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CHAPTER 3 - TRANSPORT EQUATION :

CHARACTERISTICS METHOD AND DIPERNA-LIONS

RENORMALIZATION THEORY

I write in blue color what has been taught during the classes.

This chapter is an introduction to the well-posedness theory for transport equations.
We present the classical characteristics method as well as the more modern DiPerna-
Lions theory of renormalization of solutions.
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1. Introduction

In this chapter we consider the PDE (transport equation)

(1.1) ∂tf = Λ f = −a(t, x) · ∇f(x) in (0,∞)× Rd,
for a drift force field a : R+×Rd → Rd, that we complement with an initial condition

f(0, x) = f0(x) in Rd,
as well as related equations. We assume that a is C1 and satisfies the globally
Lipschitz estimate

(1.2) |a(t, x)− a(t, y)| ≤ L |x− y|, ∀ t ≥ 0, x, y ∈ Rd,
for some constant L ∈ (0,∞), and that the initial datum satisfies

(1.3) f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞.

We prove that there exists a unique solution in the renormalization sense to the
transport equation (1.1) associated to the initial datum f0.

2. Characteristics method and existence of solutions

2.1. Smooth initial datum. As a first step we consider f0 ∈ C1
c (Rd;R).

Thanks to the Cauchy-Lipschitz theorem on ODE, we know that for any x ∈ Rd
and s ≥ 0, the equation

(2.1) ẋ(t) = a(t, x(t)), x(s) = x,

admits a unique solution t 7→ x(t) = Φt,s(x) ∈ C1(R+;Rd). Moreover, for any s, t ≥
0, the vectors valued function Φt,s : Rd → Rd is a C1-diffeomorphism which satisfies
the semigroup properties Φ0,0 = Id, Φt3,t2 ◦Φt2,t1 = Φt3,t1 for any t3, t2, t1 ≥ 0, and
the mapping [0, T ]× [0, T ]× B(0, R) → Rd, (s, t, x) 7→ Φs,t(x) is Lipschitz for any
T,R > 0, and we denote by LT,R this constant.

The characteristics method makes possible to build a solution to the transport
equation (1.1) thanks to the solutions (characteristics) of the above ODE problem.

We start with a simple case. Assuming f0 ∈ C1(Rd;R), we define the function
f ∈ C1(R+ × Rd;R)

(2.2) ∀ t ≥ 0, ∀x ∈ Rd f(t, x) := f0(Φ−1t (x)), Φt := Φt,0.

From the associated implicit equation f(t,Φt(x)) = f0(x), we deduce

0 =
d

dt
[f(t,Φt(x))] = (∂tf)(t,Φt(x)) + Φ̇t(x) · (∇xf)(t,Φt(x))

= (∂tf + a · ∇xf)(t,Φt(x)).

The above equation holding true for any t > 0 and x ∈ Rd and the function Φt
mapping Rd onto Rd, we deduce that f satisfies the transport equation (1.1) in the
sense of the classical differential calculus.

If furtheremore f0 ∈ C1
c (Rd), we have f(t) ∈ C1

c (Rd) for any t ≥ 0. Indeed,
let take R > 0 such that supp f0 ⊂ BR and denote by Rt a constant such that
Φt(B̄R) ⊂ BRt , what is possible because Φt : Rd → Rd is continuous (alternatively,
one can observe that |Φt(x) − Φ0(x)| ≤ Lt,Rt for any x ∈ Rd ant t ≥ 0, so that

Rt := R+ tLt,R is suitable for any t ≥ 0). As a consequence, BR ∩ Φ−1t (BcRt) = ∅,
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which implies that f0(Φ−1t (x)) = 0 if x ∈ BcRt , and therefore supp f(t, ·) ⊂ BRt . In
other words, transport occurs with finite speed: that makes a great difference with
the instantaneous positivity of solution (related of a “infinite speed” of propagation
of particles) known for the heat equation and more generally for parabolic equations.

Exercise 2.1. Make explicit the construction and formulas in the three following
cases:
(1) a(x) = a ∈ Rd is a constant vector. (Hint. One must find f(t, x) = f0(x−at)).
(2) a(x) = x. (Hint. One must find f(t, x) = f0(e−tx)).
(3) a(x, v) = v, f0 = f0(x, v) ∈ C1(Rd×Rd) and look for a solution f = f(t, x, v) ∈
C1((0,∞)× Rd × Rd). (Hint. One must find f(t, x, v) = f0(x− vt, v)).

