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CHAPTER 2

VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

I write in blue color what has been taught during the classes.

We present the theory of variational solutions for abstract evolution equations as-
sociated to a coercive operator and we apply the theory to the case of uniformly
elliptic parabolic equations.
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1. Introduction

In this chapter we will focus on the question of existence (and uniqueness) of a
solution f = f(t, x) to the (linear) evolution PDE of “parabolic type”

(1.1) ∂tf = Λ f on (0,∞)× Rd,
where Λ is the following integro-differential operator

(1.2) (Λf)(x) = ∆f(x) + a(x) · ∇f(x) + c(x) f(x) +

∫
Rd

b(y, x) f(y) dy,

that we complement with an initial condition

(1.3) f(0, x) = f0(x) in Rd.
Here t ≥ 0 stands for the “time” variable, x ∈ Rd stands for the “position” variable
(for instance), d ∈ N∗.
In order to develop the variational approach for the equation (1.1)-(1.2), we assume
that

f0 ∈ L2(Rd) =: H, which is an Hilbert space,

and that the coefficients satisfy

a, c ∈ L∞(Rd), b ∈ L2(Rd × Rd).
1
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The main result we will present in this chapter is the existence of a weak (varia-
tional) solution (which sense will be specified below)

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

to the evolution equation (1.1)–(1.3). We mean variational solution because the
space of “test functions” is the same as the space in which the solution lives. It
also refers to the associated stationary problem which is of “variational type” (see
[1, chapters VIII & IX]).

The existence of solutions issue is tackled by following a scheme of proof that we
will repeat for all the other evolution equations that we will consider in the next
chapters.

(1) We look for a priori estimates by performing (formal) differential and integral
calculus.

(2) We deduce a possible natural functional space in which lives a solution and
we propose a definition of a solution, that is a (weak) sense in which we may
understand the evolution equation.

(3) We state and prove the associated existence theorem. For the existence proof
we typically argue as follows: we introduce a “regularized problem” for which we are
able to construct a solution and we are allowed to rigorously perform the calculus
leading to the “a priori estimates”, and then we pass to the limit in the sequence
of regularized solutions.

2. A priori estimates

We explain how we may obtain “a priori estimates” for solutions to the parabolic
equation (1.1)-(1.2) and more general, but related, abstract “coercive+dissipative”
type equations. The term “a priori estimates” means that we do not seek in this
first step to establish the estimates with full mathematical rigor but we rather try
to perform formally some reasonable and usual computations (typically: derivation,
integration, summation and inversion of theses operations). This step is fundamen-
tal in order to bring out what kind of information is reasonable to hope for. Of
course, in some next steps, these bounds will have to be justified.

Define V = H1(Rd) endowed with its usual norm and recall the definition (1.2) of
Λ. We first observe that for any nice function f and for any α ∈ (0, 1)

〈Λf, f〉 = −
∫
|∇f |2 +

∫
af · ∇xf +

∫
c f2 +

∫ ∫
b(y, x) f(x)f(y) dxdy.

≤ −α‖f‖2V +
(
α+

1

4α
‖a‖2L∞ + ‖c+‖L∞ + ‖b‖L2

)
‖f‖2H ,

thanks to the Cauchy-Schwarz inequality in L2(Rd) and L2(Rd × Rd) and to the
Young inequality st ≤ αs2/2 + t2/(2α), ∀ s, t > 0.

Exercise 2.1. Prove that in the case div a ∈ L∞, the following estimate holds

〈Λf, f〉 ≤ −‖f‖2V +
(

1 + ‖(c− 1

2
div a)+‖L∞ + ‖b‖L2

)
‖f‖2H .

We also observe that for any nice functions f, g

|〈Λf, g〉| ≤ ‖∇f‖L2 ‖∇g‖L2 + ‖a‖L∞ ‖∇f‖L2 ‖g‖L2 + (‖c‖∞ + ‖b‖L2) ‖f‖L2 ‖g‖L2

≤ (1 + ‖a‖∞ + ‖c‖L∞ + ‖b‖L2

)
‖f‖V ‖g‖V .
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We easily deduce from the two preceding estimates that our parabolic operator falls
into the following abstract variational framework.

Abstract variational framework. We consider a Hilbert space H endowed with
the scalar product (·, ·) = (·, ·)H and the norm | · | = | · |H . We identify H with its
dual space H ′ = H. We consider another Hilbert space V endowed with a norm
‖ · ‖ = ‖ · ‖V . We assume V ⊂ H with dense and bounded embedding. Observing
that for any u ∈ H, the mapping

v ∈ V 7→ (u, v)

defines a linear and continuous form on V , we may identify u as an element of V ′.
In other words, we have

V ⊂ H ⊂ V ′ and 〈u, v〉 = (u, v), ∀u ∈ H, v ∈ V,

where we denote 〈., .〉 = 〈., .〉V ′,V the duality product on V .

We consider a linear operator Λ : V → V ′ which is bounded (or continuous) in the
sense

(i) ∃M > 0 such that

|〈Λg, h〉| ≤M ‖g‖ ‖h‖, ∀ g, h ∈ V ;

and which is “coercive+dissipative”1 (or −Λ satisfies a “G̊arding’s inequality”) in
the sense

(ii) ∃α > 0, b ∈ R such that

〈Λg, g〉 ≤ −α ‖g‖2 + b |g|2, ∀ g ∈ V.

We consider then the associated abstract evolution equation

(2.1)
dg

dt
= Λg on (0, T ),

on a function g : [0, T )→ H with prescribed initial value

(2.2) g(0) = g0 ∈ H.

A priori bound in the abstract variational framework. With the above as-
sumptions and notations, any solution g to the abstract evolution equation (2.1)
(formally) satisfies the following estimate

(2.3) |g(T )|2H + 2α

∫ T

0

‖g(s)‖2V ds ≤ e2bT |g0|2H ∀T.

Indeed, using just the coercivity+dissipativity assumption (ii), we have (at least
formally)

d

dt

|g(t)|2H
2

= 〈Λg, g〉 ≤ −α‖g(t)‖2V + b |g(t)|2H ,

and we conclude to (2.3) thanks to the Gronwall lemma.

