and α are fixed constants. Deduce that

Z(u1 + αv1) ≤ u0 + αv0 +
ξλ
λ
αw1,

with
un := ‖SnTf0‖β, vn := ‖SnTf0‖L1(m0), wn := ‖SnTf0‖L1(m2)

and for λ ≥ λ0 ≥ 1 large enough

Z := 1 +
δ

λ
≤ 2, δ :=

α

1 + β
.

Deduce that for any n ≥ 1, there holds

un ≤ Z−n(u0 + αv0) +
Z

Z − 1

ξλα

λ
sup
i≥1

wi,

and next

‖SnTf0‖β ≤
(
e−

nT
λ

δ
2T + ξλ

)
C‖f0‖L1(m2), ∀λ ≥ λ0.
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(6) Prove that

‖Stf0‖L1 ≤ Θ(t)‖f0‖L1(m2), ∀ t ≥ 0, ∀ f0 ∈ L1(m2), 〈f〉 = 0,

for the function Θ given by
Θ(t) := C inf

λ>0
{e−κt/λ + ξλ}.

What is the value of Θ when m0 = 1, m1 = 〈x〉, m2 = 〈x〉2?

Problem II - An application to the Fokker-Planck equation with weak confine-
ment

In all the problem, we consider the Fokker-Planck equation

∂tf = Lf := ∆xf + divx(f E) in (0,∞)× Rd (0.3)

for the confinement potential E := ∇φ, φ := 〈x〉γ/γ, 〈x〉2 := 1 + |x|2, that we complement
with an initial condition

f(0, x) = f0(x) in Rd. (0.4)

Question 1

Give a strategy in order to build solutions to (0.3) when f0 ∈ Lpk(Rd), p ∈ [1,∞], k ≥ 0.

We assume from now on that f0 ∈ L1
k(Rd), k > 0, and that we are able to build a unique

weak (and renormalized) solution f ∈ C([0,∞);L1
k) to equation (0.3)-(0.4).

We also assume that γ ≥ 2.

Question 2

Prove
〈f(t)〉 = 〈f0〉 and f(t, .) ≥ 0 if f0 ≥ 0.

Question 3

Prove that there exist α > 0 and K ≥ 0 such that

L∗〈x〉k ≤ −α〈x〉k +K,

and deduce that
sup
t≥0
‖f(t, ·)‖L1

k
≤ C1‖f0‖L1

k
.

(Hint. A possible constant is C1 := max(1, K/α)).
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Question 4

Prove that
sup
t≥0
‖f(t, ·)‖L2

k
≤ C2‖f0‖L2

k
,

at least for k > 0 large enough.

Question 5

Prove that
sup
t≥0
‖f(t, ·)‖H1

k
≤ C3‖f0‖H1

k
,

at least for k > 0 large enough.

Question 6

Prove that

‖f(t, ·)‖H1 ≤ C4

tα
‖f0‖L1

k
,

at least for k > 0 large enough and for some constant α > 0 to be specified.
(Hint. Consider the functional F(t) := ‖f(t)‖L1

k
+ tα‖∇xf(t)‖2

L2).

We assume from now on that d = 1, so that C0,1/2 ⊂ H1.

Question 7

We fix f0 ∈ L1 such that f0 ≥ 0 and supp f0 ⊂ BR, R > 0. Using question 3, prove that∫
Bρ

f(t) ≥ 1

2

∫
BR

f0,

for any t ≥ 0 by choosing ρ > 0 large enough. Using question 6, prove that there exist
r, κ > 0 and for any t > 0 there exists x0 ∈ BR such that

f(t) ≥ κ, ∀x ∈ B(x0, r).

We accept the spreading of the positivity property, namely that for ant r0, r1 > 0, x0 ∈ Rd,
there exist t1, κ1 > 0 such that

f0 ≥ 1B(x0,r0) ⇒ f(t1, ·) ≥ κ11B(x0,r1).

Deduce that there exist θ > 0 and T > 0 such that

f(T, ·) ≥ θ1B(0,R)

∫
BR

f0 dx.
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Question 8

Prove that for any k > 0, there exists C, λ > 0 such that f0 ∈ L1
k satisfying 〈f0〉 = 0, there

holds
∀ t > 0, ‖f(t, .)‖L1

k
≤ Ce−λt‖f0‖L1

k
.

Question 9

We assume now γ ∈ (0, 2). We define

Bf := Lf −MχRf

with χR(x) := χ(x/R), χ ∈ D(Rd), 0 ≤ χ ≤ 1, χ(x) = 1 for any |x| ≤ 1, and with M,R > 0
to be fixed.
We denote by fB(t) = SB(t)f0 the solution associated to the evolution PDE corresponding
to the operator B and the initial condition f0.
(1) Why such a solution is well defined (no more than one sentence of explanation)?
(2) Prove that there exists M,R > 0 such that for any k ≥ 0 there holds

d

dt

∫
Rd
fB(t)〈x〉k dx ≤ −ck

∫
Rd
fB(t)〈x〉k+γ−2 ≤ 0,

for some constant ck ≥ 0, ck > 0 if k > 0, and

‖SB(t)‖L1
k→L

1
k
≤ 1.