(4) Assume that a = a(x) and prove that (St) is a group on C(Rd), where

(2.3) ∀ f0 ∈ C(Rd), ∀ t ∈ R, ∀x ∈ Rd (Stf0)(x) = f(t, x) := f0(Φ−1t (x)).

2.2. Lp initial datum. As a second step, we want to generalize the construction
of solutions to a wider class of initial data as announced in (1.3). We observe that,
at least formally, the following computation holds for a given positive solution f of
the transport equation (1.1):

d

dt

∫
Rd
fp dx =

∫
Rd
∂tf

p dx =

∫
Rd
pfp−1 ∂tf dx

= −
∫
Rd
pfp−1 a · ∇xf dx = −

∫
Rd
a · ∇xfp dx

=

∫
Rd

(divxa)fp dx ≤ ‖divxa‖L∞
∫
Rd
fp dx.

With the help of the Gronwall lemma, we learn from that differential inequality
that the following (still formal) estimate holds

(2.4) ‖f(t)‖Lp ≤ ebt/p ‖f0‖Lp ∀ t ≥ 0,

with b := ‖divxa‖L∞tx . As a consequence, we may propose the following natural
definition of solution.

Definition 2.2. We say that f = f(t, x) is a weak solution to the transport equation
(1.1) associated to the initial datum f0 ∈ Lp(Rd) if it satisfies the bound

f ∈ L∞(0, T ;Lp(Rd))

and it satisfies the equation in the following weak sense:

(2.5)

∫ T

0

∫
Rd
f L∗ϕdxdt =

∫
Rd
f0 ϕ(0, .) dx,

for any ϕ ∈ C1
c ([0, T )× Rd). Here, we define the primal operator L by

Lg := ∂tg + a · ∇xg

and its (formal) dual operator L∗ by

L∗ϕ := −∂tϕ− divx(aϕ).

We say that f is a global weak solution if it is a weak solution on (0, T ) for any
T > 0.
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Observe that choosing ϕ ∈ C1
c ([0, T )) × C1

c (Rd), that is ϕ(t, x) = χ(t)ψ(x), χ ∈
C1
c ([0, T )), ψ ∈ C1

c (Rd), and defining Λ∗ψ := divx(aψ), any weak solution f ∈
L∞(0, T ;Lp(Rd)) satisfies

−
∫ T

0

(∫
Rd
f ψ dx

)
∂tχdt =

∫ T

0

(∫
Rd
f Λ∗ψ dx

)
χdt+

∫
Rd
f0 ψ dxχ(0).

That is a weak formulation of the differential equality

(2.6)
d

dt

∫
Rd
f ψ dx =

∫
Rd
f Λ∗ψ dx,

complemented with initial datum

(2.7)

∫
Rd
f(0, .)ψ dx =

∫
Rd
f0 ψ dx.

It is worth emphasizing that because of (2.6) there holds∫
Rd
f ψ dx ∈ C([0, T ]), ∀ψ ∈ C1

c (Rd),

so that (2.7) makes sense. In other words, f ∈ C([0, T ]; (C1
c (Rd))′).

Exercise 2.3. 1. Prove that a smooth function is a classical solution iff it is a
weak solution.
2. Prove that a solution in the sense of (2.6) is a weak solution in the sense of
Definition 2.2. (Hint. Use the fact that the vectorial space generated by C1

c ([0, T ))×
C1
c (Rd) is dense into C1

c ([0, T )× Rd)).

Theorem 2.4 (Existence). For any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists a global
weak solution to the transport equation (1.1) which furthermore satisfies

f ∈ C([0,∞);Lp(Rd)) when p ∈ [1,∞);

f ∈ C([0,∞);L1
loc(Rd)) when p =∞.

If moreover f0 ≥ 0 then f(t, .) ≥ 0 for any t ≥ 0.

