## Some exercises

Exercise 0.1 (Chapter 5) Prove that for any $f \in H^{1}\left(\mathbb{R}^{d}\right)$, there holds

$$
\left\|\rho_{\varepsilon} * f-f\right\|_{L^{2}} \leq C \varepsilon\|\nabla f\|_{L^{2}}
$$

for a constant $C>0$ which only depends on the function $\rho \in \mathbf{P}\left(\mathbb{R}^{d}\right) \cap \mathcal{D}\left(\mathbb{R}^{d}\right)$ used in the definition of the mollifier $\left(\rho_{\varepsilon}\right)$. Deduce the Nash inequality. (Hint. Write $f=f-\rho_{\varepsilon} * f+$ $\left.\rho_{\varepsilon} * f\right)$.

Exercise 0.2 (Chapter 6) Let $S=S_{\mathcal{L}}$ be a strongly continuous semigroup on a Banach space $X \subset L^{1}$. Show that there is equivalence between
(a) $S_{\mathcal{L}}$ is a stochastic semigroup;
(b) $\mathcal{L}^{*} 1=0$ and $\mathcal{L}$ satisfies Kato's inequality

$$
(\operatorname{sign} f) \mathcal{L} f \leq \mathcal{L}|f|, \quad \forall f \in D(\mathcal{L})
$$

(Hint. In order to prove $(b) \Rightarrow(a)$, consider $f \in D\left(\mathcal{L}^{2}\right)$ and estimate $\left|S_{t} f\right|-|f|$ by introducing a telescopic sum and a Taylor expansion in the time variable).

Exercise 0.3 (Chapter 6) Consider $S_{\mathcal{L}^{*}} a$ (constant preserving) Markov semigroup and $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ a concave function. Prove that $\mathcal{L}^{*} \Phi(m) \leq \Phi^{\prime}(m) \mathcal{L}^{*} m$. (Hint. Use that $\Phi(a)=$ $\inf \{\ell(a) ; \ell$ affine such that $\ell \geq \Phi\}$ in order to prove $S_{t}^{*}(\Phi(m)) \leq \Phi\left(S_{t}^{*} m\right)$ and $\Phi(b)-\Phi(a) \geq$ $\left.\Phi^{\prime}(a)(b-a)\right)$.

Exercise 0.4 We say that $\left(S_{t}\right)_{t \geq 0}$ is a dynamical system on a metric space $(\mathcal{Z}, d)$ if
(S1) $\forall t \geq 0, S_{t} \in C(\mathcal{Z}, \mathcal{Z})$ (continuously defined on $\mathcal{Z}$ );
(S2) $\forall x \in \mathcal{Z}, t \mapsto S_{t} x \in C([0, \infty), \mathcal{Z})$ (trajectories are continuous);
(S3) $S_{0}=I ; \forall s, t \geq 0, S_{t+s}=S_{t} S_{s}$ (semigroup property).
We say that $\bar{z} \in \mathcal{Z}$ is invariant (a steady state, a stationary point) if $S_{t} \bar{z}=\bar{z}$ for any $t \geq 0$.
Consider a bounded and convex subset $\mathcal{Z}$ of a Banach space $X$ which is sequentially compact when it is endowed with the metric associated to the norm $\|\cdot\|_{X}$ (strong topology), to the weak topology $\sigma\left(X, X^{\prime}\right)$ or to the weak-丸 topology $\sigma(X, Y), Y^{\prime}=X$. Prove that any dynamical system $\left(S_{t}\right)_{t \geq 0}$ on $\mathcal{Z}$ admits at least one steady state
(Hint. Observe taht for any dyadic number $t>0$, there exists $z_{t} \in \mathcal{Z}$ such that $S_{t} z_{t}=z_{t}$ thanks to the Schauder point fixed theorem).

Exercise 0.5 (i) Prove that $L^{p} \cap L^{q} \subset L^{r}$ for any $p \leq r \leq q$ and

$$
\|u\|_{L^{r}} \leq\|u\|_{L^{p}}^{\theta}\|u\|_{L^{q}}^{1-\theta}, \quad \frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}, \quad \forall u \in L^{p} \cap L^{q} .
$$

(ii) Prove that $L^{p_{1}}\left(L^{p_{2}}\right) \cap L^{q_{1}}\left(L^{q_{2}}\right) \subset L^{r_{1}}\left(L^{r_{2}}\right)$, and more precisely

$$
\|u\|_{L^{r_{1}}\left(L^{r_{2}}\right)} \leq\|u\|_{L^{p_{1}}\left(L^{p_{2}}\right)}^{\theta}\|u\|_{L^{q_{1}}\left(L^{q_{2}}\right)}^{1-\theta}, \quad \frac{1}{r_{i}}=\frac{\theta}{p_{i}}+\frac{1-\theta}{q_{i}}
$$

for any $u \in L^{p_{1}}\left(L^{p_{2}}\right) \cap L^{q_{1}}\left(L^{q_{2}}\right)$ for a same $\theta \in(0,1)$.
(iii) Prove that $\dot{H}^{s_{1}} \cap \dot{H}^{s_{2}} \subset \dot{H}^{s}$ for any $s_{1} \leq s \leq s_{2}$ and

$$
\|u\|_{\dot{H}^{s}} \leq\|u\|_{\dot{H}^{s_{1}}}^{\theta}\|u\|_{\dot{H}^{s_{2}}}^{1-\theta}, \quad s=\theta s_{1}+(1-\theta) s_{2}, \quad \forall u \in \dot{H}^{s_{1}} \cap \dot{H}^{s_{2}} .
$$

(iv) Prove that $L^{p}\left(\dot{H}^{a}\right) \cap L^{q}\left(\dot{H}^{b}\right) \subset L^{r}\left(\dot{H}^{c}\right)$, and more precisely

$$
\|u\|_{L^{r}\left(\dot{H}^{c}\right)} \leq\|u\|_{L^{p}\left(\dot{H}^{a}\right)}^{\theta}\|u\|_{L^{q}\left(\dot{H}^{b}\right)}^{1-\theta}, \quad \frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}, c=\theta a+(1-\theta) b
$$

for any $u \in L^{p}\left(\dot{H}^{a}\right) \cap L^{q}\left(\dot{H}^{b}\right)$ for a same $\theta \in(0,1)$.
(v) Prove that $\dot{H}^{1 / 2}\left(\mathbb{R}^{2}\right) \subset L^{4}\left(\mathbb{R}^{2}\right)$, $\dot{H}^{1 / 2}\left(\mathbb{R}^{3}\right) \subset L^{3}\left(\mathbb{R}^{2}\right)$. (Hint. We will use the classical Sobolev embedding and the following interpolation theorem in order to prove (at least when $s \in(0, d-1])$

$$
\dot{H}^{s}\left(\mathbb{R}^{d}\right) \subset L^{p}\left(\mathbb{R}^{d}\right), \quad \text { with } \quad \frac{1}{p}=\frac{1}{2}-\frac{s}{d},
$$

when $s \in[0, d))$.
Theorem 0.6 (Interpolation) Assume that $T$ is a linear mapping such that $T: W^{s_{0}, p_{0}} \rightarrow$ $W^{\sigma_{0}, q_{0}}$ and $T: W^{s_{1}, p_{1}} \rightarrow W^{\sigma_{1}, q_{1}}$ are bounded, for some $p_{0}, p_{1}, q_{0}, p_{1} \in[1, \infty]$ and some $s_{0}, s_{1}, \sigma_{0}, \sigma_{1} \in \mathbb{R}$. Then $T: W^{s_{\theta}, p_{\theta}} \rightarrow W^{\sigma_{\theta}, q_{\theta}}$ for any $\theta \in[0,1]$, with

$$
\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q_{\theta}}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}
$$

and

$$
s_{\theta}=(1-\theta) s_{0}+\theta s_{1}, \quad \sigma_{\theta}=(1-\theta) \sigma_{0}+\theta \sigma_{1}
$$

when $\left(p_{0}=p_{1}\right.$ or $\left.s_{0}=s_{1}\right)$ and $\left(q_{0}=q_{1}\right.$ or $\left.\sigma_{0}=\sigma_{1}\right)$.

## Exam 2015 - Three problems

## Problem I - the fragmentation equation

We consider the fragmentation equation

$$
\partial_{t} f(t, x)=(\mathcal{F} f(t, .))(x)
$$

on the density function $f=f(t, x) \geq 0, t, x>0$, where the fragmentation operator is defined by

$$
(\mathcal{F} f)(x):=\int_{x}^{\infty} b(y, x) f(y) d y-B(x) f(x)
$$

We assume that the total fragmentation rate $B$ and the fragmentation rate $b$ satisfy

$$
B(x)=x^{\gamma}, \gamma>0, \quad b(x, y)=x^{\gamma-1} \wp(y / x),
$$

with

$$
0<\wp \in C((0,1]), \int_{0}^{1} z \wp(z) d z=1, \quad \int_{0}^{1} z^{k} \wp(z) d z<\infty, \forall k<1
$$

1) Prove that for any $f, \varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}$, the following identity

$$
\int_{0}^{\infty}(\mathcal{F} f)(x) \varphi(x) d x=\int_{0}^{\infty} f(x) \int_{0}^{x} b(x, y)\left(\varphi(y)-\frac{y}{x} \varphi(x)\right) d y d x
$$

holds, whenever the two integrales at the RHS are absolutely convergent.