1We commonly say that (the bilinear form associated to) −Λ is coercive if (ii) holds with α > 0

and b = 0, and that Λ − b is dissipative if (ii) holds with α = 0 and b ∈ R. Our assumption (ii)
is then more general than a coercivity condition (on −Λ) but less general than a dissipativity

condition (on Λ).
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From estimate (2.3) together with equation (2.1) and the continuity estimate (i) on
Λ, we deduce ∥∥∥dg

dt

∥∥∥
V ′

= ‖Λg‖V ′ ≤M ‖g‖V ∈ L2(0, T ),

and we conclude with

(2.4) g ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).

The two first Lebesgue spaces are defined through the Bochner integral which main
features are explained in Appendix B while the last Sobolev space is defined as
explained below. It is worth emphasizing that (almost) everything in the Bochner
integral for functions with values in Banach spaces holds similarly as for the usual
Lebesgue integral for functions with values in R. The only results about the Bochner
integral we will explicitly used in the sequel are the claims B.6, B.7 and B.8.

Definition 2.2. For a Banach space X and an exponent 1 ≤ p ≤ ∞, we say that
g ∈W 1,p(0, T ;X ) if g ∈ Lp(0, T ;X ) and there exists w ∈ Lp(0, T ;X ) such that

−
∫ T

0

g ϕ′ dt =

∫ T

0

wϕdt in X , ∀ϕ ∈ D(0, T ).

We note w = g′ or w = d
dtg, and we define the Sobolev norm

‖g‖H1(0,T ;X ) := (‖g‖2L2(0,T ;X ) + ‖g′‖2L2(0,T ;X ))
1/2,

as well as the usual modification for the W 1,p(0, T ;X ) norm when p 6= 2.

3. Variational solutions

We develop the theory of variational solution for evolution equation associated
to coercive+dissipative operator and we state our main existence and uniqueness
result.

Definition 3.1. For any given g0 ∈ H, T > 0, we say that

g = g(t) ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′)

is a variational solution to the Cauchy problem (2.1)–(2.2) on the time interval
[0, T ] if it is a solution in the following weak sense

(3.1) (g(t), ϕ(t))H = (g0, ϕ(0))H +

∫ t

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds,

for any ϕ ∈ XT and any 0 ≤ t ≤ T . We say that g is a global solution if it is a
solution on [0, T ] for any T > 0. It is worth emphasizing that (3.1) is meaningful
because of the assumptions made on g, ϕ and Λ.

Theorem 3.2 (J.-L. Lions). With the above definition and assumptions for any
g0 ∈ H, there exists a unique global variational solution to the Cauchy problem
(2.1)-(2.2). As a consequence, any solution satisfies (2.3).

We start with some remarks and we postpone the proof of the existence part of
Theorem 3.2 to the next section.
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3.1. Parabolic equation. As a consequence of Theorem 3.2, for any f0 ∈ L2(Rd)
there exists a unique function

f = f(t) ∈ C([0, T ];L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1), ∀T > 0,

which is a solution to the parabolic equation (1.1)-(1.2) in the variational sense.

3.2. About the functional space. The space obtained thanks to the a priori
estimates established on g is nothing but XT as a consequence of the following
result.

Lemma 3.3. The following inclusion

(3.2) L2(0, T ;V ) ∩H1(0, T ;V ′) ⊂ C([0, T ];H)

holds true. Moreover, for any g ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) there holds

t 7→ |g(t)|2H ∈W 1,1(0, T )

and

(3.3)
d

dt
|g(t)|2H = 2 〈g′(t), g(t)〉V ′,V a.e. on (0, T ).

Proof of Lemma 3.3. We first establish (3.2) thanks to a regularization trick
and using in a fundamental way that C([0, T ];H) is a Banach space. The same
regularization trick and a weak formulation allow us to end the proof.

Step 1. We define the function ḡ = g on [0, T ], ḡ = 0 on R\[0, T ], next for
a mollifier ρ : R → R with compact support included in (−1,−1/2), we define
the approximation to the identity sequence (ρε) by setting ρε(t) := ε−1ρ(ε−1t) and
finally the sequence gε(t) := ḡ∗tρε where ∗ stands for the usual convolution operator
on R. We observe that gε ∈ C1(R;H), gε → g a.e. on [0, T ] and in L2(0, T ;V ) from
the claim B.7. For a fixed τ ∈ (0, T ) and for any t ∈ (0, τ) and any 0 < ε < T − τ ,
we have s 7→ ρε(t− s) ∈ D(0, T ), since

supp ρε(t− ·) ⊂ [t+ ε/2, t+ ε] ⊂ [ε/2, τ + ε] ⊂ [0, T ],

and we have then

gε =

∫
R
ρε(t− s) ḡ(s) ds =

∫ T

0

ρε(t− s) g(s) ds.

Similarly, we compute

g′ε =

∫
R
∂tρε(t− s) ḡ(s) ds

= −
∫ T

0

(∂sρε(t− s)) g(s) ds

=

∫ T

0

ρε(t− s) g′(s) ds = ρε ∗ (g′).

As a consequence g′ε → g′ a.e. and in L2(0, τ ;V ′), from the claim B.7.

Step 2. We observe that for t 7→ u(t) ∈ C1((0, T );H) and because h 7→ |h|2H is
C1(H;R), we have t 7→ |u(t)|2H is C1((0, T );R) and

d

dt
|u(t)|2H = 2(u′(t), u(t))H = 2〈u′(t), u(t)〉V ′,V .
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We fix τ ∈ (0, T ) and ε, ε′ ∈ (0, T − τ), and we the above computation gives

d

dt
|gε(t)− gε′(t)|2H = 2 〈g′ε − g′ε′ , gε − gε′〉V ′,V ,

so that for any t1, t2 ∈ [0, τ ]

(3.4) |gε(t2)− gε′(t2)|2 = |gε(t1)− gε′(t1)|2 + 2

∫ t2

t1

〈g′ε − g′ε′ , gε − gε′〉ds.

Since gε → g a.e. on [0, τ ] in V ⊂ H, we may fix t1 ∈ [0, τ ] such that

(3.5) gε(t1)→ g(t1) in H.

