Exercises on chapters 4, 5 & 6

1. About evolution PDEs and semigroups (Chapter 4)

Exercice 1.1. Consider a Banach space X and an unbounded operator Λ on X. We assume that X = Y' for a Banach space Y and that the dual operator Λ^* generates a strongly continuous semigroup T on Y. (1) Prove that $S := T^*$ is a (at least) weakly $*\sigma(X, Y)$ continuous semigroup on X with generator Λ and that it provides the unique weak solution to the associated evolution equation.

(2) Prove that for any smooth functions a = a(x) and c = c(x), one can define a weakly continuous semigroup $S = S_{\Lambda}$ on $L^{\infty} = L^{\infty}(\mathbb{R}^d)$ associated to the transport operator

$$(\Lambda f)(x) := -a(x) \cdot \nabla f(x) - c(x) f(x),$$

as the dual semigroup associated to the dual operator Λ^* defined on $L^1(\mathbb{R}^d)$.

(3) Prove similarly that one can define a weakly continuous semigroup on $M^1(\mathbb{R}^d) := (C_0(\mathbb{R}^d))'$, the space of Radon measures, associated to the transport operator Λ .

Exercice 1.2 (Miyadera-Voigt perturbation theorem). Given a generator \mathcal{B} on X, we say that $\mathcal{A} \in \mathscr{C}_D(X)$ is \mathcal{B} -bounded if

$$\|\mathcal{A}f\| \le C(\|f\| + \|\mathcal{B}f\|) \quad \forall f \in D(\mathcal{B})$$

for some constant $C \in (0, \infty)$. In particular, $D(\mathcal{B}) \subset D(\mathcal{A}) \subset X$.

Consider $S_{\mathcal{B}}$ a semigroup satisfying the growth estimate $||S_{\mathcal{B}}(t)||_{\mathscr{B}(X)} \leq M e^{bt}$ and \mathcal{A} a \mathcal{B} -bounded operator such that

(1.1)
$$\exists T > 0, \quad \int_0^T \|S_{\mathcal{B}}(t)\mathcal{A}\|_{\mathscr{B}(X)} dt \le \frac{1}{2}, \quad \sup_{t \in [0,T]} \|S_{\mathcal{B}}(t)\mathcal{A}\|_{\mathscr{B}(X,X_{-1})} < \infty,$$

where the abstract Sobolev space $X_{-1} = X_{-1}^{\mathcal{B}}$ is defined as the closure of X for the norm

$$||f||_{X_{-1}} := ||(\mathcal{B} - b - 1)^{-1}f||_X.$$

Prove that $\Lambda := \mathcal{A} + \mathcal{B}$ is the generator of a semigroup which satisfies the growth estimate $||S_{\Lambda}(t)||_{\mathscr{B}(X)} \leq M' e^{b't}$, with $M' = 2e^{bT}M$ and $b' = (\log 2e^{bT}M)/T$.

Exercice 1.3. Apply the Hille-Yosida-Lumer-Phillips Theorem on the following equations. – Heat equation

$$\partial_t u = \Delta u, \quad u(0) = u_0,$$

on the space $H := L^2(\Omega)$, with $\Lambda u := \Delta u$, $D(\Lambda) = H^1_0(\Omega) \cap H^2(\Omega)$, $\Omega \subset \mathbb{R}^d$. - Wave equation

$$\partial_{tt}^2 u = \Delta u \quad u(0) = u_0, \ \partial_t u(0) = v_0,$$

 $written \ as$

$$\partial_t U = \Lambda U, \quad U = (u, \partial_t u), \quad \Lambda = \begin{pmatrix} 0 & I \\ \Delta & 0 \end{pmatrix}$$

on the space $H := H_0^1(\Omega) \times L^2(\Omega)$, $D(\Lambda) = (H_0^1(\Omega) \cap H^2(\Omega)) \times H_0^1(\Omega)$, $\Omega \subset \mathbb{R}^d$. - Scrödinger equation

$$i\partial_t u + \Delta u = 0, \quad u(0) = u_0,$$

on the space $H := L^2(\mathbb{R}^d; \mathbb{C})$, with $\Lambda u := i\Delta u$, $D(\Lambda) = H^2(\mathbb{R}^d)$ - Stokes equation

 $\partial_t u = \Delta u + \nabla p, \quad \operatorname{div} u = 0, \quad u(0) = u_0,$ on the space $H := \{ u \in (L^2(\mathbb{R}^d))^d; \operatorname{div} u = 0 \}, \text{ with } \Lambda u := \Delta u \text{ and}$ $D(\Lambda) = \{ u \in (H^2(\mathbb{R}^d))^d \cap H, \Delta u \in H \}.$ **Exercice 2.1.** (1) Prove (1) in Theorem 2.1.