1) We define the moment function

$$
M_{k}(f)=\int_{0}^{\infty} x^{k} f(x) d x, \quad k \in \mathbb{R}
$$

Prove that any solution $f\left(\in C^{1}\left([0, T) ; L_{k}^{1}\right) \cap L^{1}\left(0, T ; L_{k+\gamma}^{1}\right), \forall T>0\right)$ to the fragmentation equation formally (rigorously) satisfies

$$
M_{1}(f(t))=\mathrm{cst}, \quad M_{k}(f(t, .)) \nearrow \quad \text { if } k<1, \quad M_{k}(f(t, .)) \searrow \text { if } k>1
$$

Deduce that any solution $f \in C\left([0, \infty) ; L_{k+\gamma}^{1}\right)$ to the fragmentation equation asymptotically satisfies

$$
f(t, x) x \rightharpoonup M_{1}(f(0, .)) \delta_{x=0} \text { weakly in }\left(C_{c}([0, \infty))^{\prime} \text { as } t \rightarrow \infty\right.
$$

2) For which values of $\alpha, \beta \in \mathbb{R}$, the function

$$
f(t, x)=t^{\alpha} G\left(t^{\beta} x\right)
$$

is a (self-similar) solution of the fragmentation equation such that $M_{1}(f(t,))=$.cst . Prove then that the profile $G$ satisfies the stationary equation

$$
\gamma \mathcal{F} G=x \partial_{x} G+2 G
$$

3) Prove that for any solution $f$ to the fragmentation equation, the rescalled density

$$
g(t, x):=e^{-2 t} f\left(e^{\gamma t}-1, x e^{-t}\right)
$$

solves the fragmentation equation in self-similar variable

$$
\partial_{t} g+x \partial_{x} g+2 g=\gamma \mathcal{F} g
$$

## Problem II - the discret Fokker-Planck equation

In all the problem, we consider the discrete Fokker-Planck equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L}_{\varepsilon} f:=\Delta_{\varepsilon} f+\operatorname{div}_{x}(x f) \quad \text { in }(0, \infty) \times \mathbb{R} \tag{0.1}
\end{equation*}
$$

where

$$
\Delta_{\varepsilon} f=\frac{1}{\varepsilon^{2}}\left(k_{\varepsilon} * f-f\right)=\int_{\mathbb{R}} \frac{1}{\varepsilon^{2}} k_{\varepsilon}(x-y)(f(y)-f(x)) d x
$$

and where $k_{\varepsilon}(x)=1 / \varepsilon k(x / \varepsilon), 0 \leq k \in W^{1,1}(\mathbb{R}) \cap L_{3}^{1}(\mathbb{R})$,

$$
\int_{\mathbb{R}} k(x)\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right) d x=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

that we complement with an initial condition

$$
\begin{equation*}
f(0, x)=\varphi(x) \quad \text { in } \mathbb{R} \tag{0.2}
\end{equation*}
$$

## Question 1

Establish the formula

$$
\int\left(\Delta_{\varepsilon} f\right) \beta^{\prime}(f) m d x=\int \beta(f) \Delta_{\varepsilon} m d x-\iint \frac{1}{\varepsilon^{2}} k_{\varepsilon}(y-x) J(x, y) m(x) d y d x
$$

with

$$
J(x, y):=\beta(f(y))-\beta(f(x))-(f(y)-f(x)) \beta^{\prime}(f(x)) .
$$

Formally prove that the discrete Fokker-Planck equation is mass conservative and satisfies the (weak) maximum principle. Explain (quickly) why for $\varphi \in L_{k}^{2}\left(\mathbb{R}^{d}\right), k \geq 0$, the equation (0.1)-(0.2) has a (unique) solution $f(t)$ in some functional space to be specified. We recall that

$$
\|g\|_{L_{k}^{p}}:=\left\|g\langle\cdot\rangle^{k}\right\|_{L^{p}}, \quad\langle x\rangle:=\left(1+|x|^{2}\right)^{1 / 2} .
$$

Establish that if $L_{k}^{2}\left(\mathbb{R}^{d}\right) \subset L^{1}\left(\mathbb{R}^{d}\right)$, then the solution satisfies

$$
\sup _{t \geq 0}\|f(t)\|_{L^{1}} \leq\|\varphi\|_{L^{1}}
$$

## Question 2

We define

$$
M_{k}(t)=M_{k}(f(t)), \quad M_{k}(f):=\int_{\mathbb{R}} f(x)\langle x\rangle^{k} d x
$$

Prove that if $0 \leq \varphi \in L_{k}^{2}\left(\mathbb{R}^{d}\right) \subset L^{1}\left(\mathbb{R}^{d}\right)$, then the solution satisfies

$$
M_{0}(t) \equiv M_{0}(\varphi) \quad \forall t \geq 0
$$

Prove that when $L_{k}^{2}\left(\mathbb{R}^{d}\right) \subset L_{2}^{1}\left(\mathbb{R}^{d}\right)$, then the solution satisfies

$$
\frac{d}{d t} M_{2}(t)=M_{0}(0)-M_{2}(t)
$$

## Question 3 (discrete Nash inequality)

Prove that there exist $\theta, \eta \in(0,1), \rho>0$ such that

$$
|\hat{k}(r)|<\theta \forall|r|>\rho, \quad 1-\hat{k}(r)>\eta r^{2} \forall|r|<\rho .
$$

Deduce that for any $f \in L^{1} \cap L^{2}$ and any $R>0$, there holds

$$
\left\|k_{\varepsilon} * f\right\|_{L^{2}}^{2} \leq \theta\|f\|_{L^{2}}^{2}+R\|f\|_{L^{1}}^{2}+\frac{1}{\eta R^{2}} I_{\varepsilon}[f]
$$

with

$$
I_{\varepsilon}[f]:=\int_{\mathbb{R}} \frac{1-\hat{k}(\varepsilon \xi)}{\varepsilon^{2}}|\hat{f}|^{2} d \xi
$$

## Question 4

Prove that for any $\alpha>0$, the solution satisfies

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}} f^{2}= & -\left(\frac{1}{\varepsilon^{2}}-\alpha\right) \iint k_{\varepsilon}(y-x)(f(y)-f(x))^{2} d x d y \\
& +2 \alpha \int\left(k_{\varepsilon} * f\right) f-2 \alpha \int f^{2}+\int f^{2}
\end{aligned}
$$

and then

$$
\frac{d}{d t} \int_{\mathbb{R}} f^{2} \leq-\left(1-\alpha \varepsilon^{2}\right) I_{\varepsilon}[f]+\alpha\left\|k_{\varepsilon} * f\right\|_{L^{2}}^{2}-(\alpha-1)\|f\|_{L^{2}}^{2}
$$

Deduce that for $\varepsilon \in\left(0, \varepsilon_{0}\right), \varepsilon_{0}>0$ small enough, the solution satisfies

$$
\frac{d}{d t}\|f\|_{L^{2}}^{2} \leq-\frac{1}{2} I_{\varepsilon}[f]-C_{1}\|f\|_{L^{2}}^{2}+C_{2}\|f\|_{L^{1}}^{2}
$$

Also prove that

$$
\frac{d}{d t} \int_{\mathbb{R}} f^{2}|x|^{2} \leq \int_{\mathbb{R}} f^{2}-\int_{\mathbb{R}} f^{2}|x|^{2}
$$

## Question 5

Prove that there exists a constant $C$ such that the set

$$
\mathcal{Z}:=\left\{f \in L_{1}^{2}(\mathbb{R}) ; f \geq 0,\|f\|_{L^{1}}=1,\|f\|_{L_{1}^{2}} \leq C\right\}
$$

is invariant under the action of the semigroup associated to discrete Fokker-Planck equation. Deduce that there exists a unique solution $G_{\varepsilon}$ to

$$
0<G_{\varepsilon} \in L_{1}^{2}, \quad \Delta_{\varepsilon} G_{\varepsilon}+\operatorname{div}\left(x G_{\varepsilon}\right)=0, \quad M_{0}\left(G_{\varepsilon}\right)=1
$$

Prove that for any $\varphi \in L_{1}^{2}, M_{0}(\varphi)=1$, the associated solution satisfies

$$
f(t) \rightharpoonup G \quad \text { as } \quad t \rightarrow \infty
$$

## Problem III - the Fokker-Planck equation with weak confinement

In all the problem, we consider the Fokker-Planck equation

$$
\begin{equation*}
\partial_{t} f=\Lambda f:=\Delta_{x} f+\operatorname{div}_{x}(f \nabla a(x)) \quad \text { in }(0, \infty) \times \mathbb{R}^{d} \tag{0.3}
\end{equation*}
$$

for the confinement potential

$$
a(x)=\frac{\langle x\rangle^{\gamma}}{\gamma}, \quad \gamma \in(0,1), \quad\langle x\rangle^{2}:=1+|x|^{2}
$$

that we complement with an initial condition

$$
\begin{equation*}
f(0, x)=\varphi(x) \quad \text { in } \mathbb{R}^{d} \tag{0.4}
\end{equation*}
$$

## Question 1

Exhibit a stationary solution $G \in \mathbf{P}\left(\mathbb{R}^{d}\right)$. Formally prove that this equation is mass conservative and satisfies the (weak) maximum principle. Explain (quickly) why for $\varphi \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$, $p \in[1, \infty], k \geq 0$, the equation (0.3)-(0.4) has a (unique) solution $f(t)$ in some functional space to be specified. Establish that if $L_{k}^{p}\left(\mathbb{R}^{d}\right) \subset L^{1}\left(\mathbb{R}^{d}\right)$ then the solution satisfies

$$
\sup _{t \geq 0}\|f(t)\|_{L^{1}} \leq\|\varphi\|_{L^{1}}
$$

Can we affirm that $f(t) \rightarrow G$ as $t \rightarrow \infty$ ? and that convergence is exponentially fast?

## Question 2

We define

$$
\mathcal{B} f:=\Lambda f-M \chi_{R} f
$$

with $\chi_{R}(x):=\chi(x / R), \chi \in \mathcal{D}\left(\mathbb{R}^{d}\right), 0 \leq \chi \leq 1, \chi(x)=1$ for any $|x| \leq 1$, and with $M, R>0$ to be fixed.