As a consequence of (3.4), (3.5) as well as gε → g in L2(0, τ ;V ) and g′ε → g′ in
L2(0, τ ;V ′), we have

lim sup
ε,ε′→0

sup
[0,τ ]

|gε(t)− gε′(t)|2H ≤ lim
ε,ε′→0

∫ τ

0

‖g′ε − g′ε′‖V ′ ‖gε − gε′‖V ds = 0,

where we have used Fatou’s lemma in the last equality. We thus deduce that (gε) is
a Cauchy sequence in C([0, τ ];H), and then gε converges in C([0, τ ];H) to a limit
g̃ ∈ C([0, τ ];H). That proves g = g̃ a.e. and thus g ∈ C([0, τ ];H) (up to modifying
g on a set of zero Lebesgue measure). We prove similarly that g ∈ C([τ, T ];H) for
any τ ∈ (0, T ) and thus g ∈ C([0, T ];H).

Step 3. Similarly as for (3.4), we have

|gε(t2)|2H = |gε(t1)|2H + 2

∫ t2

t1

〈g′ε, gε〉ds,

and passing to the limit ε→ 0, we get

|g(t2)|2H = |g(t1)|2H + 2

∫ t2

t1

〈g′, g〉ds.

Using again that 〈g′, g〉 ∈ L1(0, T ), we easily deduce from the above identity the
two remaining claims of the Lemma. �

Exercise 3.4 (A weak solution is a variational solution). Take g0 ∈ H and assume
that g ∈ L2(0, T ;V ) satisfies

(g0, ϕ(0)) =

∫ T

0

(gϕ′ + Λgϕ)dt in V ′,

for any ϕ ∈ C1
c ([0, T );R). Prove that g ∈ XT and g is a variational solution. (Hint.

Use Lemma 3.3 and Steps 4 & 5 of the existence part of the proof of Theorem 3.2).

3.3. A posteriori estimate and uniqueness. Taking ϕ = g ∈ XT as a test
function in (3.1), we deduce from Lemma 3.3,

1

2
|g(t)|2H −

1

2
|g0|2H = |g(t)|2H − |g0|2H −

∫ t

0

〈g′(s), g(s)〉 ds

=

∫ t

0

〈Λg, g〉 ds

≤
∫ t

0

(−α ‖g‖2V + b |g|2H) ds,
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where we have used (3.3) at the first line, the variational formulation (3.1) at the
second line and the “coercive+dissipative” assumption on Λ at the last line. We
then obtain (2.3) as an a posteriori estimate thanks to the Gronwall.

Let us prove now the uniqueness of the variational solution g associated to a
given initial datum g0 ∈ H. In order to do so, we consider two variational solutions
g and f associated to the same initial datum. Since the equation (2.1), (2.2) is
linear, or more precisely, the variational formulation (3.1) is linear in the solution,
the function g− f satisfies the same variational formulation (3.1) but associated to
the initial datum g0 − f0 = 0. The a posteriori estimate (2.3) then holds for g − f
and implies that g − f = 0.

4. Proof of the existence part of Theorem 3.2.

We first prove thanks to a compactness argument in step 1 to step 3 that there
exists a function g ∈ L2(0, T ;V ) such that

(4.1) 〈g0, ϕ(0)〉+

∫ T

0

{
〈Λg(s), ϕ(s)〉V ′,V + 〈ϕ′(s), g(s)〉V ′,V

}
ds = 0,

for any ϕ ∈ C1
c ([0, T );V ). The proof relies on an approximation scheme and a com-

pactness argument by taking advantage that the Bochner integral space L2(0, T ;V )
is a Hilbert space. We next deduce by some “regularization tricks” in step 4 and
step 5 that the above weak solution is a variational solution.

Step 1. For a given g0 ∈ H and ε > 0, we seek g1 ∈ V such that

(4.2) g1 − εΛg1 = g0.

We introduce the bilinear form a : V × V → R defined by

a(u, v) := (u, v)− ε 〈Λu, v〉.
Thanks to the assumptions made on Λ, we have

|a(u, v)| ≤ |u| |v|+ εM ‖u‖ ‖v‖,
and

(4.3) a(u, u) ≥ |u|2 + ε α ‖u‖2 − ε b |u|2 ≥ ε α ‖u‖2,
whenever ε b < 1, what we assume from now. On the other hand, the mapping
v ∈ V 7→ (g0, v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem which implies

∃! g1 ∈ V (g1, v)− ε〈Λg1, v〉 = (g0, v) ∀ v ∈ V.

Step 2. Fix ε > 0 as in the preceding step and build by induction the sequence (gk)
in V ⊂ H defined by the family of equations

(4.4) ∀ k gk+1 − gk
ε

= Λ gk+1.

Observe that from the identity

(gk+1, gk+1)− ε 〈Λgk+1, gk+1〉 = (gk, gk+1),

we deduce (that is (4.3) again)

|gk+1|2 + ε α ‖gk+1‖2 − ε b |gk+1|2 ≤ |gk| |gk+1| ≤
1

2
|gk|2 +

1

2
|gk+1|2,
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and then
|gk+1|2 + 2εα ‖gk+1‖2 ≤ (1− 2ε b)−1 |gk|2, ∀ k ≥ 0.

Thanks to the discrete version of the Gronwall lemma, we get

|gn|+ 2α

n∑
k=1

ε‖gk‖2 ≤ (1− 2ε b)−n|g0| ≤ e2bεn |g0|, ∀n ≥ 1.

We now fix T > 0, n ∈ N∗, and we define

ε := T/n, tk = k ε, gε(t) := gk on [tk, tk+1).

The last estimate writes then

(4.5) 2α

∫ T

0

‖gε‖2V dt ≤ (e2bT + 2αε) |g0|2.

