
An introduction to evolution PDEs November 1, 2021

Exercises on chapters 4, 5 & 6

1. About evolution PDEs and semigroups (Chapter 4)

Exercice 1.1. Consider a Banach space X and an unbounded operator Λ on X. We assume that X = Y ′

for a Banach space Y and that the dual operator Λ∗ generates a strongly continuous semigroup T on Y .
(1) Prove that S := T ∗ is a (at least) weakly ∗σ(X,Y ) continuous semigroup on X with generator Λ and
that it provides the unique weak solution to the associated evolution equation.
(2) Prove that for any smooth functions a = a(x) and c = c(x), one can define a weakly continuous
semigroup S = SΛ on L∞ = L∞(Rd) associated to the transport operator

(Λf)(x) := −a(x) · ∇f(x)− c(x) f(x),

as the dual semigroup associated to the dual operator Λ∗ defined on L1(Rd).
(3) Prove similarly that one can define a weakly continuous semigroup on M1(Rd) := (C0(Rd))′, the space
of Radon measures, associated to the transport operator Λ.

Exercice 1.2 (Miyadera-Voigt perturbation theorem). Given a generator B on X, we say that A ∈
CD(X) is B-bounded if

‖Af‖ ≤ C(‖f‖+ ‖Bf‖) ∀ f ∈ D(B)

for some constant C ∈ (0,∞). In particular, D(B) ⊂ D(A) ⊂ X.

Consider SB a semigroup satisfying the growth estimate ‖SB(t)‖B(X) ≤M ebt and A a B-bounded operator
such that

(1.1) ∃T > 0,

∫ T

0

‖SB(t)A‖B(X) dt ≤
1

2
, sup

t∈[0,T ]

‖SB(t)A‖B(X,X−1) <∞,

where the abstract Sobolev space X−1 = XB−1 is defined as the closure of X for the norm

‖f‖X−1
:= ‖(B − b− 1)−1f‖X .

Prove that Λ := A+B is the generator of a semigroup which satisfies the growth estimate ‖SΛ(t)‖B(X) ≤
M ′ eb

′t, with M ′ = 2ebTM and b′ = (log 2ebTM)/T .

Exercice 1.3. Apply the Hille-Yosida-Lumer-Phillips Theorem on the following equations.

− Heat equation
∂tu = ∆u, u(0) = u0,

on the space H := L2(Ω), with Λu := ∆u, D(Λ) = H1
0 (Ω) ∩H2(Ω), Ω ⊂ Rd.

− Wave equation
∂2
ttu = ∆u u(0) = u0, ∂tu(0) = v0,

written as

∂tU = ΛU, U = (u, ∂tu), Λ =

(
0 I
∆ 0

)
on the space H := H1

0 (Ω)× L2(Ω), D(Λ) = (H1
0 (Ω) ∩H2(Ω))×H1

0 (Ω), Ω ⊂ Rd.

− Scrödinger equation
i∂tu+ ∆u = 0, u(0) = u0,

on the space H := L2(Rd;C), with Λu := i∆u, D(Λ) = H2(Rd)
− Stokes equation

∂tu = ∆u+∇p, divu = 0, u(0) = u0,

on the space H := {u ∈ (L2(Rd))d; divu = 0}, with Λu := ∆u and

D(Λ) = {u ∈ (H2(Rd))d ∩H, ∆u ∈ H}.
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2. About the heat equation and related problems (Chapter 5)

Exercice 2.1. (1) Prove (1) in Theorem 2.1.

(2) Establish rigorously the decay estimate about the solutions of the heat equation for weak solutions and
using Nash approach.

Exercice 2.2. Prove that for any λ < λP , there exists ε > 0 so that the following stronger version∫
Rd

∣∣∣∣∇( fG
)∣∣∣∣2 Gdx ≥ λ

∫
Rd

f2G−1dx

+ε

∫
Rd

(
f2 |x|2 + |∇f |2

)
G−1dx

holds for any f ∈ D(Rd) with 〈f〉 = 0. Here G denotes de normalized Gaussian function e−|x|
2/2+C0 .