We denote by $f_{\mathcal{B}}(t)=S_{\mathcal{B}}(t) \varphi$ the solution associated to the evolution PDE corresponding to the operator $\mathcal{B}$ and the initial condition (0.4).
(1) Why such a solution is well defined (no more than one sentence of explanation)?
(2) Prove that there exists $M, R>0$ such that for any $k \geq 0$ there holds

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}} f_{\mathcal{B}}(t)\langle x\rangle^{k} d x \leq-c_{k} \int_{\mathbb{R}^{d}} f_{\mathcal{B}}(t)\langle x\rangle^{k+\gamma-2} \leq 0
$$

for some constant $c_{k} \geq 0, c_{k}>0$ if $k>0$, and

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L_{k}^{1} \rightarrow L_{k}^{1}} \leq 1
$$

(3) Establish that if $u \in C^{1}\left(\mathbb{R}_{+}\right)$satisfies

$$
u^{\prime} \leq-c u^{1+1 / \alpha}, \quad c, \alpha>0
$$

there exists $C=C(c, \alpha, u(0))$ such that

$$
u(t) \leq C / t^{\alpha} \quad \forall t>0
$$

(4) Prove that for any $k_{1}<k<k_{2}$ there exists $\theta \in(0,1)$ such that

$$
\forall f \geq 0 \quad M_{k} \leq M_{k_{1}}^{\theta} M_{k_{2}}^{1-\theta}, \quad M_{\ell}:=\int_{\mathbb{R}^{d}} f(x)\langle x\rangle^{\ell} d x
$$

and write $\theta$ as a function of $k_{1}, k$ and $k_{2}$.
(5) Prove that if $\ell>k>0$ there exists $\alpha>0$ such that

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L^{1}} \leq\left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L_{k}^{1}} \leq C /\langle t\rangle^{\alpha}
$$

and that $\alpha>1$ if $\ell$ is large enough (to be specified).
(6) Prove that

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{L}}\right)
$$

and deduce that for $k$ large enough (to be specified)

$$
\left\|S_{\mathcal{L}}\right\|_{L_{k}^{1} \rightarrow L_{k}^{1}} \leq C
$$

Remark. You have recovered (with a simpler and more general proof) a result established by Toscani and Villani in 2001.

## Question 3 (difficult)

Establish that there exists $\kappa>0$ such that for any $h \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ satisfying

$$
\langle h\rangle_{\mu}:=\int_{\mathbb{R}^{d}} h d \mu=0, \quad \mu(d x):=G(x) d x
$$

there holds

$$
\int_{\mathbb{R}^{d}}|\nabla h|^{2} d \mu \geq \kappa \int_{\mathbb{R}^{d}} h^{2}\langle x\rangle^{2(\gamma-1)} d \mu
$$

## Question 4

Establish that for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and any convex function $j \in C^{2}(\mathbb{R})$ the associated solution $f(t)=S_{\Lambda}(t) \varphi$ satisfies

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}} j(f(t) / G) G d x=-\mathcal{D}_{j} \leq 0
$$

and give the expression of the functional $\mathcal{D}_{j}$. Deduce thgat

$$
\|f(t) / G\|_{L^{\infty}} \leq\left\|f_{0} / G\right\| \|_{L^{\infty}} \quad \forall t \geq 0 .
$$

## Question 5 (difficult)

Prove that for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and for any $\alpha>0$ there exists $C$ such that

$$
\|f(t)-\langle\varphi\rangle G\|_{L^{2}} \leq C / t^{\alpha} .
$$

## Exam 2016 - Two problems

## Problem I - Nash estimates

We consider the evolution PDE

$$
\begin{equation*}
\partial_{t} f=\operatorname{div}(A \nabla f), \tag{0.1}
\end{equation*}
$$

on the unknown $f=f(t, x), t \geq 0, x \in \mathbb{R}^{d}$, with $A=A(x)$ a symmetric, uniformly bounded and coercive matrix, in the sense that

$$
\nu|\xi|^{2} \leq \xi \cdot A(x) \xi \leq C|\xi|^{2}, \quad \forall x, \xi \in \mathbb{R}^{d}
$$

It is worth emphasizing that we do not make any regularity assumption on $A$. We complement the equation with an initial condition

$$
f(0, x)=f_{0}(x) .
$$

1) Existence. What strategy can be used in order to exhibit a semigroup $S(t)$ in $L^{p}\left(\mathbb{R}^{d}\right)$, $p=2, p=1$, which provides solutions to (0.1) for initial date in $L^{p}\left(\mathbb{R}^{d}\right)$ ? Is the semigroup positive? mass conservative?
In the sequel we will not try to justify rigorously the a priori estimates we will establish, but we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions. We denote by $C$ or $C_{i}$ some constants which may differ from line to line.
2) Uniform estimate. a) Prove that any solution $f$ to (0.1) satisfies

$$
\|f(t)\|_{L^{2}} \leq C t^{-d / 4}\left\|f_{0}\right\|_{L^{1}}, \quad \forall t>0
$$

b) We define the dual semigroup $S^{*}(t)$ by

$$
\left\langle S^{*}(t) g_{0}, f_{0}\right\rangle=\left\langle g_{0}, S(t) f_{0}\right\rangle, \quad \forall t \geq 0, f_{0} \in L^{p}, g_{0} \in L^{p^{\prime}}
$$

Identify $S^{*}(t)$ and deduce that any solution $f$ to (0.1) satisfies

$$
\|f(t)\|_{L^{\infty}} \leq C t^{-d / 4}\left\|f_{0}\right\|_{L^{2}}, \quad \forall t>0
$$

c) Conclude that any solution $f$ to (0.1) satisfies

$$
\|f(t)\|_{L^{\infty}} \leq\left[C^{2} 2^{d / 2}\right] t^{-d / 2}\left\|f_{0}\right\|_{L^{1}}, \quad \forall t>0
$$

3) Entropy and first moment. For a given and (nice) probability measure $f$, we define the (mathematical) entropy and the first moment functional by

$$
H:=\int_{\mathbb{R}^{d}} f \log f d x, \quad M:=\int_{\mathbb{R}^{d}} f|x| d x
$$

a) Prove that for any $\lambda \in \mathbb{R}$, there holds

$$
\min _{s \geq 0}\{s \log s+\lambda s\}=-e^{-\lambda-1}
$$

Deduce that there exists a constant $D=D(d)$ such that for any (nice) probability measure $f$ and any $a \in \mathbb{R}_{+}, b \in \mathbb{R}$, there holds

$$
H+a M+b \geq-e^{-b-1} a^{-d} D .
$$

b) Making the choice $a:=d / M$ and $e^{-b}:=(e / D) a^{d}$, deduce that

$$
\begin{equation*}
M \geq \kappa e^{-H / d} \tag{0.2}
\end{equation*}
$$

for some $\kappa=\kappa(d)>0$.
From now on, we restrict ourself to consider an initial datum which is a (nice) probability measure:

$$
f_{0} \geq 0, \quad \int_{\mathbb{R}^{d}} f_{0} d x=1
$$

and we denote by $f(t)$ the nonnegative and normalized solution to the evolution $\operatorname{PDE}(0.1)$ corresponding to $f_{0}$. We also denote by $H=H(t), M=M(t)$ the associated entropy and first moment.
3) Dynamic estimate on the entropy. Deduce from 2) that $f$ satisfies

$$
\begin{equation*}
H(t) \leq K-\frac{d}{2} \log t, \quad \forall t>0 \tag{0.3}
\end{equation*}
$$

for some constant $K \in \mathbb{R}$ (independent of $f_{0}$ ).
4) Dynamic estimate on the entropy and the first moment. a) Prove that

$$
\left|\frac{d}{d t} M(t)\right| \leq C \int|\nabla f(t)|
$$

for some positive constant $C=C(A)$.
b) Deduce that there exists a constant $\theta=\theta(C, \nu)>0$ such that

$$
\begin{equation*}
\left|\frac{d}{d t} M(t)\right| \leq \theta\left(-\frac{d}{d t} H(t)\right)^{1 / 2}, \quad \forall t>0 . \tag{0.4}
\end{equation*}
$$

c) Prove that for the heat equation (when $A=I$ ), we have

$$
\frac{d}{d t} \int f|x|^{2} d x=2
$$

and next

$$
\begin{equation*}
M(t) \leq C\langle t\rangle^{1 / 2}, \quad t \geq 0 \tag{0.5}
\end{equation*}
$$

From now on, we will always restrict ourself to consider the Dirac mass initial datum

$$
f_{0}=\delta_{0}(d x)
$$

and our goal is to establish a similar estimate as (0.5) (and in fact, a bit sharper estimate than (0.5)) for the corresponding solution.
5) Dynamic estimate on the first moment. a) Deduce from 1) that there exists (at least) one function $f \in C\left((0, \infty) ; L^{1}\right) \cap L_{l o c}^{\infty}\left((0, \infty) ; L^{\infty}\right)$ which is a solution to the evolution $\operatorname{PDE}(0.1)$ associated to the initial datum $\delta_{0}$. Why does that solution satisfy the same above estimates for positive times?
b) We define

$$
R=R(t):=K / d-H(t) / d-\frac{1}{2} \log t \geq 0
$$

where $K$ is defined in (0.3). Observing that $M(0)=0$, deduce from the previous estimates that

$$
C_{1} t^{1 / 2} e^{R} \leq M \leq C_{2} \int_{0}^{t}\left(\frac{1}{2 s}+\frac{d R}{d s}\right)^{1 / 2} d s, \quad \forall t>0 .
$$

c) Observe that for $a>0$ and $a+b>0$, we have $(a+b)^{1 / 2} \leq a^{1 / 2}+b /\left(2 a^{1 / 2}\right)$, and deduce that

$$
C_{1} e^{R} \leq M t^{-1 / 2} \leq C_{2}(1+R), \quad \forall t>0
$$

d) Deduce from the above estimate that $R$ must be bounded above, and then

$$
C_{1} t^{1 / 2} \leq M \leq C_{2} t^{1 / 2}, \quad \forall t>0
$$

You have recovered one of the most crucial step of Nash's article "Continuity of solutions of parabolic and elliptic equations", Amer. J. Math. (1958).

## Problem II - The fractional Fokker-Planck equation

We consider the fractional Fokker-Planck equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=I[f]+\operatorname{div}_{x}(E f) \quad \text { in }(0, \infty) \times \mathbb{R}, \tag{0.1}
\end{equation*}
$$

where

$$
I[f](x)=\int_{\mathbb{R}} k(y-x)(f(y)-f(x)) d y, \quad k(z)=\frac{1}{|z|^{1+\alpha}}, \quad \alpha \in(0,1)
$$

and where $E$ is a smooth vectors field such that

$$
\forall|x| \geq 1, \quad|E(x)| \leq C\langle x\rangle, \quad \operatorname{div} E(x) \leq C, \quad x \cdot E \geq|x|^{2} .
$$

We complement the equation with an initial condition

$$
\begin{equation*}
f(0, x)=\varphi(x) \quad \text { in } \quad \mathbb{R} \tag{0.2}
\end{equation*}
$$

We denote by $\mathcal{F}$ the Fourier transform operator, and next $\hat{f}=\mathcal{F} f$ for a given function $f$ on the real line.