Step 3. Consider a test function ϕ ∈ C1
c ([0, T );V ) and define ϕk := ϕ(tk), so that

ϕn = ϕ(T ) = 0. Multiplying the equation (4.4) by ϕk and summing up from k = 0
to k = n− 1, we get

−(ϕ0, g0)−
n∑
k=1

〈ϕk − ϕk−1, gk〉 =

n∑
k=0

ε 〈Λgk+1, ϕk〉 =

n∑
k=1

ε 〈Λgk, ϕk−1〉,

where in the LHS we use the duality production 〈, 〉 in V ′× V instead of the scalar
product (, ) in H thanks to the inclusions V ⊂ H = H ′ ⊂ V ′. Introducing the two
functions ϕε, ϕε : [0, T )→ V defined by

ϕε(t) := ϕk−1 and ϕε(t) :=
tk+1 − t

ε
ϕk−1 +

t− tk
ε

ϕk for t ∈ [tk, tk+1),

in such a way that

ϕ′ε(t) =
ϕk − ϕk−1

ε
for t ∈ (tk, tk+1),

the above equation also writes

(4.6) − 〈ϕ(0), g0〉 −
∫ T

ε

〈ϕ′ε, gε〉 dt =

∫ T

0

〈Λgε, ϕε〉 dt.

On the one hand, from (4.5) and the claim B.8 about Bochner integral, we know
that up to the extraction of a subsequence, there exists g ∈ L2(0, T ;V ) such that
gε ⇀ g weakly in L2(0, T ;V ). On the other hand, from the above construction,
we have ϕ′ε → ϕ′ and ϕε → ϕ both uniformly in L∞(0, T ;V ) (using that ϕ and ϕ′

belong to C([0, T ];V ) and thus are uniformly continuous). We may then pass to
the limit as ε→ 0 in (4.6) and we get (4.1).

Step 4. We prove that g ∈ XT . Taking ϕ := χ(t)ψ with χ ∈ C1
c ((0, T )) and ψ ∈ V

in equation (4.1) and using claim B.6, we get〈∫ T

0

gχ′dt, ψ
〉

=

∫ T

0

〈g, ψ〉χ′ dt = −
∫ T

0

〈Λg, ψ〉χdt =
〈
−
∫ T

0

Λgχ dt, ψ
〉
.

This equation holding true for any ψ ∈ V , it is equivalent to∫ T

0

gχ′dt = −
∫ T

0

Λgχ dt in V ′ for any χ ∈ D(0, T ),

or in other words

g′ = Λg in the sense of distributions in V ′.
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Since g ∈ L2(0, T ;V ), we get that Λg ∈ L2(0, T ;V ′) and the above relation precisely
means that g ∈ H1(0, T ;V ′) as defined in Definition 2.2. We conclude thanks to
Lemma 3.3 that g ∈ XT .

Step 5. Assume first ϕ ∈ Cc([0, T );H) ∩ L2(0, T ;V ) ∩ H1(0, T ;V ′). We define
ϕε(t) := ϕ∗t ρε for a mollifier (ρε) with compact support included in (0,∞) so that
from claim B.7, ϕε ∈ C1

c ([0, T );V ) for any ε > 0 small enough and

ϕε → ϕ in C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′).

Writing the equation (4.1) for ϕε and passing to the limit ε→ 0 we get that (4.1)
also holds true for ϕ.

Assume next that ϕ ∈ XT . We fix χ ∈ C1(R) such that suppχ ⊂ (−∞, 0), χ′ ≤ 0,

χ′ ∈ Cc(] − 1, 0[) and
∫ 0

−1 χ
′ = −1, and we define χε(t) := χ((t − T )/ε) so that

ϕε := ϕχε ∈ Cc([0, T );H) and χε → 1[0,T ] a.e., χ′ε → −δT in D′(R) as ε → 0.
Equation (4.1) for the test function ϕε writes

−〈g0, ϕ(0)〉 −
∫ T

0

χ′ε〈ϕ, g〉 ds =

∫ T

0

χε
{
〈Λg, ϕ〉+ 〈ϕ′, g〉

}
ds,

and we obtain the variational formulation (3.1) for t1 = 0 and t2 = T by passing
to the limit ε→ 0 in the above equation. �

Appendix A. Exercises

Exercise A.1. Following Definition 2.2, we say that g ∈ L2(0, T ;V ) is a solution to the abstract

evolution equation (2.1)-(2.2) if

(A.1) − g0 ϕ(0)−
∫ T

0
g ϕ′ dt =

∫ T

0
Λg ϕ dt in V ′, ∀ϕ ∈ C1

c ([0, T )).

Prove that under the hypothesis of Theorem 3.2, a function g ∈ L2(0, T ;V ) is a solution to

the abstract evolution equation (2.1)-(2.2) in the above sense if, and only if, it is a variational
solution (so that in particular g ∈ XT ). (Hint. Use some arguments presented in Lemma 3.3 and

in steps 3, 4 and 5 of the proof of Theorem 3.2).

Exercise A.2. Prove that f ≥ 0 if f0 ≥ 0 and b ≥ 0 for the solution of the parabolic equation
(1.1). (Hint. Show that the sequence (gk) defined in step 2 of the proof of the existence part is

such that gk ≥ 0 for any k ∈ N).

Exercise A.3. Prove the existence of a solution g ∈ XT to the equation

(A.2)
dg

dt
= Λg +G in (0, T ), g(0) = g0,

for any initial datum g0 ∈ H and any source term G ∈ L2(0, T ;V ′).
(Hint. Repeat the same proof as for the Theorem 3.2 where for the a priori bound one can use∫ T

0
〈g,G〉 dt ≤

α

2

∫ T

0
‖g(t)‖2V dt+

1

2α

∫ T

0
‖G(t)‖2V ′ dt,

and for the approximation scheme one can define

ε−1 (gk+1 − gk) = Λgk+1 +Gk, Gk :=

∫ tk+1

tk

G(s) ds).

Exercise A.4. Generalize the existence and uniqueness result to the PDE equation

(A.3) ∂tf = ∂i(aij ∂jf) + bi ∂if + ∂i(βif) + cf +

∫
k(t, x, y) f(t, y) dy +G

where aij , bi, βi, c and k are times dependent coefficients and where aij is uniformly elliptic in

the sense that

(A.4) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd aij(t, x) ξiξj ≥ α |ξ|2, α > 0.