Exercice 2.3. Prove that 0 ≤ fn → f in Lq ∩ L1
k, q > 1, k > 0, implies that H(fn)→ H(f).

(Hint. Use the splitting

s | log s| ≤
√
s1

0≤s≤e−|x|k + s |x|k 1
e−|x|k≤s≤1

+ s(log s)+ 1s≥1 ∀ s ≥ 0

and the dominated convergence theorem).

Exercice 2.4. Prove the rate of convergence

I(f(t, .)|G) ≤ e−2 t I(ϕ|G).

for any ϕ ∈ P(Rd) ∩ L1
2(Rd) such that I(ϕ) <∞.

(Hint. Compute the equations for the moments of order 1 and 2).

Exercice 2.5. Assume that the log-Sobolev inequality

λH(f |G) ≤ 1

2
I(f |G) ∀ f ∈ D

holds for some constant λ > 0. Prove that the Poincaré inequality

(λ+ d) ‖h‖2L2(G−1/2) ≤
∫
|∇h|2G−1 ∀h ∈ D(Rd), 〈h[1, x, |x|2] 〉 = 0,

also holds (for the same constant λ > 0).

Exercice 2.6. 1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension
d ≥ 3. (Hint. Write the interpolation estimate

‖f‖L2 ≤ ‖f‖θL1 ‖f‖1−θL2∗

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2. (Hint.
Prove the interpolation estimate

‖f‖L2 ≤ ‖f‖1/4L1 ‖f3/2‖1/2L2 ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := 2 and finally the
Cauchy-Schwartz inequality in order to bound the second term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1. (Hint.
Prove the interpolation estimate

‖f‖L2 ≤ ‖f‖1/2L1 ‖f3/2‖1/3L∞ ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := ∞ and finally the
Cauchy-Schwartz inequality in order to bound the second term).

Exercice 2.7. 1) Prove the Poincaré-Wirtinger inequality

‖f − fr‖L2 ≤ C r‖∇f‖L2 , fr(x) :=
1

|B(x, r)|

∫
B(x,r)

f(y) dy,

for any r > 0 and some constant C = C(d) > 0.
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2) Recover the Nash inequality in any dimension d ≥ 1. (Hint. Write that ‖f‖2L2 = (f, f − fr) + (f, fr)

and decuce that ‖f‖2L2 ≤ C1 r ‖f‖L2 ‖∇f‖L2 + C2 r
−d ‖f‖2L1 , for any r > 0).

3) Generalize (1) by establishing that

‖ρε ∗ f − f‖L2 ≤ C ε ‖∇f‖L2 , ∀ ε > 0,

for a constant C which only depends on the function ρ ∈ P(Rd) ∩ L1
comp(Rd) in the definition of the

mollifier (ρε).

Exercice 2.8. We say that V satisfies a Lyapunov condition if there exists a function W such that
W ≥ 1 and there exist some constants θ > 0, b, R ≥ 0 such that

(2.1) (L∗W )(x) := ∆W (x)−∇V · ∇W (x) ≤ −θW (x) + b1BR
(x), ∀x ∈ Rd,

where BR = B(0, R) denotes the centered ball of radius R.
Establish (2.1) in the following situations:

(i) V (x) := 〈x〉α with α ≥ 1;
(ii) there exist α > 0 and R ≥ 0 such that

x · ∇V (x) ≥ α ∀x /∈ BR;

(iii) there exist a ∈ (0, 1), c > 0 and R ≥ 0 such that

a |∇V (x)|2 −∆V (x) ≥ c ∀x /∈ BR;

(iv) V is convex (or it is a compact supported perturbation of a convex function) and satisfies e−V ∈
L1(Rd).

Exercice 2.9. Generalize the Poincaré inequality to a general superlinear potential V (x) = 〈x〉α/α+V0,
α ≥ 1, in the following strong (weighted) formulation∫

|∇g|2 G ≥ κ
∫
|g − 〈g〉G |2 (1 + |∇V |2)G ∀ g ∈ D(Rd),

where we have defined G := e−V ∈ P(Rd) (for an appropriate choice of V0 ∈ R).