Question 1. Preliminary issues (if not proved, theses identities can be accepted). Here all the functions $(f, \varphi, \beta)$ are assumed to be suitably nice so that all the calculations are licit. a) - Establish the formula

$$
\int(I[f]) \beta^{\prime}(f) \varphi d x=\int \beta(f) I[\varphi] d x-\iint k(y-x) J(x, y) \varphi(x) d y d x
$$

with

$$
J(x, y):=\beta(f(y))-\beta(f(x))-(f(y)-f(x)) \beta^{\prime}(f(x)) .
$$

b) - Prove that there exists a positive constant $C_{1}$ such that

$$
\mathcal{F}(I[f])(\xi)=\int_{\mathbb{R}} f(x) e^{-i x \xi}\left\{\int_{\mathbb{R}} \frac{\cos (z \xi)-1}{|z|^{1+\alpha}} d z\right\} d x=C_{1}|\xi|^{\alpha} \hat{f}(\xi), \quad \forall \xi \in \mathbb{R}
$$

c) - Denote $s:=\alpha / 2$. Prove that

$$
\|f\|_{\dot{H}^{s}}^{2}:=\int_{\mathbb{R}^{2}} \frac{|f(x)-f(y)|^{2}}{|x-y|^{1+2 s}} d x d y=\int_{\mathbb{R}^{2}}\left\|\frac{f(z+\cdot)-f(\cdot)}{|z|^{s+1 / 2}}\right\|_{L^{2}(\mathbb{R})}^{2} d z
$$

and then that there exists a positive constant $C_{2}$ such that

$$
\left\|\|f\|_{\dot{H}^{s}}^{2}=C_{2} \int_{\mathbb{R}}|\xi|^{2 s}|\hat{f}(\xi)|^{2} d \xi=: C_{2}\right\| f \|_{\dot{H}^{s}}^{2}
$$

d) - Prove that

$$
\int_{\mathbb{R}} I[f] f d x=-\frac{1}{2}\|f f\|_{\dot{H}^{s}}^{2}
$$

From questions 2 to 4 , we consider $f$ (and $g$ ) a solution to the fractional Fokker-Planck equation (0.1) and we establish formal a priori estimates.

Question 2. Moment estimates. For any $k \geq 0$, we define

$$
M_{k}=M_{k}(t)=M_{k}(f(t)), \quad \text { with } \quad M_{k}=M_{k}(f):=\int_{\mathbb{R}} f(x)\langle x\rangle^{k} d x
$$

Prove that the solution $f$ satisfies

$$
M_{0}(t) \equiv M_{0}(\varphi), \quad \forall t \geq 0
$$

Prove that for any $k \in(0, \alpha)$, there exists $C>0$ such that

$$
C^{-1}\left|\langle y\rangle^{k}-\langle x\rangle^{k}\right| \leq\left||y|^{2}-|x|^{2}\right|^{k / 2} \leq C\left(|y-x|^{k / 2}|x|^{k / 2}+|y-x|^{k}\right),
$$

and deduce that there exist $C_{1}, C_{2}>0$ such that the solution $f$ satisfies

$$
\frac{d}{d t} M_{k} \leq C_{1} M_{k / 2}-C_{2} M_{k}
$$

Conclude that there exists $A_{k}=A_{k}\left(M_{0}(\varphi)\right)$ such that the solution $f$ satisfies

$$
\begin{equation*}
\sup _{t \geq 0} M_{k}(t) \leq \max \left(M_{k}(0), A_{k}\right) \tag{0.3}
\end{equation*}
$$

Question 3. Fractional Nash inequality and $L^{2}$ estimate. Prove that there exists a constant $C>0$ such that

$$
\forall h \in \mathcal{D}(\mathbb{R}), \quad\|h\|_{L^{2}} \leq C\|h\|_{L^{1}}^{\frac{\alpha}{1+\alpha}}\|h\|_{H^{s}}^{\frac{1}{1+\alpha}}
$$

Deduce that the square of the $L^{2}$-norm $u:=\|f(t)\|_{L^{2}}^{2}$ of the solution $f$ satisfies

$$
\frac{d}{d t} u \leq-C_{1} u^{1+\alpha}+C_{2}
$$

for some constants $C_{i}=C_{i}\left(M_{0}(\varphi)\right)>0$. Conclude that there exists $A_{2}=A_{2}\left(M_{0}(\varphi)\right)$ such that

$$
\begin{equation*}
\sup _{t \geq 0} u(t) \leq \max \left(u(0), A_{2}\right) \tag{0.4}
\end{equation*}
$$

Question 4. Around generalized entropies and the $L^{1}$-norm. Consider a convex function $\beta$ and define the entropy $\mathcal{H}$ and the associated dissipation of entropy $\mathcal{D}$ by

$$
\begin{gathered}
\mathcal{H}(f \mid g):=\int_{\mathbb{R}} \beta(X) g d x \\
\mathcal{D}(f \mid g):=\int_{\mathbb{R}} \int_{\mathbb{R}} k g_{*}\left\{\beta\left(X_{*}\right)-\beta(X)-\beta^{\prime}(X)\left(X_{*}-X\right)\right\} d x d x_{*},
\end{gathered}
$$

where $k=k\left(x-x_{*}\right), g_{*}=g\left(x_{*}\right), X=f(x) / g(x)$ and $X_{*}=f\left(x_{*}\right) / g\left(x_{*}\right)$. Why do two solutions $f$ and $g$ satisfy

$$
\begin{equation*}
\frac{d}{d t} \mathcal{H}(f(t) \mid g(t)) \leq-\mathcal{D}(f(t) \mid g(t)) ? \tag{0.5}
\end{equation*}
$$

Deduce that for $\beta(s)=s_{+}$and $\beta(s)=|s|$, any solution $f$ satisfies

$$
\begin{equation*}
\int \beta(f(t, \cdot)) d x \leq \int \beta(\varphi) d x, \quad \forall t \geq 0 \tag{0.6}
\end{equation*}
$$

Question 5. Well-posedness. Explain briefly how one can establish the existence of a weakly continuous semigroup $S_{\mathcal{L}}$ defined in the space $X=L_{s}^{1} \cap L^{2}$ such that it is a contraction for the $L^{1}$ norm and such that for any $\varphi \in X$ the function $f(t):=S_{\mathcal{L}}(t) \varphi$ is a (weak) solution to the fractional Fokker-Planck equation (0.1). Why is $S_{\mathcal{L}}$ mass and positivity preserving and why does any associated trajectory satisfy (0.3), (0.4) and (0.6)?
(Ind. One may consider the sequence of kernels $k_{n}(z):=k(z)_{n^{-1}<|z|<n}$ ).
Question 6. Prove that there exists a constant $C$ such that the set

$$
\mathcal{Z}:=\left\{f \in L^{1}(\mathbb{R}) ; f \geq 0,\|f\|_{L^{1}}=1,\|f\|_{X} \leq C\right\}
$$

is invariant under the action of $S_{\mathcal{L}}$. Deduce that there exists at least one function $G \in X$ such that

$$
\begin{equation*}
I G+\operatorname{div}_{x}(E G)=0, \quad G \geq 0, \quad M_{0}(G)=1 \tag{0.7}
\end{equation*}
$$

Question 7. We accept that for any convex function $\beta$, any nonnegative solution $f(t)$ and any nonnegative stationary solution $G$ the following inequality holds

$$
\begin{equation*}
\mathcal{H}(f(t) \mid G)+\int_{0}^{t} \mathcal{D}(f(s) \mid G) d s \leq \mathcal{H}(\varphi \mid G) \tag{0.8}
\end{equation*}
$$

Deduce that $\mathcal{D}(g \mid G)=0$ for any (other) stationary solution $g$. (Ind. First consider the case when $\beta \in W^{1, \infty}(\mathbb{R})$ and next use an approximation argument). Deduce that

$$
G(y)\left(\frac{g(y)}{G(y)}-\frac{g(x)}{G(x)}\right)^{2}=0 \quad \text { for a.e. } x, y \in \mathbb{R}
$$

and then that the solution to (0.7) is unique. Prove that for any $\varphi \in X$, there holds

$$
S_{\mathcal{L}}(t) \varphi \rightharpoonup M_{0}(\varphi) G \text { weakly in } X, \quad \text { as } \quad t \rightarrow \infty
$$

Question 8. (a) Introducing the splitting

$$
\mathcal{A}:=\lambda I, \quad \lambda \in \mathbb{R}, \quad \mathcal{B}:=\mathcal{L}-\mathcal{A},
$$

explain why

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}
$$

and next for any $n \geq 1$

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+\ldots+\left(S_{\mathcal{B}} \mathcal{A}\right)^{*(n-1)} * S_{\mathcal{L}}+\left(S_{\mathcal{B}} \mathcal{A}\right)^{* n} * S_{\mathcal{L}}
$$

where the convolution on $\mathbb{R}_{+}$is defined by

$$
(u * v)(t):=\int_{0}^{t} u(t-s) v(s) d s
$$

and the itareted convolution by $u^{* 1}=u, u^{* k}=u^{*(k-1)} * u$ if $k \geq 2$.
(b) Prove that for $\lambda>0$, large enough, there holds

$$
\left\|S_{\mathcal{B}}\right\|_{Y \rightarrow Y} \leq e^{-t}, \quad Y=L_{k}^{1}, k \in(0, \alpha), \quad Y=L^{2}
$$

as well as

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L^{1} \rightarrow L^{2}} \leq \frac{C}{t^{1 /(2 \alpha)}} e^{-t}, \quad \forall t \geq 0, \quad \int_{0}^{\infty}\left\|S_{\mathcal{B}}(s)\right\|_{L^{2} \rightarrow \dot{H}^{s}}^{2} d s \leq C
$$

and deduce that for $n$ large enough

$$
\int_{0}^{\infty}\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* n)}(s)\right\|_{L^{1} \rightarrow \dot{H}^{s}} d s \leq C
$$

(c) Establish that for any $\varphi \in L_{s}^{1}, k>0$, the associated solution $f(t)=S_{\mathcal{L}}(t) \varphi$ splits as

$$
f(t)=g(t)+h(t), \quad\|g(t)\|_{L^{1}} \leq e^{-t}, \quad\|h(t)\|_{L_{k}^{1} \cap \dot{H}^{s}} \leq C\left(M_{0}(\varphi)\right)
$$

(d) Conclude that

$$
\forall \varphi \in L^{1}(\mathbb{R}), \quad\left\|S_{\mathcal{L}}(t) \varphi-M_{0}(\varphi) G\right\|_{L^{1}} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Question 9. Justification of (0.8). We define the regularized operator

$$
\mathcal{L}_{\varepsilon, n} f:=\varepsilon \Delta_{x} f+I_{n}[f]+\operatorname{div}_{x}(E f)
$$

with $\varepsilon>0, n \in \mathbb{N}^{*}$ and $I_{n}$ associated to the kernel $k_{n}$ (introduced in question 5). Why is there a (unique) solution $G_{\varepsilon, n}$ to the stationary problem

$$
G_{\varepsilon, n} \in X, \quad \mathcal{L}_{\varepsilon, n} G_{\varepsilon, n}=0, \quad G_{\varepsilon, n} \geq 0, \quad M_{0}\left(G_{\varepsilon, n}\right)=1
$$

and why does a similar inequality as (0.8) hold? Prove that there exist $G_{\varepsilon}, G \in X, \varepsilon>0$, such that (up to the extraction of a subsequence) $G_{n, \varepsilon} \rightarrow G_{\varepsilon}$ and $G_{\varepsilon} \rightarrow G$ strongly in $L^{1}$. Prove that a similar strong convergence result holds for the familly $S_{\mathcal{L}_{\varepsilon, n}}(t) \varphi, \varphi \in X$. Conclude that (0.8) holds.