Exercise 2.5. Prove that a weak solution f is weakly continuous (after modification
of f(t) on a time set of measure zero) in the following sense:

(i) f ∈ C([0, T ];w ∗−(C0(Rd))′) when p = 1 (for the weak topology ∗σ(M1, C0));

(ii) f ∈ C([0, T ];w−Lp(Rd)) when p ∈ (1,∞) (for the weak topology σ(Lp, Lp
′
));

(iii) f ∈ C([0, T ];w − Lploc(Rd)) for any p ∈ [1,∞) when p =∞.

(Hint 1. Consider a sequence {ψm} in C1
c (Rd) such that {ψm} is dense in C0(Rd)

(resp. Lp
′
, 1 < p′ < ∞) and prove that t 7→ 〈f(t), ψm〉 is continuous. Hint 2. See

Step 1 in the proof of Corollary 4.4).

Proof of Theorem 2.4. We split the proof into two steps.

Step 1. Rigorous a priori bounds. Take f0 ∈ C1
c (Rd) and consider f(t) the solution

of (1.1). For any smooth (renormalizing) function β : R→ R+, β(0) = 0, which is
C1, we clearly have that β(f(t, x)) is a solution to the same equation associated to
the initial datum β(f0) and β(f(t, .)) ∈ C1

c (Rd) for any t ≥ 0. The function

(0, T )→ R+, t 7→
∫
Rd
β(f(t, x)) dx
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is clearly C1 (that is an exercise using the Lebesgue’s dominated convergence The-
orem) and

d

dt

∫
Rd
β(f) dx =

∫
Rd
∂tβ(f) dx =

∫
Rd
β′(f)∂tf dx

= −
∫
Rd
β′(f) a · ∇xf dx = −

∫
Rd
a · ∇xβ(f) dx

=

∫
Rd

(divxa)β(f) dx.

Assuming furtheremore that β ≥ 0, we deduce the differential inequality

d

dt

∫
Rd
β(f(t, x)) dx ≤ b

∫
Rd
β(f(t, x)) dx,

with b := ‖divxa‖L∞t,x , and thanks to the Gronwall lemma, we get∫
Rd
β(f(t, x)) dx ≤ ebt

∫
Rd
β(f0(x)) dx.

Since f0 ∈ L1(Rd) ∩ L∞(Rd) by assumption, for any 1 ≤ p < ∞, we can define a
sequence of renormalized functions (βn) such that 0 ≤ βn(s) ↗ |s|p for any s ∈ R
and we can pass to the limit in the preceding inequality using the monotonous
Lebesgue Theorem at the RHS and the Fatou Lemma at the LHS in order to get∫

Rd
|f(t, x)|p dx ≤ ebt

∫
Rd
|f0(x)|p dx,

or in other words

‖f(t, .)‖Lp ≤ ebt/p ‖f0‖Lp , ∀ t ≥ 0.

We can choose β(s) := |s|p when p ∈ (1,∞) and βn(s) := β(ns) when p = 1, with
β the vanishing in 0 primitive of the odd function β′ defined by β′(s) := s ∧ 1 for
any s ≥ 0. Passing to the limit p→∞ in the above equation, we obtain (maximum
principle)

‖f(t, .)‖L∞ ≤ ‖f0‖L∞ , ∀ t ≥ 0.

Moreover, f ∈ C([0, T ];Lp(Rd)) for any p ∈ [1,∞).

Step 2. Existence in the case p ∈ [1,∞). For any function f0 ∈ Lp(Rd), 1 ≤ p <∞,
we may define a sequence of functions f0,n ∈ C1

c (Rd) such that f0,n → f0 in Lp(Rd):
here comes the restriction p < ∞. We may for instance take f0,n := (χn f0) ∗ ρn,
where ρn is a sequence of approximations of the identity defined through a mollifier
0 ≤ ρ ∈ D(Rd), ‖ρ‖L1 = 1, by ρn(x) := nd ρ(nx) and χn is a sequence of truncation
functions defined by χn(x) := χ(x/n) for some fixed function χ ∈ D(Rd), 0 ≤ χ ≤ 1,
χ(x) = 1 for any |x| ≤ 1.
Because of the first paragraph we may define fn(t) as a solution to the transport
equation and corresponding to the initial condition f0,n. Moreover, thanks to the
first step and because the equation is linear we have

sup
t∈[0,T ]