More precisely, establish the following result:
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Theorem A.5 (J.-L. Lions - the time dependent case). Assume that

a, b, β, c ∈ L∞((0, T )× Rd), k ∈ L∞(0, T ;L2(Rd × Rd)),

and that a satisfies the uniformly elliptic condition (A.4). For any g0 ∈ L2(Rd) and G ∈ L2(0, T ;
H−1(Rd)), there exists a unique variational solution to the Cauchy problem associated to (A.3)

in the sense that

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

such that for any ϕ ∈ XT and any t ∈ (0, T ) there holds∫
Rd
g(t)ϕ(t) dx =

∫
Rd
g0ϕ(0) dx+

∫ t

0

∫
Rd

(Gϕ+ g∂tϕ) dxds(A.5)

+

∫ t

0

∫
Rd
{(bi ∂if + cf)ϕ− aij ∂jf∂iϕ} dxds+

∫ t

0

∫
Rd×Rd

k(t, x, y) f(t, y)ϕ(s, x) dxdyds

(Hint. Define

ai :=
n

T

∫ ti

ti−1

a(t, ·) dt, i = 1, . . . , n, ti := iT/n,

and a similar way bi, ci, ki, and prove that there exists a unique variational solution gi ∈ XT/n
to equation (1.1)-(1.2) associated to the ai, bi, ci, ki and the initial condition g0 when i = 1,

gi−1(T/n) when i ≥ 2. Build next a solution gn ∈ XT to the equation (A.3) associated to the

piecewise constant functions an(t) = ai if t ∈ [ti, ti+1), i = 0, . . . , n − 1, and bn, cn, kn defined
similarly. Conclude by passing to the limit n→∞).

Exercise A.6. We consider the nonlinear McKean-Vlasov equation

(A.6) ∂tf = Λ[f ] := ∆f + div(F [f ]f), f(0) = f0,

with

F [f ] := a ∗ f, a ∈ L∞(Rd)d.

1) Prove the a priori estimates

‖f(t)‖L1 = ‖f0‖L1 ∀ t ≥ 0, ‖f(t)‖L2
k
≤ eCt ‖f0‖L2

k
∀ t ≥ 0,

for any k > 0 and a constant C := C(k, ‖a‖L∞ , ‖f0‖L1 ), where we define the weighted Lebesgue

space L2
k by its norm ‖f‖L2

k
:= ‖f〈x〉k‖L2 , 〈x〉 := (1 + |x|2)1/2.

2) We set H := L2
k, k > d/2, and V := H1

k , where we define the weighted Sobolev space H1
k by

its norm ‖f‖2
H1

k

:= ‖f‖2
L2

k

+ ‖∇f‖2
L2

k

. Observe that for any f ∈ V the distribution Λ[f ] is well

defined in V ′ thanks to the identity

〈Λ[f ], g〉 := −
∫
Rd

(∇f + (a ∗ f)f) · ∇(g〈x〉2k) dx ∀ g ∈ V.

(Hint. Prove that L2
k ⊂ L1). Write the variational formulation associated to the nonlinear

McKean-Vlasov equation. Establish that if moreover the variational solution to the nonlinear

McKean-Vlasov equation is nonnegative then it is mass preserving, that is ‖f(t)‖L1 = ‖f0‖L1

for any t ≥ 0. (Hint. Take χM 〈x〉−2k as a test function in the variational formulation, with

χM (x) := χ(x/M), χ ∈ D(Rd), 1B(0,1) ≤ χ ≤ 1B(0,2)).

3) Prove that for any 0 ≤ f0 ∈ H and g ∈ C([0, T ];H) there exists a unique mass preserving
variational solution 0 ≤ f ∈ XT to the linear McKean-Vlasov equation

∂tf = ∆f + div(F [g]f), f(0) = f0.

Prove that the mapping g 7→ f is a contraction in C([0, T ];H) for T > 0 small enough. Conclude

to the existence and uniqueness of a global (in time) variational solution to the nonlinear McKean-
Vlasov equation.

Exercise A.7. For a ∈ W 1,∞(Rd), c ∈ L∞(Rd), f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, we consider the
linear parabolic equation

(A.7) ∂tf = Λf := ∆f + a · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space for some given

T > 0.
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1) Prove that for γ ∈ C1(R), γ(0) = 0, γ′ ∈ L∞, there holds γ(f) ∈ H for any f ∈ H and

γ(f) ∈ V for any f ∈ V .

2) Prove that f ∈ XT is a variational solution to (A.7) if and only if

d

dt
f = Λf in V ′ a.e. on (0, T ).

3) On the other hand, prove that for any f ∈ XT and any function β ∈ C2(R), β(0) = β′(0) = 0,

β′′ ∈ L∞, there holds

d

dt

∫
Rd
β(f) = 〈

d

dt
f, β′(f)〉V ′,V a.e. on (0, T ).

(Hint. Consider fε = f ∗t ρε ∈ C1([0, T ];H1) and pass to the limit ε→ 0).

4) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞. Prove that

any variational solution f ∈ XT to the above linear parabolic equation satisfies∫
Rd
β(ft) dx ≤

∫
Rd
β(f0) dx+

∫ t

0

∫
Rd
{c f β′(f)− (div a)β(f)} dxds,

for any t ≥ 0.

5) Assuming moreover that there exists a constant K ∈ (0,∞) such that 0 ≤ s β′(s) ≤ Kβ(s) for

any s ∈ R, deduce that for some constant C := C(a, c,K), there holds∫
Rd
β(ft) dx ≤ eCt

∫
Rd
β(f0) dx, ∀ t ≥ 0.

6) Prove that for any p ∈ [1, 2], for some constant C := C(a, c) and for any f0 ∈ L2 ∩ Lp, there
holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β on R+ and extend it to R by symmetry. More precisely, define β′′α(s) = 2θ1s≤α+

p(p − 1)sp−21s>α, with 2θ = p(p − 1)αp−2 and then the primitives which vanish at the origin,

which are thus defined by β′α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) = θs21s≤α +

(sp + p(p− 2)αp−1s+Aαp)1s>α, A := p(p− 1)/2− 1− p(p− 2). Observe that sβ′α(s) ≤ 2βα(s)
because sβ′′α(s) ≤ β′α(s) and βα(s) ≤ β(s) because β′′α(s) ≤ β′′(s)).

7) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

‖f(t)‖Lp ≤ eCt‖f0‖Lp , ∀ t ≥ 0.