(2) Establish rigorously the decay estimate about the solutions of the heat equation for weak solutions and using Nash approach.

Exercice 2.2. Prove that for any $\lambda < \lambda_P$, there exists $\varepsilon > 0$ so that the following stronger version

$$\int_{\mathbb{R}^d} \left| \nabla \left(\frac{f}{G} \right) \right|^2 G dx \geq \lambda \int_{\mathbb{R}^d} f^2 G^{-1} dx \\ + \varepsilon \int_{\mathbb{R}^d} \left(f^2 |x|^2 + |\nabla f|^2 \right) G^{-1} dx$$

holds for any $f \in \mathcal{D}(\mathbb{R}^d)$ with $\langle f \rangle = 0$. Here G denotes de normalized Gaussian function $e^{-|x|^2/2+C_0}$.

Exercice 2.3. Prove that $0 \leq f_n \rightarrow f$ in $L^q \cap L^1_k$, q > 1, k > 0, implies that $H(f_n) \rightarrow H(f)$. (Hint. Use the splitting

$$|\log s| \le \sqrt{s} \, \mathbf{1}_{0 \le s \le e^{-|x|^k}} + s \, |x|^k \, \mathbf{1}_{e^{-|x|^k} \le s \le 1} + s(\log s)_+ \, \mathbf{1}_{s \ge 1} \quad \forall \, s \ge 0$$

and the dominated convergence theorem).

Exercice 2.4. Prove the rate of convergence

$$I(f(t,.)|G) \le e^{-2t} I(\varphi|G).$$

for any $\varphi \in \mathbf{P}(\mathbb{R}^d) \cap L_2^1(\mathbb{R}^d)$ such that $I(\varphi) < \infty$. (Hint. Compute the equations for the moments of order 1 and 2).

Exercice 2.5. Assume that the log-Sobolev inequality

$$\lambda H(f|G) \le \frac{1}{2}I(f|G) \quad \forall f \in D$$

holds for some constant $\lambda > 0$. Prove that the Poincaré inequality

$$(\lambda + d) \|h\|_{L^2(G^{-1/2})}^2 \le \int |\nabla h|^2 G^{-1} \quad \forall h \in \mathcal{D}(\mathbb{R}^d), \ \langle h[1, x, |x|^2] \rangle = 0,$$

also holds (for the same constant $\lambda > 0$).

Exercice 2.6. 1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension $d \ge 3$. (Hint. Write the interpolation estimate

$$\|f\|_{L^2} \le \|f\|_{L^1}^{\theta} \, \|f\|_{L^{2^*}}^{1-\theta}$$

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).

2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2. (Hint. Prove the interpolation estimate

$$||f||_{L^2} \le ||f||_{L^1}^{1/4} ||f^{3/2}||_{L^2}^{1/2},$$

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and $p^* := 2$ and finally the Cauchy-Schwartz inequality in order to bound the second term).

3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1. (Hint. Prove the interpolation estimate

$$\|f\|_{L^2} \le \|f\|_{L^1}^{1/2} \|f^{3/2}\|_{L^{\infty}}^{1/3}$$

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and $p^* := \infty$ and finally the Cauchy-Schwartz inequality in order to bound the second term).

Exercice 2.7. 1) Prove the Poincaré-Wirtinger inequality

$$||f - f_r||_{L^2} \le C r ||\nabla f||_{L^2}, \quad f_r(x) := \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy,$$

for any r > 0 and some constant C = C(d) > 0.