(3) Prove that for any k1 < k < k2 there exists θ ∈ (0, 1) such that

∀ f ≥ 0 Mk ≤M θ
k1
M1−θ

k2
, M` :=

∫
Rd
f(x) 〈x〉` dx

and write θ as a function of k1, k and k2.
(4) Prove that if ` > k > 0 there exists α > 0 such that

‖SB(t)‖L1
`→L1 ≤ ‖SB(t)‖L1

`→L
1
k
≤ C/〈t〉α,

and that α > 1 if ` is large enough (to be specified).
(6) Prove that

SL = SB + SB ∗ (ASL),

and deduce that for k large enough (to be specified)

‖SL‖L1
k→L

1
k
≤ C.

Question 10

Still in the case γ ∈ (0, 2), what can we say about the decay of

‖f(t, .)‖L1
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when f0 ∈ L1
k, k > 0, satisfies 〈f0〉 = 0?

Exam 2020 - On the Landau equation

We aim to establish the existence of solutions to the Landau equation

∂tf(t, v) = Q(f, f)(t, v), f(0, v) = f0(v), (0.1)

on the density function f = f(t, v) ≥ 0, t ≥ 0, v ∈ Rd, d ≥ 2, where the Landau kernel is
defined by the formula

Q(f, f)(v) :=
∂

∂vi

{∫
Rd
aij(v − v∗)

(
f(v∗)

∂f

∂vj
(v)− f(v)

∂f

∂vj
(v∗)

)
dv∗

}
.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The
matrix a = (aij) is defined by

a(z) = |z|2Π(z), Πij(z) := δij − ẑiẑj, ẑk :=
zk
|z|
,

so that Π is the is the orthogonal projection on the hyperplan z⊥ := {y ∈ Rd; y · z = 0}.

Part I - Physical properties and a priori estimates.

(1) Observe that a(z)z = 0 for any z ∈ Rd and a(z)ξξ ≥ 0 for any z, ξ ∈ Rd. Here and
below, we use the bilinear form notation auv = tvau = v · au. In particular, the symmetric
matrix a is positive but not strictly positive.

(2) For any nice functions f, ϕ : Rd → R, f ≥ 0, prove that∫
Q(f, f)ϕdv =

1

2

∫ ∫
a(v − v∗)(f∇∗f∗ − f∗∇f)(∇ϕ−∇∗ϕ∗) dvdv∗,

where f∗ = f(v∗), ∇∗ψ∗ = (∇ψ)(v∗). Deduce that∫
Q(f, f)ϕdv = 0, forϕ = 1, vi, |v|2,

and

−D(f) :=

∫
Q(f, f) log f dv ≤ 0.

Establish then∣∣∣∫ Q(f, f)ϕdv
∣∣∣ ≤ D(f)1/2

(1

2

∫ ∫
ff∗a(v − v∗)(∇ϕ−∇∗ϕ∗)(∇ϕ−∇∗ϕ∗) dvdv∗

)1/2

.
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(3) For H0 ∈ R, we define EH0 the set of functions

EH0 :=
{
f ∈ L1

2(Rd); f ≥ 0,

∫
f dv = 1,

∫
f v dv = 0,∫

f |v|2 dv ≤ d, H(f) :=

∫
f log f dv ≤ H0

}
.

Prove that there exists a constant C0 such that

H−(f) :=

∫
f(log f)−dv ≤ C0, ∀ f ∈ EH0 ,

and define D0 := H0 + C0. Deduce that for any nice positive solution f to the Landau
equation such that f0 ∈ EH0 , there holds

f ∈ FT :=
{
g ∈ C([0, T ];L1

2); g(t) ∈ EH0 , ∀ t ∈ (0, T ),

∫ T

0

D(g(t)) dt ≤ D0

}
.

We say that f ∈ C([0, T );L1) is a weak solution to the Landau equation if f ∈ FT and (0.1)
holds in the distributional sense. Why the definition is meaningful?

(4) Prove that

Q(f, f) = ∂i(āij∂jf − b̄if) = ∂2
ij(āijf)− 2∂i(b̄if) = āij∂

2
ijf − c̄f,

with
āij = āfij := aij ∗ f, b̄i = b̄fi := bi ∗ f, c̄ = c̄f := c ∗ f, (0.2)

and

bi :=
d∑
j=1

∂jaij = −(d− 1)zi, c :=
d∑
i=1

∂ibi = −(d− 1)d.