(Hint. Define β′′R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2, and then the

primitives which vanish in the origin and which are thus defined by β′R(s) = psp−11s≤R +

(pRp−1 + 2θ(s − R))1s>R, βR(s) = sp1s≤R + (Rp + pRp−1(s − R) + θ(s − R)2)1s>R. Observe
that sβ′R(s) ≤ pβR(s) because sβ′′R(s) ≤ (p − 1)β′R(s) and βR(s) ≤ β(s) because β′′R(s) ≤ β′′(s).
Pass to the limit p→∞ in order to deal with the case p =∞).

8) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the sense of

distributions) solution to the linear parabolic equation (A.7). (Hint: Consider f0,n ∈ L1 ∩ L∞
such that f0,n → f0 in Lp, 1 ≤ p <∞, and prove that the associate variational solution fn ∈ XT
is a Cauchy sequence in C([0, T ];Lp). Conclude the proof by passing to the limit p→∞).

9) Establish the Lp estimates with “optimal” constant C (that is the one given by the formal
computations).

10) Extend the above result to an equation with an integral term and/or a source term.

11) Prove the existence of a weak solution to the McKean-Vlasov equation (A.6) for any initial

datum f0 ∈ L1(Rd).

12) Recover the positivity result of exercise A.2. (Hint. Choose first β(s) := sp− with p > 1 and

let next p→ 1).
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Appendix B. The Bochner integral

In this section we present several definitions and results (without proof) about the Bochner integral
which generalizes the Lebesgue integral for functions taking values in a general Banach space. We

refer to [3, sections V.3, V.4] for details.

We consider X a Banach space endowed with the strong topology (associated to its norm) and
(Ω,T , µ) a measured space.

We say that f : Ω→ X is a simple function if

f =
∑
i∈I

ai 1Ai
,

for some finite set I, some measurable sets Ai and some ai ∈ X . For a simple function, we define

the integral by ∫
Ω
f dµ :=

∑
i∈I

ai µ(Ai) ∈ X .

We say that a function f : Ω→ X is measurable if there exists a sequence (fn) of simple functions

such that

a.e. on Ω, fn → f.

Similarly and for later reference, we say a function f : Ω→ X is weakly measurable if there exists
a sequence (fn) of simple functions such that

a.e. on Ω, fn ⇀ f weakly.

Here, weakly has to be understood in the sense of the weak σ(X ,X ′) topology or of the weak∗
σ(Y ′,Y) when X = Y ′ for some Banach space Y. In both cases, we have ‖f‖ ≤ lim inf ‖fn‖.
Observe that if f is (weakly) measurable then ‖f‖ is measurable (because the norm is lsc for the
weak topologies). We say that a measurable function f is integrable (in the sense of Bochner) if

there exists a sequence (fn) of simple functions such that

fn → f a.e. on Ω and

∫
Ω
‖fn − f‖ dµ→ 0.

Equivalently, a measurable function f : Ω→ X is integrable if ‖f‖ is integrable. For a integrable

function, we define the (Bochner) integral by∫
Ω
f dµ := lim

n→∞

∫
Ω
fn dµ.

We have then ∥∥∥∫
Ω
f dµ

∥∥∥ ≤ ∫
Ω
‖f‖ dµ.

In the sequel, we do not distinguish between two measurable functions f, g such that f = g a.e.

on Ω, and we just write f = g in that case (which as usually means that f and g are in the same

class of functions for the equivalence relation which is the a.e. equality). We define the Lebesgue
spaces

Lp(Ω;X ) := {f : Ω→ X measurable; ‖f‖Lp <∞}
with

‖f‖Lp :=
(∫

Ω
‖f‖p dµ

)1/p
, p ∈ [1,∞), ‖f‖L∞ := inf{λ ≥ 0; ‖f‖ ≤ λ a.e.}.

The fundamental example is the following. We consider two measurable spaces (E,A, µ) and
(F,B, ν) as well as a measurable function f : E ×F → R. Abusing notations, for p, q ∈ [1,∞), we
have the equivalence between f ∈ Lp(E;Lq(F )) and∫

E

(∫
F
|f(x, y)|qdν(y)

)p/q
dµ(x) <∞,

thanks to the Fubini-Tonelli theorem, and a similar equivalence holds when p or q =∞. Because

of this observation, when X = Lq(F ), most of the results presented below can alternatively be

proved using the usual Lebesgue integration theory and Fubini-Tonelli type results.
At this point, it is worth mentioning that another alternative to the Bochner integral is to define

the integral by weak∗ duality.
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Fact B.1. Consider a function f : Ω → Y ′ which is weakly∗ measurable and such that ‖f‖ is

integrable. Then, there exists a unique ξ ∈ Y ′ such that

∀ y ∈ Y, 〈ξ, y〉Y′,Y =

∫
Ω
〈f(x), y〉Y′,Ydµ(x).

We say that ξ is the weak∗ integral of f , and we write

ξ =

∫
Ω
f(x) dµ(x).

Of course, when X is reflexive the weak∗ integral coincides with the Bochner integral. We do not

pursue this point of view in the sequel.

Fact B.2. The Lebesgue spaces Lp(Ω;X ) are Banach spaces for any 1 ≤ p ≤ ∞, and Cc(Ω;X )

is dense in Lp(Ω;X ) when 1 ≤ p <∞ and (Ω,T ) is the borelian σ-algebra associated to a locally
compact and σ-compact topologic space Ω (for instance when Ω ⊂ R endowed with the usual

topology).

Fact B.3. If Ω = (0, T ) and T is the Lebesgue σ-algebra, any weakly σ(X ,X ′) continuous

function f : Ω→ X is measurable. If (fn) is a sequence of measurable functions such that fn ⇀ f

a.e. in σ(X ,X ′), then f is measurable.

The two preceding facts are consequences of a more general and fundamental result.

Fact B.4. (Pettis) A function f : Ω → X is measurable iff it is weakly measurable (for the
σ(X ,X ′) topology) and separately valued, which means that its range {f(x), x ∈ Ω} is a separable

set.

Fact B.5. (Lebesgue dominated convergence Theorem) If (fn) is a sequence of integrable func-

tions and g : Ω→ R+ is an integrable function such that

fn → f a.e. and ‖fn‖ ≤ g a.e.,

then f is integrable and fn → f in L1(Ω,X ).