2) Recover the Nash inequality in any dimension $d \ge 1$. (Hint. Write that $||f||_{L^2}^2 = (f, f - f_r) + (f, f_r)$ and decuce that $||f||_{L^2}^2 \le C_1 r ||f||_{L^2} ||\nabla f||_{L^2} + C_2 r^{-d} ||f||_{L^1}^2$, for any r > 0). 3) Generalize (1) by establishing that

$$\|\rho_{\varepsilon} * f - f\|_{L^2} \le C \varepsilon \|\nabla f\|_{L^2}, \quad \forall \varepsilon > 0,$$

for a constant C which only depends on the function $\rho \in \mathbf{P}(\mathbb{R}^d) \cap L^1_{comp}(\mathbb{R}^d)$ in the definition of the mollifier (ρ_{ε}) .

Exercice 2.8. We say that V satisfies a Lyapunov condition if there exists a function W such that $W \ge 1$ and there exist some constants $\theta > 0$, $b, R \ge 0$ such that

(2.1)
$$(L^*W)(x) := \Delta W(x) - \nabla V \cdot \nabla W(x) \le -\theta W(x) + b \mathbf{1}_{B_R}(x), \qquad \forall x \in \mathbb{R}^d$$

where $B_R = B(0, R)$ denotes the centered ball of radius R. Establish (2.1) in the following situations:

- (i) $V(x) := \langle x \rangle^{\alpha}$ with $\alpha > 1$;
- (ii) there exist $\alpha > 0$ and $R \ge 0$ such that

$$x \cdot \nabla V(x) \ge \alpha \qquad \forall x \notin B_R;$$

(iii) there exist $a \in (0,1)$, c > 0 and $R \ge 0$ such that

$$a |\nabla V(x)|^2 - \Delta V(x) \ge c \qquad \forall x \notin B_R;$$

(iv) V is convex (or it is a compact supported perturbation of a convex function) and satisfies $e^{-V} \in L^1(\mathbb{R}^d)$.

Exercice 2.9. Generalize the Poincaré inequality to a general superlinear potential $V(x) = \langle x \rangle^{\alpha} / \alpha + V_0$, $\alpha \ge 1$, in the following strong (weighted) formulation

$$\int |\nabla g|^2 \mathcal{G} \ge \kappa \int |g - \langle g \rangle_{\mathcal{G}}|^2 \left(1 + |\nabla V|^2\right) \mathcal{G} \qquad \forall g \in \mathcal{D}(\mathbb{R}^d),$$

where we have defined $\mathcal{G} := e^{-V} \in \mathbf{P}(\mathbb{R}^d)$ (for an appropriate choice of $V_0 \in \mathbb{R}$).

3. More about the longtime asymptotic (Chapter 6)

Exercice 3.1. We consider a semigroup $S_t = e^{tL}$ of linear and bounded operators on L^1 and we assume that

(*i*)
$$S_t \ge 0$$
;

(ii) $\exists g > 0$ such that Lg = 0, or equivalently $S_tg = g$ for any $t \ge 0$;

(iii) $\exists \phi$ such that $L^*\phi = 0$, or equivalently $\langle S_t h, \phi \rangle = \langle h, \phi \rangle$ for any $h \in L^1$ and $t \ge 0$.

Our aim is to generalize to that more abstract framework the general relative entropy principle.

(a) Prove that for any real affine function ℓ , there holds $\ell[(S_t f)/g]g = S_t[\ell(f/g)g]$.

(b) Prove that for any convex function H and any $f \ge 0$, there holds $H[(S_t f)/g]g \le S_t[H(f/g)g]$. (Hint. Use the fact that $H = \sup_{\ell \le H} \ell$).

(c) Deduce that

$$\int H[(S_t f)/g]g\phi \leq \int H[f/g]g\phi, \quad \forall t \ge 0.$$

Exercice 3.2. Consider the Fokker-Planck equation

(3.1) $\partial_t f = \mathcal{L}f := \Delta f + div(Ef),$

on the density $f = f(t, x), t \ge 0, x \in \mathbb{R}^d$, where the force field $E \in \mathbb{R}^d$ is a given fixed (exterior) vectors field.