## Exam 2017 - Two problems

## Problem I - A general Fokker-Planck equation with strong confinement

We consider the evolution PDE

$$
\begin{equation*}
\partial_{t} f=\Delta f+\operatorname{div}(E f) \tag{0.1}
\end{equation*}
$$

on the unknown $f=f(t, x), t \geq 0, x \in \mathbb{R}^{d}$, with $E=E(x)$ a given smooth force field which satisfies for some $\gamma \geq 1$

$$
\forall|x| \geq 1, \quad|E(x)| \leq C|x|^{\gamma-1}, \quad \operatorname{div} E(x) \leq C|x|^{\gamma-2}, \quad x \cdot E \geq|x|^{\gamma} .
$$

We complement the equation with an initial condition

$$
f(0, x)=f_{0}(x)
$$

Question 1. Which strategy can be used in order to exhibit a semigroup $S(t)$ in $L^{p}\left(\mathbb{R}^{d}\right)$, which provides solutions to (0.1) for initial data in $L^{p}\left(\mathbb{R}^{d}\right)$ ? Is the semigroup positive? mass conservative? Explain briefly why there exists a function $G=G(x)$ such that

$$
0 \leq G \in L^{2}(m), \quad\langle G\rangle:=\int G=1, \quad \mathcal{L} G=0
$$

We accept that $G>0$. For any nice function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we denote $h:=f / G$ and, reciprocally, for any nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we denote $f:=G h$.

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions. We denote by $C$ or $C_{i}$ some constants which may differ from line to line.
Question 2. Prove that for any weight function $m: \mathbb{R}^{d} \rightarrow[1, \infty)$ and any nice function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, there holds

$$
\int(\mathcal{L} f) f m=-\int|\nabla f|^{2} m+\frac{1}{2} \int f^{2} \mathcal{L}^{*} m
$$

where we will make explicit the expression of $\mathcal{L}^{*}$.
Question 3. Prove that there exist $w: \mathbb{R}^{d} \rightarrow[1, \infty), \alpha>0$ and $b, R_{0} \geq 0$ such that

$$
\mathcal{L}^{*} w \leq-\alpha w+b \mathbf{1}_{B_{R_{0}}} .
$$

Question 4. For some constant $\lambda \geq 0$ to be specified later, we define $W:=w+\lambda$. Deduce from the previous question that

$$
\int h^{2} w G \leq \frac{1}{\alpha} \int h^{2}\left(b \mathbf{1}_{B_{R_{0}}}-\mathcal{L}^{*} W\right) G
$$

for any nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Question 5. Take a nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\langle h G\rangle=0$ and denote $G(\Omega):=$ $\left\langle G \mathbf{1}_{\Omega}\right\rangle$. Prove that for any $R \geq R_{0}$ there exists $\kappa_{R} \in(0, \infty)$ such that

$$
\int h^{2} \mathbf{1}_{B_{R}} G \leq \kappa_{R} \int_{B_{R}}|\nabla h|^{2} G+\frac{1}{G\left(B_{R}\right)}\left(\int_{B_{R}^{c}} h G\right)^{2}
$$

and deduce that

$$
\int h^{2} \mathbf{1}_{B_{R}} G \leq \frac{\kappa_{R}}{1+\lambda} \int|\nabla h|^{2} W G+\frac{G\left(B_{R}^{c}\right)}{G\left(B_{R}\right)} \int h^{2} w G
$$

Question 6. Establish finally that there exist some constants $\lambda, K_{1} \in(0, \infty)$ such that

$$
\frac{2}{K_{1}} \int h^{2} w G \leq \int\left(W|\nabla h|^{2}-\frac{1}{2} h^{2} \mathcal{L}^{*} W\right) G=\int(-\mathcal{L} f) f G^{-1} W
$$

for all nice function $h$ such that $\langle h G\rangle=0$.
Question 7. Consider a nice solution $f$ to (0.1) associated to an initial datum $f_{0}$ such that $\left\langle f_{0}\right\rangle=0$. Establish that $f$ satisfies

$$
\frac{1}{2} \frac{d}{d t} \int h_{t}^{2} W G=-\int|\nabla h|^{2} W G+\frac{1}{2} \int h^{2} G \mathcal{L}^{*} W
$$

Deduce that there exists $K_{2} \in(0, \infty)$ such that $f$ satisfies the decay estimate

$$
\int f_{t}^{2} W G^{-1} d x \leq e^{-K_{2} t} \int f_{0}^{2} W G^{-1} d x, \quad \forall t \geq 0
$$

## Problem II - Estimates for the relaxation equation

We consider the relaxation equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=-v \cdot \nabla f+\rho_{f} M-f \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{2 d} \tag{0.1}
\end{equation*}
$$

on the unknown $f=f(t, x, v), t \geq 0, x, v \in \mathbb{R}^{d}$, with

$$
\rho_{f}(t, x)=\int_{\mathbb{R}^{d}} f(t, x, v) d v, \quad M(v):=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-|v|^{2} / 2\right)
$$

We complement the equation with an initial condition

$$
\begin{equation*}
f(0, x, v)=f_{0}(x, v) \quad \text { in } \quad \mathbb{R}^{2 d} \tag{0.2}
\end{equation*}
$$

Question 1. A priori estimates and associated semigroup. We denote by $f$ a nice solution to the relaxation equation (0.1)-(0.2).
(a) Prove that $f$ is mass conserving.
(b) Prove that

$$
\left|\rho_{g}\right| \leq\|g\|_{L_{v}^{2}\left(M^{-1 / 2}\right)}, \quad \forall g=g(v) \in L_{v}^{2}\left(M^{-1 / 2}\right)
$$

and deduce that

$$
\|f(t, \cdot)\|_{L_{x v}^{2}\left(M^{-1 / 2}\right)} \leq\left\|f_{0}\right\|_{L_{x v}^{2}\left(M^{-1 / 2}\right)}
$$

(c) Consider $m=\langle v\rangle^{k}, k>d / 2$. Prove that there exists a constant $C \in(0, \infty)$ such that

$$
\left|\rho_{g}\right| \leq C\|g\|_{L_{v}^{p}(m)}, \quad \forall g=g(v) \in L_{v}^{p}(m), \quad p=1,2
$$

and deduce that

$$
\|f(t, \cdot)\|_{L_{x v}^{p}(m)} \leq e^{\lambda t}\left\|f_{0}\right\|_{L_{x v}^{p}(m)}
$$

for a constant $\lambda \in[0, \infty)$ that we will express in function of $C$.
(d) What strategy can be used in order to exhibit a semigroup $S(t)$ in $L_{x v}^{p}(m), p=2, p=1$, which provides solutions to (0.1) for initial date in $L_{x v}^{p}(m)$ ? Is the semigroup positive? mass conservative? a contraction in some spaces?
The aim of the problem is to prove that the associated semigroup $S_{\mathcal{L}}$ to (0.1) is bounded in $L^{p}(m), p=1,2$, without using the estimate proved in question (1b).
In the sequel we will not try to justify rigorously the a priori estimates we will establish, but we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions. We define

$$
\mathcal{A} f:=\rho_{f} M, \quad \mathcal{B} f=\mathcal{L} f-\mathcal{A} f
$$

Question 2. Prove that $S_{\mathcal{B}}$ satisfies a growth estimate $\mathcal{O}\left(e^{-t}\right)$ in any $L_{x v}^{p}(m)$ space. Using the Duhamel formula

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}
$$

prove that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{1}(m)$.
Question 3. Establish that $\mathcal{A}: L_{x v}^{1}(m) \rightarrow L_{x}^{1} L_{v}^{\infty}(m)$ where

$$
\|g\|_{L_{x}^{1} L_{v}^{p}(m)}:=\int_{\mathbb{R}^{d}}\|g(x,)\|_{L^{p}(m)} d x .
$$

Prove that

$$
\frac{d}{d t} \int\left(\int f^{p} d x\right)^{1 / p} d v=\int\left(\int\left(\partial_{t} f\right) f^{p-1} d x\right)\left(\int f^{p} d x\right)^{1 / p-1} d v
$$

Deduce that $S_{\mathcal{B}}$ satisfies a growth estimate $\mathcal{O}\left(e^{-t}\right)$ in any $L_{x}^{1} L_{v}^{p}(m)$ space for $p \in(1, \infty)$, and then in $L_{x}^{1} L_{v}^{\infty}(m)$. Finally prove that $S_{\mathcal{B}}(t) \mathcal{A}$ is appropriately bounded in $\mathscr{B}\left(L^{1}, L_{x}^{1} L_{v}^{\infty}(m)\right)$ and that $S_{\mathcal{L}}$ is bounded in $L_{x}^{1} L_{v}^{\infty}(m)$.
Question 4. We define $u(t):=\mathcal{A} S_{\mathcal{B}}(t)$. Establish that

$$
\left(u(t) f_{0}\right)(x, v)=M(v) e^{-t} \int_{\mathbb{R}^{d}} f_{0}\left(x-v_{*} t, v_{*}\right) d v_{*}
$$

Deduce that

$$
\left\|u(t) f_{0}\right\|_{L_{x v}^{\infty}(m)} \leq C \frac{e^{-t}}{t^{d}}\left\|f_{0}\right\|_{L_{x}^{1} L}^{\infty}(m)
$$

Question 5. Establish that there exists some constants $n \geq 1$ and $C \in[1, \infty)$ such that

$$
\left\|u^{(* n)}(t)\right\|_{L_{x v}^{1}(m) \rightarrow L_{x v}^{\infty}(m)} \leq C e^{-t / 2}
$$

Deduce that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{\infty}(m)$.
Question 6. How to prove that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{2}(m)$ in a similar way? How to shorten the proof of that last result by using question (1b)? Same question for the space $L_{x v}^{\infty}(m)$.