Fact B.6. Consider X,Y two Banach spaces, 1 ≤ p ≤ ∞ and A ∈ B(X,Y ). If f ∈ Lp(Ω;X)
then Af ∈ Lp(Ω;Y ). If furthermore p = 1 then

A

∫
f dµ =

∫
(Af) dµ.

In particular, we have 〈
ξ,

∫
f(x)dµ(x)

〉
=

∫
〈ξ, f(x)〉dµ(x), ∀ ξ ∈ X ′.

If furthermore, X ⊂ Y , then f ∈ L1(Ω;X) implies f ∈ L1(Ω;Y ) and the two integrals coincide.

Fact B.7. If f ∈ Lp(Ω;X ), g ∈ Lp
′
(Ω,R), h ∈ Lp

′
(Ω,X ′), we have fg ∈ L1(Ω;X ), 〈f, h〉 ∈

L1(Ω,R). In the particular case Ω = R, we may also define the convolution product f∗g ∈ L1(R;X )
for any f ∈ L1(R;X ) and g ∈ L1(R;R). For a sequence of mollifiers (ρε) with ρε ∈ Ckc (R), ρε ⇀ δ0,

we then have f ∗ ρε ∈ Ck(R;X ) and f ∗ ρε → f in Lp(R;X ).

Fact B.8. If X is a reflexive space and p ∈ (1,∞), then Lp(Ω;X ) is also a reflexive space, in
particular if (fn) is a bounded sequence in Lp(Ω;X ), there exists f ∈ Lp(Ω;X ) such that fn ⇀ f ,

which means ∫
Ω
〈ξ(x), fn(x)〉dµ(x) →

∫
Ω
〈ξ, f(x)〉dµ(x),

for any ξ ∈ Lp
′
(Ω,X ′). Similarly, if X = Y ′ with Y separable, then L∞(Ω;X ) is weakly∗

sequentially compact, which means that if (fn) is a bounded sequence in L∞(Ω;X ), there exists
f ∈ L∞(Ω;X ) such that fn ⇀ f weakly∗, or in other words∫

Ω
〈fn(x), u(x)〉dµ(x) →

∫
Ω
〈f(x), u(x)〉dµ(x),

for any u ∈ L1(Ω,Y).

Fact B.9. For 1 ≤ p ≤ ∞, if (fn) is a sequence of Lp(Ω;X ), f : Ω→ X is a function such that

‖fn‖Lp(Ω;X ) ≤ C, fn ⇀ f a.e.

then f ∈ Lp(Ω;X ) and ‖f‖Lp ≤ lim inf ‖fn‖Lp .



14 CHAPTER 2 - VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

Fact B.10. The space D((0, T );X ) of smooth and with compact support functions with values

in X is dense in Lp(0, T ;X ) for any 1 ≤ p <∞, and weakly∗ dense in L∞(0, T ;X ).

Assume that Ω is an open set of Rd. A distribution is a linear and continuous mapping T :
D(Ω)→ X , we note T ∈ D′(Ω;X ). For example, if f ∈ L1

loc(Ω;X ), we define

〈Tf , ϕ〉 :=

∫
Ω
f(x)ϕ(x) dx

and we observe that Tf ∈ D′(Ω;X ). We have Tf = 0 implies f = 0 a.e. For T ∈ D′(Ω;X ), we

define ∂T ∈ D′(Ω;X ) by

〈∂T, ϕ〉 := −〈T, ∂ϕ〉, ∀ϕ ∈ D(Ω).

For T ∈ (0,∞), we define

W 1,p((0, T );X ) := {f ∈ Lp(0, T ;X ), f ′ ∈ Lp(0, T ;X )}.

We have W 1,p((0, T );X ) ⊂ C([0, T ];X ).

Appendix C. Further results: C0-semigroup, evolution equation with source term and
Duhamel formula

C.1. C0-semigroup. We explain how we may associate a C0-semigroup to the evolution equa-

tion (2.1), (2.2) as a mere consequence of the linearity of the equation and of the existence and

uniqueness result.

Definition C.1. Consider X a Banach space, and denote by B(X) the set of linear and bounded
operators on X. We say that S = (St)t≥0 is a strongly continuous semigroup of linear operators

on X, or just a C0-semigroup on X, we also write S(t) = St, if

(i) ∀t ≥ 0, St ∈ B(X) (one parameter family of operators);

(ii) ∀f ∈ X, t 7→ St f ∈ C([0,∞), X) (continuous trajectories);

(iii) S0 = I; ∀ s, t ≥ 0 St+s = St Ss (semigroup property).

Proposition C.2. The operator Λ generates a semigroup on H defined in the following way.

For any g0 ∈ H, we set Stg := g(t) where g(t) is the unique variational solution associated to g0

and given by Theorem 3.2. We also denote SΛ(t) = eΛt = St for any t ≥ 0.

• S satisfies (i). By linearity of the equation and uniqueness of the solution, we clearly have

St(g0 + λf0) = g(t) + λf(t) = Stg0 + λStf0

for any g0, f0 ∈ H, λ ∈ R and t ≥ 0. Thanks to estimate (2.3) we also have |Stg0| ≤ ebt |g0| for

any g0 ∈ H and t ≥ 0. As a consequence, St ∈ B(H) for any t ≥ 0.

• S satisfies (ii). Thanks to lemma 3.3 we have t 7→ Stg0 ∈ C(R+;H) for any g0 ∈ H.

• S satisfies (iii). For g0 ∈ H and t1, t2 ≥ 0 denote g(t) = Stg0 and g̃(t) := g(t+ t1). Making the

difference of the two equations (3.1) written for t = t1 and t = t1 + t2, we see that g̃ satisfies

(g̃(t2), ϕ̃(t2)) = (g(t1 + t2), ϕ(t1 + t2))

= (g(t1), ϕ(t1)) +

∫ t1+t2

t1

{
〈Λg(s), ϕ(s)〉+ 〈ϕ′(s), g(s)〉

}
ds

= (g̃(0), ϕ̃(0)) +

∫ t2

0

{
〈Λg̃(s), ϕ̃(s)〉+ 〈ϕ̃′(s), g̃(s)〉

}
ds,

for any ϕ ∈ Xt1+t2 with the notation ϕ̃(t) := ϕ(t+ t1) ∈ Xt2 . Since the equation on the functions
g̃ and ϕ̃ is nothing but the variational formulation associated to the equation (2.1), (2.2) with
initial datum g̃(0), we obtain

St1+t2g0 = g(t1 + t2) = g̃(t2) = St2 g̃(0) = St2g(t1) = St2St1g0.