(1) Give conditions on E so that (3.1) admits a steady state, namely

 $\exists G \in L^1(\mathbb{R}^d) \cap \mathbb{P}(\mathbb{R}^d), \quad div(\nabla G + EG) = 0.$

(2) Establish that G is a steady state iff

(3.2)
$$E = \nabla U + E_0, \quad div(E_0 e^{-U}) = 0,$$

for a confinement potential $U : \mathbb{R}^d \to \mathbb{R}$ and a non gradient force field perturbation $E_0 : \mathbb{R}^d \to \mathbb{R}^d$, and then $G(x) := e^{-U(x)+U_0}$ is a stationary state for some $U_0 \in \mathbb{R}$.

(3) Establish that \mathcal{L} is a self-adjoint operator in the Hilbert space $L^2(m)$ if and only if $E = \nabla U$ and $m = e^{U/2}$ for some confinement potential $U : \mathbb{R}^d \to \mathbb{R}$.

Exercice 3.3. We consider the linear Boltzmann (or scattering) equation, writes

(3.3)
$$\partial_t f = \mathcal{L} f := \int_{\mathcal{V}} b_* f_* \, dv_* - B(v) \, f,$$

on the density function $f = f(t, v) \ge 0$, $t \ge 0$, $v \in \mathcal{V} \subset \mathbb{R}^d$, where f = f(v), $f_* = f(v_*)$, $b = b(v, v_*)$ and $b_* = b(v_*, v)$, $b \ge 0$ is a given function (the rate of collisions), and we assume that there exists a function $\phi > 0$ such that

$$\mathcal{L}^*\phi := \int_{\mathcal{V}} b \, \phi_* \, dv_* - B \, \phi = 0, \quad in \ other \ words \quad B(v) := \int_{\mathcal{V}} \frac{\phi_*}{\phi} \, b \, dv_*,$$

with again $\phi = \phi(v)$ and $\phi_* = \phi(v_*)$.

(1) Establish that there exists a function $0 < F \in L^1(\mathcal{V}) \cap \mathbf{P}(\mathcal{V})$ which is a stationary solution

$$\mathcal{L}F = \int_{\mathcal{V}} b_* F_* \, dv_* - \int_{\mathcal{V}} \frac{\phi_*}{\phi} \, b \, dv_* \, F = 0,$$

when b > 0.

(2) Assuming (1), establish that any solution f to the equation (3.3) satisfies (at least formally)

(3.4)
$$\frac{d}{dt} \int_{\mathcal{V}} f^2 \frac{\phi}{F} dv = 2 \int_{\mathcal{V}} (\mathcal{L} f) \frac{f \phi}{F} dv = -D_2(f)$$

(3.5)
$$D_2(f) := \int_{\mathcal{V}} \int_{\mathcal{V}} b_* F \phi \left(\frac{f_*}{F_*} - \frac{f}{F}\right)^2 dv dv_*.$$

Exercice 3.4. Let $S = S_{\mathcal{L}}$ be a strongly continuous semigroup on a Banach space $X \subset L^1$. Show that there is equivalence between

(a) $S_{\mathcal{L}}$ is a Stochastic semigroup;

(b) $\mathcal{L}^* 1 = 0$ and \mathcal{L} satisfies Kato's inequality

$$(\operatorname{sign} f)\mathcal{L}f \leq \mathcal{L}|f|, \quad \forall f \in D(\mathcal{L}).$$

(Hint. In order to prove $(b) \Rightarrow (a)$, consider $f \in D(\mathcal{L}^2)$ and estimate |Stf| - |f| by introducing a telescopic sum and a Taylor expansion in the time variable).

Exercice 3.5. Consider $S_{\mathcal{L}^*}$ a (constant preserving) Markov semigroup and $\Phi : \mathbb{R} \to \mathbb{R}$ a concave function. Prove that $\mathcal{L}^*\Phi(m) \leq \Phi'(m)\mathcal{L}^*m$. (Hint. Use that $\Phi(a) = \inf\{\ell(a); \ell \text{ affine such that } \ell \geq \Phi\}$ in order to prove $S_t^*(\Phi(m)) \leq \Phi(S_t^*m)$ and $\Phi(b) - \Phi(a) \geq \Phi'(a)(b-a)$).