## Exam 2018 - Local in time estimate (from Nash)

Consider a smooth and fast decaying initial datum $f_{0}$, the associated solution $f=f(t, x)$, $t \geq 0, x \in \mathbb{R}^{d}$, to heat equation

$$
\partial_{t} f=\frac{1}{2} \Delta f, \quad f(0, .)=f_{0}
$$

and for a given $\alpha \in \mathbb{R}^{d}$, define

$$
g:=f e^{\psi}, \quad \psi(x):=\alpha \cdot x
$$

(1) Establish that

$$
\partial_{t} g=\frac{1}{2} \Delta g-\alpha \cdot \nabla g+\frac{1}{2}|\alpha|^{2} g
$$

(2) Establish that $\|g(t, .)\|_{L^{1}} \leq e^{\alpha^{2} t / 2}\left\|g_{0}\right\|_{L^{1}}$ for any $t \geq 0$.
(3) Establish that

$$
\|g(t)\|_{L^{2}}^{2} e^{-\alpha^{2} t} \leq \frac{\left\|g_{0}\right\|_{L^{1}}^{2}}{\left(2 / d C_{N} t\right)^{d / 2}}, \quad \forall t>0
$$

(4) Denoting by $T(t)$ the semigroup associated to the parabolic equation satisfies by $g$, prove successively that

$$
T(t): L^{1} \rightarrow L^{2}, \quad L^{2} \rightarrow L^{\infty}, \quad L^{1} \rightarrow L^{\infty}
$$

for some constants $C t^{-d / 4} e^{\alpha^{2} t / 2}, C t^{-d / 4} e^{\alpha^{2} t / 2}$ and $C t^{-d / 2} e^{\alpha^{2} t / 2}$.
(5) Denoting by $S$ the heat semigroup and by $F(t, x, y):=\left(S(t) \delta_{x}\right)(y)$ the fundamental solution associated to the heat equation when starting from the Dirac function in $x \in \mathbb{R}^{d}$, deduce

$$
F(t, x, y) \leq \frac{C}{t^{d / 2}} e^{\alpha \cdot(x-y)+\alpha^{2} t / 2}, \quad \forall t>0, \forall x, y, \alpha \in \mathbb{R}^{d}
$$

and then

$$
F(t, x, y) \leq \frac{C}{t^{d / 2}} e^{-\frac{|x-y|^{2}}{2 t}}, \quad \forall t>0, \forall x, y \in \mathbb{R}^{d}
$$

(6) May we prove a similar result for the parabolic equation

$$
\partial_{t} f=\operatorname{div}_{x}\left(A(x) \nabla_{x} f\right), \quad 0<\nu \leq A \in L^{\infty} ?
$$

## Exam 2019 - two problems about subgeometric convergence

## Problem I - Subgeometric Harris estimate

In this part, we consider a Markov semigroup $S=S_{\mathcal{L}}$ on $L^{1}\left(\mathbb{R}^{d}\right)$ which fulfills (H1) there exist some weight functions $m_{i}: \mathbb{R}^{d} \rightarrow[1, \infty)$ satisfying $m_{1} \geq m_{0}, m_{0}(x) \rightarrow \infty$ as $x \rightarrow \infty$ and there exists constant $b>0$ such that

$$
\mathcal{L}^{*} m_{1} \leq-m_{0}+b ;
$$

(H2) there exists a constant $T>0$ and for any $R \geq R_{0} \geq 0$ there exists a positive and not zero measure $\nu$ such that

$$
S_{T} f \geq \nu \int_{B_{R}} f, \quad \forall f \in L^{1}, f \geq 0
$$

(H3) there exists $m_{2} \geq m_{1}$ such that and for any $\lambda>0$ there exists $\xi_{\lambda}$ such that

$$
m_{1} \leq \lambda m_{0}+\xi_{\lambda} m_{2}, \quad \xi_{\lambda} \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty
$$

(H4) We also assume that

$$
\sup _{t \geq 0}\left\|S_{t} f\right\|_{L^{1}\left(m_{i}\right)} \leq M_{i}\|f\|_{L^{1}\left(m_{i}\right)}, \quad M_{i} \geq 1, i=1,2
$$

(1) Prove

$$
\left\|S_{T} f_{0}\right\|_{L^{1}} \leq\left\|f_{0}\right\|_{L^{1}}, \quad \forall T>0, \quad \forall f_{0} \in L^{1}
$$

In the sequel, we fix $f_{0} \in L^{1}\left(m_{2}\right)$ such that $\left\langle f_{0}\right\rangle=0$ and we denote $f_{t}:=S_{t} f_{0}$.
(2) Prove that

$$
\frac{d}{d t}\left\|f_{t}\right\|_{L^{1}\left(m_{1}\right)} \leq-\left\|f_{t}\right\|_{L^{1}\left(m_{0}\right)}+b\left\|f_{t}\right\|_{L^{1}}
$$

and deduce that

$$
\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{1}\right)}+\frac{T}{M_{0}}\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq\left\|f_{0}\right\|_{L^{1}\left(m_{1}\right)}+K\left\|f_{0}\right\|_{L^{1}} .
$$

We define

$$
\|f\|_{\beta}:=\|f\|_{L^{1}}+\beta\|f\|_{L^{1}\left(m_{1}\right)}, \quad \beta>0
$$

We fix $R \geq R_{0}$ large enough such that $A:=m(R) / 4 \geq 3 M_{0} / T$, and we observe that the following alternative holds

$$
\begin{equation*}
\left\|f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq A\left\|f_{0}\right\|_{L^{1}} \tag{0.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|f_{0}\right\|_{L^{1}\left(m_{0}\right)}>A\left\|f_{0}\right\|_{L^{1}} \tag{0.2}
\end{equation*}
$$

(3) We assume that condition (0.1) holds. Prove that

$$
\left\|S_{T} f_{0}\right\|_{L^{1}} \leq \gamma_{1}\left\|f_{0}\right\|_{L^{1}}
$$

with $\gamma_{1} \in(0,1)$. Deduce that

$$
\left\|S_{T} f_{0}\right\|_{\beta} \leq \gamma_{1}\left\|f_{0}\right\|_{L^{1}}-\frac{\beta T}{M_{0}}\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)}+\beta\left\|f_{0}\right\|_{L^{1}\left(m_{1}\right)}+\beta K\left\|f_{0}\right\|_{L^{1}}
$$

and next

$$
\left\|S_{T} f_{0}\right\|_{\beta}+\frac{\beta T}{M_{0}}\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq\left\|f_{0}\right\|_{\beta}
$$

for $\beta>0$ small enough.
(4) We assume that condition (0.2) holds. Prove that

$$
\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{1}\right)}+\frac{T}{M_{0}}\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq\left\|f_{0}\right\|_{L^{1}\left(m_{1}\right)}+\frac{T}{3 M_{0}}\left\|f_{0}\right\|_{L^{1}\left(m_{0}\right)}
$$

and deduce

$$
\left\|S_{T} f_{0}\right\|_{\beta}+\frac{\beta T}{M_{0}}\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq\left\|f_{0}\right\|_{\beta}+\frac{\beta T}{3 M_{0}}\left\|f_{0}\right\|_{L^{1}\left(m_{0}\right)}
$$

(5) Observe that in both cases (0.1) and (0.2), there holds

$$
\left\|S_{T} f_{0}\right\|_{\beta}+3 \alpha\left\|S_{T} f_{0}\right\|_{L^{1}\left(m_{0}\right)} \leq\left\|f_{0}\right\|_{\beta}+\alpha\left\|f_{0}\right\|_{L^{1}\left(m_{0}\right)}
$$

where from now $\beta$ and $\alpha$ are fixed constants. Deduce that

$$
Z\left(u_{1}+\alpha v_{1}\right) \leq u_{0}+\alpha v_{0}+\frac{\xi_{\lambda}}{\lambda} \alpha w_{1}
$$

with

$$
u_{n}:=\left\|S_{n T} f_{0}\right\|_{\beta}, \quad v_{n}:=\left\|S_{n T} f_{0}\right\|_{L^{1}\left(m_{0}\right)}, \quad w_{n}:=\left\|S_{n T} f_{0}\right\|_{L^{1}\left(m_{2}\right)}
$$

and for $\lambda \geq \lambda_{0} \geq 1$ large enough

$$
Z:=1+\frac{\delta}{\lambda} \leq 2, \quad \delta:=\frac{\alpha}{1+\beta}
$$

Deduce that for any $n \geq 1$, there holds

$$
u_{n} \leq Z^{-n}\left(u_{0}+\alpha v_{0}\right)+\frac{Z}{Z-1} \frac{\xi_{\lambda} \alpha}{\lambda} \sup _{i \geq 1} w_{i}
$$

and next

$$
\left\|S_{n T} f_{0}\right\|_{\beta} \leq\left(e^{-\frac{n T}{\lambda} \frac{\delta}{2 T}}+\xi_{\lambda}\right) C\left\|f_{0}\right\|_{L^{1}\left(m_{2}\right)}, \quad \forall \lambda \geq \lambda_{0}
$$

(6) Prove that

$$
\left\|S_{t} f_{0}\right\|_{L^{1}} \leq \Theta(t)\left\|f_{0}\right\|_{L^{1}\left(m_{2}\right)}, \quad \forall t \geq 0, \quad \forall f_{0} \in L^{1}\left(m_{2}\right),\langle f\rangle=0
$$

for the function $\Theta$ given by

$$
\Theta(t):=C \inf _{\lambda>0}\left\{e^{-\kappa t / \lambda}+\xi_{\lambda}\right\} .
$$

What is the value of $\Theta$ when $m_{0}=1, m_{1}=\langle x\rangle, m_{2}=\langle x\rangle^{2}$ ?