Exercise C.3. We denote by St the semigroup in H generated by a coercive+dissipative operator

Λ : V ⊂ H → V ′.
1) Prove that for any g0 ∈ H and ϕ ∈ V the function t 7→ (Stg0, ϕ) belongs to H1(0, T ) and

d

dt
(Stg0, ϕ) = (ΛStg0, ϕ) in H−1(0, T ).
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2) Prove that for any G ∈ C([0, T ];H) and ϕ ∈ V there holds

d

dt

∫ t

0
(St−sG(s), ϕ) ds = (G(t), ϕ) +

∫ t

0
(ΛSt−sG(s), ϕ) ds in H−1(0, T ).

3) Establish the Duhamel formula, namely that for g0 ∈ H and G ∈ C([0, T ];H), the function

g(t) := Stg0 +

∫ t

0
St−sG(s) ds

is a weak (make precise the sense) solution to the evolution equation with source term

dg

dt
= Λg +G on [0,∞), g(0) = g0.

C.2. Evolution equation with source term and Duhamel formula. In that last section,

we come back on Exercises A.3 and C.3.

• For g0 ∈ H and G ∈ L2(0, T ;V ′) a function g ∈ XT is a variational solution to the evolution
equation with source term

(C.1)
dg

dt
= Λg +G on [0, T ], g(0) = g0,

if that equation holds in V ′, namely if for any ϕ ∈ V there holds

d

dt
(g(t), ϕ) = 〈Λg(t), ϕ〉+ 〈G(t), ϕ〉 in the sense of D′(0, T ;R).

That is equivalent to

〈
d

dt
g(t), ϕ〉 = 〈Λg(t), ϕ〉+ 〈G(t), ϕ〉 a.e. t ∈ (0, T ),

or more explicitly∫ T

0
(g(t), ϕ)χ′ dt− (g0, ϕ)χ(0) =

∫ T

0
{〈Λg(t), ϕ〉+ 〈G(t), ϕ〉}χ(t) dt,

for any χ ∈ C1
c ([0, T )) and ϕ ∈ V . One can then deduce from the last formulation and by density

of the separate variables functions D(0, T ) ⊗ V into XT , or just by taking the next formulation

as a definition of a variational solution, that for any ϕ ∈ XT

(C.2) [〈g, ϕ〉]T0 −
∫ T

0
〈
d

dt
ϕ, g〉dt =

∫ T

0
〈Λg +G,ϕ〉dt.

• When g0 ∈ H and G ∈ C([0, T ];H) one can define thanks to Proposition C.2 the following

function

(C.3) g(t) := eΛ t g0 +

∫ t

0
eΛ (t−s)G(s) ds.

We see that g ∈ C([0, T ];H), and using the estimate (2.3)∫ T

0
‖eΛ tf‖2V dt ≤

e2bT

2α
|f |2H ,

we easily find ∫ T

0
‖g(t)‖2V dt ≤ C1(T ) |g0|2H + C2(T )

∫ T

0
|G(s)|2H ds.

Finally, since

t 7→ eΛ tf ∈ H1(0, T ;V ′), ‖∂t(eΛ tf)‖L2(V ′) ≤ C3(T ) |f |2H ,

we deduce that g ∈ H1(0, T ;V ′) with explicit estimates. We may then compute in L2(0, T ;V ′)

∂tg = ΛeΛtg0 +G(t) +

∫ t

0
ΛeΛ (t−s) G(s) ds = Λg +G(t),

(see also Exercise C.3) and we obtain that g(t) is a variational solution to the evolution equation
with source term (C.1).

• When g0 ∈ H and G ∈ L2([0, T ];V ′) the sense of the Duhamel formula is less clear. One can
however prove the existence of a variational solution by just repeating the proof used to tackle
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the sourceless evolution equation (1.1). More precisely, we consider the following discrete scheme:

we build (gk) iteratively by setting

gk+1 − gk
ε

= Λgk+1 +Gk, Gk :=

∫ tk+1

tk

G(s) ds.

We compute

|gk+1|2(1− εb) + ε α ‖gk+1‖2V ≤ |gk| |gk+1|+ ε ‖gk+1‖V ‖Gk‖V ′

≤
1

2
|gk|2 +

1

2
|gk+1|2 + ε

α

2
‖gk+1‖2V +

ε

2α
‖Gk‖2V ′ ,

and then

|gk+1|2(1− 2εb) + ε α ‖gk+1‖2V ≤ |gk|2 +
ε

α
‖Gk‖2V ′ .

We get an estimate on |gk+1|2 which is uniform on k when k ε ≤ T , for T > 0 fixed, by using a

discrete version of the Gronwall lemma. We conclude as in the proof of Theorem 3.2.

• We may argue in a different way. When g0 ∈ H and G ∈ C([0, T ];H) the Duhamel formula

(C.3) gives a variational solution to the evolution equation with source term in the sense (C.2).

Making the choice ϕ = g, we get

1

2
[|g|2]T0 =

∫ T

0
(〈Λg, g〉+ 〈G, g〉) dt

≤
∫ T

0
{−α ‖g‖2V + b |g|2 + ‖G‖V ′ ‖g‖V } dt

≤ −
α

2

∫ T

0
‖g‖2V dt+

b2

2α

∫ T

0
‖G‖2V ′ dt,

and thanks to the Gronwall lemma, we obtain

|g(T )|2 + α

∫ T

0
‖g‖2V dt ≤ e

bT |g0|2H + CT

∫ T

0
‖G‖2V ′ dt.

We conclude to the existence by smoothing the source term G (what it is always possible in the
explicit examples H = L2, V = H1) and by passing to the limit in the variational formulation.
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