3. More about the longtime asymptotic (Chapter 6)

Exercice 3.1. We consider a semigroup St = etL of linear and bounded operators on L1 and we assume
that
(i) St ≥ 0;
(ii) ∃ g > 0 such that Lg = 0, or equivalently Stg = g for any t ≥ 0;
(iii) ∃φ such that L∗φ = 0, or equivalently 〈Sth, φ〉 = 〈h, φ〉 for any h ∈ L1 and t ≥ 0.

Our aim is to generalize to that more abstract framework the general relative entropy principle.

(a) Prove that for any real affine function `, there holds `[(Stf)/g]g = St[`(f/g)g].

(b) Prove that for any convex function H and any f ≥ 0, there holds H[(Stf)/g]g ≤ St[H(f/g)g]. (Hint.
Use the fact that H = sup`≤H `).

(c) Deduce that ∫
H[(Stf)/g]gφ ≤

∫
H[f/g]gφ, ∀ t ≥ 0.

Exercice 3.2. Consider the Fokker-Planck equation

(3.1) ∂tf = Lf := ∆f + div(Ef),

on the density f = f(t, x), t ≥ 0, x ∈ Rd, where the force field E ∈ Rd is a given fixed (exterior) vectors
field.
(1) Give conditions on E so that (3.1) admits a steady state, namely

∃G ∈ L1(Rd) ∩ P(Rd), div(∇G+ EG) = 0.
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(2) Establish that G is a steady state iff

(3.2) E = ∇U + E0, div(E0 e
−U ) = 0,

for a confinement potential U : Rd → R and a non gradient force field perturbation E0 : Rd → Rd, and
then G(x) := e−U(x)+U0 is a stationary state for some U0 ∈ R.

(3) Establish that L is a self-adjoint operator in the Hilbert space L2(m) if and only if E = ∇U and
m = eU/2 for some confinement potential U : Rd → R.

Exercice 3.3. We consider the linear Boltzmann (or scattering) equation , writes

(3.3) ∂tf = L f :=

∫
V
b∗f∗ dv∗ −B(v) f,

on the density function f = f(t, v) ≥ 0, t ≥ 0, v ∈ V ⊂ Rd, where f = f(v), f∗ = f(v∗), b = b(v, v∗) and
b∗ = b(v∗, v), b ≥ 0 is a given function (the rate of collisions), and we assume that there exists a function
φ > 0 such that

L∗φ :=

∫
V
b φ∗ dv∗ −B φ = 0, in other words B(v) :=

∫
V

φ∗
φ
b dv∗,

with again φ = φ(v) and φ∗ = φ(v∗).
(1) Establish that there exists a function 0 < F ∈ L1(V) ∩P(V) which is a stationary solution

LF =

∫
V
b∗F∗ dv∗ −

∫
V

φ∗
φ
b dv∗ F = 0,

when b > 0.
(2) Assuming (1), establish that any solution f to the equation (3.3) satisfies (at least formally)

(3.4)
d

dt

∫
V
f2 φ

F
dv = 2

∫
V

(L f)
f φ

F
dv = −D2(f)

with

(3.5) D2(f) :=

∫
V

∫
V
b∗ F φ

( f∗
F∗
− f

F

)2

dvdv∗.

Exercice 3.4. Let S = SL be a strongly continuous semigroup on a Banach space X ⊂ L1. Show that
there is equivalence between
(a) SL is a Stochastic semigroup;
(b) L∗1 = 0 and L satisfies Kato’s inequality

(sign f)Lf ≤ L|f |, ∀ f ∈ D(L).

(Hint. In order to prove (b)⇒ (a), consider f ∈ D(L2) and estimate |Stf |−|f | by introducing a telescopic
sum and a Taylor expansion in the time variable).

Exercice 3.5. Consider SL∗ a (constant preserving) Markov semigroup and Φ : R → R a concave
function. Prove that L∗Φ(m) ≤ Φ′(m)L∗m. (Hint. Use that Φ(a) = inf{`(a); ` affine such that ` ≥ Φ}
in order to prove S∗t (Φ(m)) ≤ Φ(S∗tm) and Φ(b)− Φ(a) ≥ Φ′(a)(b− a)).
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