## Problem II - An application to the Fokker-Planck equation with weak confinement

In all the problem, we consider the Fokker-Planck equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=\Delta_{x} f+\operatorname{div}_{x}(f E) \quad \text { in }(0, \infty) \times \mathbb{R}^{d} \tag{0.3}
\end{equation*}
$$

for the confinement potential $E:=\nabla \phi, \phi:=\langle x\rangle^{\gamma} / \gamma,\langle x\rangle^{2}:=1+|x|^{2}$, that we complement with an initial condition

$$
\begin{equation*}
f(0, x)=f_{0}(x) \quad \text { in } \mathbb{R}^{d} \tag{0.4}
\end{equation*}
$$

## Question 1

Give a strategy in order to build solutions to (0.3) when $f_{0} \in L_{k}^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty], k \geq 0$.
We assume from now on that $f_{0} \in L_{k}^{1}\left(\mathbb{R}^{d}\right), k>0$, and that we are able to build a unique weak (and renormalized) solution $f \in C\left([0, \infty) ; L_{k}^{1}\right)$ to equation (0.3)-(0.4).
We also assume that $\gamma \geq 2$.

## Question 2

Prove

$$
\langle f(t)\rangle=\left\langle f_{0}\right\rangle \quad \text { and } \quad f(t, .) \geq 0 \text { if } f_{0} \geq 0
$$

## Question 3

Prove that there exist $\alpha>0$ and $K \geq 0$ such that

$$
\mathcal{L}^{*}\langle x\rangle^{k} \leq-\alpha\langle x\rangle^{k}+K,
$$

and deduce that

$$
\sup _{t \geq 0}\|f(t, \cdot)\|_{L_{k}^{1}} \leq C_{1}\left\|f_{0}\right\|_{L_{k}^{1}} .
$$

(Hint. A possible constant is $C_{1}:=\max (1, K / \alpha)$ ).

## Question 4

Prove that

$$
\sup _{t \geq 0}\|f(t, \cdot)\|_{L_{k}^{2}} \leq C_{2}\left\|f_{0}\right\|_{L_{k}^{2}},
$$

at least for $k>0$ large enough.

## Question 5

Prove that

$$
\sup _{t \geq 0}\|f(t, \cdot)\|_{H_{k}^{1}} \leq C_{3}\left\|f_{0}\right\|_{H_{k}^{1}}
$$

at least for $k>0$ large enough.

## Question 6

Prove that

$$
\|f(t, \cdot)\|_{H^{1}} \leq \frac{C_{4}}{t^{\alpha}}\left\|f_{0}\right\|_{L_{k}^{1}},
$$

at least for $k>0$ large enough and for some constant $\alpha>0$ to be specified.
(Hint. Consider the functional $\mathcal{F}(t):=\|f(t)\|_{L_{k}^{1}}+t^{\alpha}\left\|\nabla_{x} f(t)\right\|_{L^{2}}^{2}$ ).
We assume from now on that $d=1$, so that $C^{0,1 / 2} \subset H^{1}$.

## Question 7

We fix $f_{0} \in L^{1}$ such that $f_{0} \geq 0$ and $\operatorname{supp} f_{0} \subset B_{R}, R>0$. Using question 3 , prove that

$$
\int_{B_{\rho}} f(t) \geq \frac{1}{2} \int_{B_{R}} f_{0},
$$

for any $t \geq 0$ by choosing $\rho>0$ large enough. Using question 6 , prove that there exist $r, \kappa>0$ and for any $t>0$ there exists $x_{0} \in B_{R}$ such that

$$
f(t) \geq \kappa, \quad \forall x \in B\left(x_{0}, r\right)
$$

We accept the spreading of the positivity property, namely that for ant $r_{0}, r_{1}>0, x_{0} \in \mathbb{R}^{d}$, there exist $t_{1}, \kappa_{1}>0$ such that

$$
f_{0} \geq \mathbf{1}_{B\left(x_{0}, r_{0}\right)} \quad \Rightarrow \quad f\left(t_{1}, \cdot\right) \geq \kappa_{1} \mathbf{1}_{B\left(x_{0}, r_{1}\right)} .
$$

Deduce that there exist $\theta>0$ and $T>0$ such that

$$
f(T, \cdot) \geq \theta \mathbf{1}_{B(0, R)} \int_{B_{R}} f_{0} d x
$$

## Question 8

Prove that for any $k>0$, there exists $C, \lambda>0$ such that $f_{0} \in L_{k}^{1}$ satisfying $\left\langle f_{0}\right\rangle=0$, there holds

$$
\forall t>0, \quad\|f(t, .)\|_{L_{k}^{1}} \leq C e^{-\lambda t}\left\|f_{0}\right\|_{L_{k}^{1}}
$$

## Question 9

We assume now $\gamma \in(0,2)$. We define

$$
\mathcal{B} f:=\mathcal{L} f-M \chi_{R} f
$$

with $\chi_{R}(x):=\chi(x / R), \chi \in \mathcal{D}\left(\mathbb{R}^{d}\right), 0 \leq \chi \leq 1, \chi(x)=1$ for any $|x| \leq 1$, and with $M, R>0$ to be fixed.
We denote by $f_{\mathcal{B}}(t)=S_{\mathcal{B}}(t) f_{0}$ the solution associated to the evolution PDE corresponding to the operator $\mathcal{B}$ and the initial condition $f_{0}$.
(1) Why such a solution is well defined (no more than one sentence of explanation)?
(2) Prove that there exists $M, R>0$ such that for any $k \geq 0$ there holds

$$
\frac{d}{d t} \int_{\mathbb{R}^{d}} f_{\mathcal{B}}(t)\langle x\rangle^{k} d x \leq-c_{k} \int_{\mathbb{R}^{d}} f_{\mathcal{B}}(t)\langle x\rangle^{k+\gamma-2} \leq 0
$$

for some constant $c_{k} \geq 0, c_{k}>0$ if $k>0$, and

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L_{k}^{1} \rightarrow L_{k}^{1}} \leq 1
$$

(3) Prove that for any $k_{1}<k<k_{2}$ there exists $\theta \in(0,1)$ such that

$$
\forall f \geq 0 \quad M_{k} \leq M_{k_{1}}^{\theta} M_{k_{2}}^{1-\theta}, \quad M_{\ell}:=\int_{\mathbb{R}^{d}} f(x)\langle x\rangle^{\ell} d x
$$

and write $\theta$ as a function of $k_{1}, k$ and $k_{2}$.
(4) Prove that if $\ell>k>0$ there exists $\alpha>0$ such that

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L^{1}} \leq\left\|S_{\mathcal{B}}(t)\right\|_{L_{\ell}^{1} \rightarrow L_{k}^{1}} \leq C /\langle t\rangle^{\alpha}
$$

and that $\alpha>1$ if $\ell$ is large enough (to be specified).
(6) Prove that

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} *\left(\mathcal{A} S_{\mathcal{L}}\right)
$$

and deduce that for $k$ large enough (to be specified)

$$
\left\|S_{\mathcal{L}}\right\|_{L_{k}^{1} \rightarrow L_{k}^{1}} \leq C
$$

## Question 10

Still in the case $\gamma \in(0,2)$, what can we say about the decay of

$$
\|f(t, .)\|_{L^{1}}
$$

when $f_{0} \in L_{k}^{1}, k>0$, satisfies $\left\langle f_{0}\right\rangle=0$ ?

## Exam 2020 - On the Landau equation

We aim to establish the existence of solutions to the Landau equation

$$
\begin{equation*}
\partial_{t} f(t, v)=Q(f, f)(t, v), \quad f(0, v)=f_{0}(v) \tag{0.1}
\end{equation*}
$$

on the density function $f=f(t, v) \geq 0, t \geq 0, v \in \mathbb{R}^{d}, d \geq 2$, where the Landau kernel is defined by the formula

$$
Q(f, f)(v):=\frac{\partial}{\partial v_{i}}\left\{\int_{\mathbb{R}^{d}} a_{i j}\left(v-v_{*}\right)\left(f\left(v_{*}\right) \frac{\partial f}{\partial v_{j}}(v)-f(v) \frac{\partial f}{\partial v_{j}}\left(v_{*}\right)\right) d v_{*}\right\} .
$$

Here and the sequel we use Einstein's convention of sommation of repeated indices. The matrix $a=\left(a_{i j}\right)$ is defined by

$$
a(z)=|z|^{2} \Pi(z), \quad \Pi_{i j}(z):=\delta_{i j}-\hat{z}_{i} \hat{z}_{j}, \quad \hat{z}_{k}:=\frac{z_{k}}{|z|}
$$

so that $\Pi$ is the is the orthogonal projection on the hyperplan $z^{\perp}:=\left\{y \in \mathbb{R}^{d} ; y \cdot z=0\right\}$.