Prove that there existe C ∈ (0,∞) such that

|āij| ≤ C(1 + |v|2), |b̄i| ≤ C(1 + |v|),

Part II - On the ellipticity of ā.

We fix H0 ∈ R and f ∈ EH0 .

(5a) Show that there exists a function η ≥ 0 (only depending of D0) such that

∀A ⊂ Rd,

∫
A

f dv ≤ η(|A|)

and η(r)→ 0 when r → 0. Here |A| denotes the Lebesgue measure of A. Deduce that

∀R, ε > 0,

∫
f 1|v|≤R 1|vi|≤ε dv ≤ ηR(ε)

and ηR(r)→ 0 when r → 0.
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(5b) Show that ∫
f1|v|≤R ≥ 1− d

R2
.

(5c) Deduce from the two previous questions that

∀ i = 1, . . . , d, Ti :=

∫
fv2

i dv ≥ λ,

for some constant λ > 0 which only depends on D0. Generalize the last estimate into

∀ ξ ∈ Rd, T (ξ) :=

∫
f |v · ξ|2dv ≥ λ|ξ|2.

(6) Deduce that

∀ v, ξ ∈ Rd, ā(v)ξξ :=
d∑

i,j=1

āij(v)ξiξj ≥ (d− 1)λ |ξ|2.

Prove that any weak solution formally satisfies

d

dt
H(f) = −

∫
āij
∂if∂jf

f
−
∫
c̄f,

and thus the following bound on the Fisher information

I(f) :=

∫
|∇f |2

f
∈ L1(0, T )

Part III - Weak stability.

We consider here a sequence of weak solutions (fn) to the Landau equation such that fn ∈ FT
for any n ≥ 1.

(7) Prove that ∫ T

0

∫
|∇vfn| dvdt ≤ CT

and that
d

dt

∫
fnϕdv is bounded in L∞(0, T ), ∀ϕ ∈ C2

c (Rd).

Deduce that (fn) belongs to a compact set of L1((0, T ) × Rd). Up to the extraction of a
subsequence, we then have

fn → f strongly in L1((0, T )× Rd).

Deduce that
Q(fn, fn) ⇀ Q(f, f) weakly in D((0, T )× Rd)
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and that f is a weak solution to the Landau equation.

(8) (Difficult, here d = 3) Take f ∈ EH0 with energy equals to d. Establish that D(f) = 0 if,
and only if,

∇f
f
− ∇f∗

f∗
= λ(v, v∗)(v − v∗), ∀ v, v∗ ∈ Rd,

for some scalar function (v, v∗) 7→ λ(v, v∗). Establish then that the last equation is equivalent
to

log f = λ1|v|2/2 + λ2v + λ3, ∀ v ∈ Rd,

for some constants λ1 ∈ R, λ2 ∈ Rd, λ3 ∈ R. Conclude that

D(f) = 0 if, and only if, f = M(v) := (2π)−3/2 exp(−|v|2/2).

(9) (very difficult, because needs many steps) Prove that for any global weak solution f
associated to f0 ∈ L1

3 ∩ EH0 with energy equals d, there holds f(t) ⇀ M when t → ∞.
(Hint. Accept that the energy M2(f(t)) = d and prove that the third moment M3(f(t)) is
uniformly bounded).

Part IV - Existence.

(10) We fix k = d + 4. Show that H := L2
k ⊂ L1

3 and that H0 := H(f0) ∈ R if 0 ≤ f0 ∈ L2
k.

In the sequel, we first assume that f0 ∈ EH0 ∩H.

(11) For f ∈ C([0, T ]; EH0), we define ā, b̄ and c̄ thanks to (0.2) and then

ãij := āij + ε|v|2δij, b̃i := b̄i − ε
d+ 2

2
vi, ε ∈ (0, λ).

We define V := H1
k+2 and then

∀ g ∈ V , Lg := ∂i(ãij∂jg − b̃ig) ∈ V ′.

Show that for some constant Ci ∈ (0,∞), there hold

(Lg, g)H ≤ −ε‖g‖2
V + C1‖g‖2

H, |(Lg, h)H| ≤ C2‖g‖V‖h‖V , ∀ g, h ∈ V .

Deduce that there exists a unique variational solution

g ∈ XT := C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V ′)

to the parabolic equation
∂tg = Lg, g(0) = f0.

Prove furthermore that g ∈ FT .

(12) Prove that there exists a unique fonction

fε ∈ C([0, T ];L2
k) ∩ L2(0, T ;H1

k) ∩ FT
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solution to the nonlinear parabolic equation

∂tfε = ∂i(ã
fε
ij ∂jfε + b̃fεi fε), fε(0) = f0,

where ãfεij denotes the

(13) For f0 ∈ EH0 and T > 0, prove that there exists at least one weak solution f ∈ FT to
the Landau equation.
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