## Part I - Physical properties and a priori estimates.

(1) Observe that $a(z) z=0$ for any $z \in \mathbb{R}^{d}$ and $a(z) \xi \xi \geq 0$ for any $z, \xi \in \mathbb{R}^{d}$. Here and below, we use the bilinear form notation $a u v={ }^{t} v a u=v \cdot a u$. In particular, the symmetric matrix $a$ is positive but not strictly positive.
(2) For any nice functions $f, \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}, f \geq 0$, prove that

$$
\int Q(f, f) \varphi d v=\frac{1}{2} \iint a\left(v-v_{*}\right)\left(f \nabla_{*} f_{*}-f_{*} \nabla f\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}
$$

where $f_{*}=f\left(v_{*}\right), \nabla_{*} \psi_{*}=(\nabla \psi)\left(v_{*}\right)$. Deduce that

$$
\int Q(f, f) \varphi d v=0, \quad \text { for } \varphi=1, v_{i},|v|^{2}
$$

and

$$
-D(f):=\int Q(f, f) \log f d v \leq 0
$$

Establish then

$$
\left|\int Q(f, f) \varphi d v\right| \leq D(f)^{1 / 2}\left(\frac{1}{2} \iint f f_{*} a\left(v-v_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}\right)^{1 / 2}
$$

(3) For $H_{0} \in \mathbb{R}$, we define $\mathcal{E}_{H_{0}}$ the set of functions

$$
\begin{array}{r}
\mathcal{E}_{H_{0}}:=\left\{f \in L_{2}^{1}\left(\mathbb{R}^{d}\right) ; f \geq 0, \int f d v=1, \int f v d v=0\right. \\
\left.\int f|v|^{2} d v \leq d, H(f):=\int f \log f d v \leq H_{0}\right\} .
\end{array}
$$

Prove that there exists a constant $C_{0}$ such that

$$
H_{-}(f):=\int f(\log f)_{-} d v \leq C_{0}, \quad \forall f \in \mathcal{E}_{H_{0}}
$$

and define $D_{0}:=H_{0}+C_{0}$. Deduce that for any nice positive solution $f$ to the Landau equation such that $f_{0} \in \mathcal{E}_{H_{0}}$, there holds

$$
f \in \mathcal{F}_{T}:=\left\{g \in C\left([0, T] ; L_{2}^{1}\right) ; g(t) \in \mathcal{E}_{H_{0}}, \forall t \in(0, T), \int_{0}^{T} D(g(t)) d t \leq D_{0}\right\}
$$

We say that $f \in C\left([0, T) ; L^{1}\right)$ is a weak solution to the Landau equation if $f \in \mathcal{F}_{T}$ and (0.1) holds in the distributional sense. Why the definition is meaningful?
(4) Prove that

$$
Q(f, f)=\partial_{i}\left(\bar{a}_{i j} \partial_{j} f-\bar{b}_{i} f\right)=\partial_{i j}^{2}\left(\bar{a}_{i j} f\right)-2 \partial_{i}\left(\bar{b}_{i} f\right)=\bar{a}_{i j} \partial_{i j}^{2} f-\bar{c} f
$$

with

$$
\begin{equation*}
\bar{a}_{i j}=\bar{a}_{i j}^{f}:=a_{i j} * f, \quad \bar{b}_{i}=\bar{b}_{i}^{f}:=b_{i} * f, \quad \bar{c}=\bar{c}^{f}:=c * f \tag{0.2}
\end{equation*}
$$

and

$$
b_{i}:=\sum_{j=1}^{d} \partial_{j} a_{i j}=-(d-1) z_{i}, \quad c:=\sum_{i=1}^{d} \partial_{i} b_{i}=-(d-1) d .
$$

Prove that there existe $C \in(0, \infty)$ such that

$$
\left|\bar{a}_{i j}\right| \leq C\left(1+|v|^{2}\right), \quad\left|\bar{b}_{i}\right| \leq C(1+|v|)
$$

## Part II - On the ellipticity of $\bar{a}$.

We fix $H_{0} \in \mathbb{R}$ and $f \in \mathcal{E}_{H_{0}}$.
(5a) Show that there exists a function $\eta \geq 0$ (only depending of $D_{0}$ ) such that

$$
\forall A \subset \mathbb{R}^{d}, \quad \int_{A} f d v \leq \eta(|A|)
$$

and $\eta(r) \rightarrow 0$ when $r \rightarrow 0$. Here $|A|$ denotes the Lebesgue measure of $A$. Deduce that

$$
\forall R, \varepsilon>0, \quad \int f \mathbf{1}_{|v| \leq R} \mathbf{1}_{\left|v_{i}\right| \leq \varepsilon} d v \leq \eta_{R}(\varepsilon)
$$

and $\eta_{R}(r) \rightarrow 0$ when $r \rightarrow 0$.
(5b) Show that

$$
\int f \mathbf{1}_{|v| \leq R} \geq 1-\frac{d}{R^{2}}
$$

(5c) Deduce from the two previous questions that

$$
\forall i=1, \ldots, d, \quad T_{i}:=\int f v_{i}^{2} d v \geq \lambda
$$

for some constant $\lambda>0$ which only depends on $D_{0}$. Generalize the last estimate into

$$
\forall \xi \in \mathbb{R}^{d}, \quad T(\xi):=\int f|v \cdot \xi|^{2} d v \geq \lambda|\xi|^{2} .
$$

(6) Deduce that

$$
\forall v, \xi \in \mathbb{R}^{d}, \quad \bar{a}(v) \xi \xi:=\sum_{i, j=1}^{d} \bar{a}_{i j}(v) \xi_{i} \xi_{j} \geq(d-1) \lambda|\xi|^{2} .
$$

Prove that any weak solution formally satisfies

$$
\frac{d}{d t} H(f)=-\int \bar{a}_{i j} \frac{\partial_{i} f \partial_{j} f}{f}-\int \bar{c} f
$$

and thus the following bound on the Fisher information

$$
I(f):=\int \frac{|\nabla f|^{2}}{f} \in L^{1}(0, T)
$$

## Part III - Weak stability.

We consider here a sequence of weak solutions $\left(f_{n}\right)$ to the Landau equation such that $f_{n} \in \mathcal{F}_{T}$ for any $n \geq 1$.
(7) Prove that

$$
\int_{0}^{T} \int\left|\nabla_{v} f_{n}\right| d v d t \leq C_{T}
$$

and that

$$
\frac{d}{d t} \int f_{n} \varphi d v \text { is bounded in } L^{\infty}(0, T), \quad \forall \varphi \in C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

Deduce that $\left(f_{n}\right)$ belongs to a compact set of $L^{1}\left((0, T) \times \mathbb{R}^{d}\right)$. Up to the extraction of a subsequence, we then have

$$
f_{n} \rightarrow f \text { strongly in } L^{1}\left((0, T) \times \mathbb{R}^{d}\right)
$$

Deduce that

$$
Q\left(f_{n}, f_{n}\right) \rightharpoonup Q(f, f) \text { weakly in } \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)
$$

and that $f$ is a weak solution to the Landau equation.
(8) (Difficult, here $d=3$ ) Take $f \in \mathcal{E}_{H_{0}}$ with energy equals to $d$. Establish that $D(f)=0$ if, and only if,

$$
\frac{\nabla f}{f}-\frac{\nabla f_{*}}{f_{*}}=\lambda\left(v, v_{*}\right)\left(v-v_{*}\right), \quad \forall v, v_{*} \in \mathbb{R}^{d}
$$

for some scalar function $\left(v, v_{*}\right) \mapsto \lambda\left(v, v_{*}\right)$. Establish then that the last equation is equivalent to

$$
\log f=\lambda_{1}|v|^{2} / 2+\lambda_{2} v+\lambda_{3}, \quad \forall v \in \mathbb{R}^{d},
$$

for some constants $\lambda_{1} \in \mathbb{R}, \lambda_{2} \in \mathbb{R}^{d}, \lambda_{3} \in \mathbb{R}$. Conclude that

$$
D(f)=0 \text { if, and only if, } f=M(v):=(2 \pi)^{-3 / 2} \exp \left(-|v|^{2} / 2\right)
$$

(9) (very difficult, because needs many steps) Prove that for any global weak solution $f$ associated to $f_{0} \in L_{3}^{1} \cap \mathcal{E}_{H_{0}}$ with energy equals $d$, there holds $f(t) \rightharpoonup M$ when $t \rightarrow \infty$. (Hint. Accept that the energy $M_{2}(f(t))=d$ and prove that the third moment $M_{3}(f(t))$ is uniformly bounded).

## Part IV - Existence.

(10) We fix $k=d+4$. Show that $\mathcal{H}:=L_{k}^{2} \subset L_{3}^{1}$ and that $H_{0}:=H\left(f_{0}\right) \in \mathbb{R}$ if $0 \leq f_{0} \in L_{k}^{2}$. In the sequel, we first assume that $f_{0} \in \mathcal{E}_{H_{0}} \cap \mathcal{H}$.
(11) For $f \in C\left([0, T] ; \mathcal{E}_{H_{0}}\right)$, we define $\bar{a}, \bar{b}$ and $\bar{c}$ thanks to (0.2) and then

$$
\tilde{a}_{i j}:=\bar{a}_{i j}+\varepsilon|v|^{2} \delta_{i j}, \quad \tilde{b}_{i}:=\bar{b}_{i}-\varepsilon \frac{d+2}{2} v_{i}, \quad \varepsilon \in(0, \lambda) .
$$

We define $\mathcal{V}:=H_{k+2}^{1}$ and then

$$
\forall g \in \mathcal{V}, \quad L g:=\partial_{i}\left(\tilde{a}_{i j} \partial_{j} g-\tilde{b}_{i} g\right) \in \mathcal{V}^{\prime}
$$

Show that for some constant $C_{i} \in(0, \infty)$, there hold

$$
(L g, g)_{\mathcal{H}} \leq-\varepsilon\|g\|_{\mathcal{V}}^{2}+C_{1}\|g\|_{\mathcal{H}}^{2}, \quad\left|(L g, h)_{\mathcal{H}}\right| \leq C_{2}\|g\|_{\mathcal{V}}\left\|_{h}\right\|_{\mathcal{V}}, \quad \forall g, h \in \mathcal{V} .
$$

Deduce that there exists a unique variational solution

$$
g \in \mathcal{X}_{T}:=C([0, T] ; \mathcal{H}) \cap L^{2}(0, T ; \mathcal{V}) \cap H^{1}\left(0, T ; \mathcal{V}^{\prime}\right)
$$

to the parabolic equation

$$
\partial_{t} g=L g, \quad g(0)=f_{0} .
$$

Prove furthermore that $g \in \mathcal{F}_{T}$.
(12) Prove that there exists a unique fonction

$$
f_{\varepsilon} \in C\left([0, T] ; L_{k}^{2}\right) \cap L^{2}\left(0, T ; H_{k}^{1}\right) \cap \mathcal{F}_{T}
$$

solution to the nonlinear parabolic equation

$$
\partial_{t} f_{\varepsilon}=\partial_{i}\left(\tilde{a}_{i j}^{f_{\varepsilon}} \partial_{j} f_{\varepsilon}+\tilde{b}_{i}^{f_{\varepsilon}} f_{\varepsilon}\right), \quad f_{\varepsilon}(0)=f_{0}
$$

where $\tilde{a}_{i j}^{f_{\varepsilon}}$ denotes the
(13) For $f_{0} \in \mathcal{E}_{H_{0}}$ and $T>0$, prove that there exists at least one weak solution $f \in \mathcal{F}_{T}$ to the Landau equation.