‖fn(t, .)− fm(t, .)‖Lp ≤ ebT/p ‖f0,n − f0,m‖Lp → 0, ∀T ≥ 0,

as n,m → ∞. The sequence (fn) is thus a Cauchy sequence in C([0, T ];Lp(Rd)).
The space C([0, T ];Lp(Rd)) being complete, there exists f ∈ C([0, T ];Lp(Rd)) such
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that fn → f in C([0, T ];Lp(Rd)) as n→∞. Now, writing

0 = −
∫ T

0

∫
Rd
ϕ
{
∂tfn + a · ∇fn

}
dxdt

=

∫ T

0

∫
Rd
fn

{
∂tϕ+ divx(aϕ)

}
dxdt+

∫
Rd
f0,n ϕ(0, .) dx,

we may pass to the limit in the above equation and we get that f is a solution in
the convenient sense.
If moreover f0 ≥ 0 then the same holds for f0,n, then for fn and finally for f . �

Exercise 2.6. (1) Show that for any characterictics solution f to the transport
equation associated to an initial datum f0 ∈ C1

c (Rd), for any times T > 0 and
radius R, there exists some constants CT , RT ∈ (0,∞) such that

sup
t∈[0,T ]

∫
BR

|f(t, x)| dx ≤ CT
∫
BRT

|f0(x)| dx.

(Hint. Use the property of finite speed propagation of the transport equation).

(2) Adapt the proof of existence to the case f0 ∈ L∞.

(3) Prove that for any f0 ∈ C0(Rd) there exists a global weak solution f to the
transport equation which furthermore satisfies f ∈ C([0, T ];C0(Rd)).

3. Weak solutions are renormalized solutions

We now consider the transport equation with an additional source term

(3.1) ∂tg = −a · ∇xg +G.

We start with a remark. For any g ∈ C1 a classical solution of (3.1) and any
β ∈ C1(R;R), there holds

∂tβ(g) + a · ∇x(β(g)) = β′(g) ∂tg + β′(g) a · ∇xg = β′(g)G.

Definition 3.1. We say that g ∈ L1
loc([0, T ]×Rd) is a renormalized solution to the

transport equation (3.1) with G ∈ L1
loc([0, T ]× Rd), g0 ∈ L1

loc(Rd) if g satisfies the
equation

(3.2)

∫ T

0

∫
Rd
β(g)L∗ϕ =

∫
Rd
β(g0)ϕ(0, .) +

∫ T

0

∫
Rd
ϕβ′(g)G,

for any “test function” ϕ ∈ C1
c ([0, T ) × Rd) and any “renormalizing function”

β ∈ C1(R) which is globally Lipschitz.

Theorem 3.2. With the above notations and assumptions, any weak solution g ∈
C([0, T ];L1

loc(Rd)) to the transport equation (3.1) is a renormalized solution.

We start with two elementary but fundamental lemmas.

Lemma 3.3. Given G ∈ L1
loc([0, T ] × Rd), let g ∈ L1

loc([0, T ] × Rd) be a weak
solution to the PDE

(3.3) Lg = G on (0, T )× Rd.
For a mollifier sequence

ρε(t, x) :=
1

εd+1
ρ

(
t

ε
,
x

ε

)
, 0 ≤ ρ ∈ D(Rd+1), supp ρ ⊂ (−1, 0)×B(0, 1),

∫
Rd+1

ρ = 1,
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and for τ ∈ (0, T ), ε ∈ (0, τ), we define the function

gε := (ρε ∗t,x g)(t, x) :=

∫ T

0

∫
Rd
g(s, y) ρε(t− s, x− y) dsdy.

Then gε ∈ C∞([0, T − τ)× Rd) and it satisfies the equation

Lgε = Gε + rε

in the classical differential calculus sense on [0, T − τ)× Rd, with

Gε := ρε ∗t,x G, rε := a · ∇xgε − (a · ∇g) ∗ ρε.

Proof of Lemma 3.3 using the theory of distributions. From (3.3), the following
equations

G ∗ ρε = (∂tg) ∗ ρε + (a · ∇g) ∗ ρε
= ∂t(g ∗ ρε) + a · ∇(g ∗ ρε)− rε

hold in D′((0, T ) × Rd) and then also in the classical sense because all the terms
are (at least) continuous functions.

Proof of Lemma 3.3 using the weak formulation. We emphasize that one possible
way to define the “commutator” rε is in a weak sense, namely

rε(t, x) :=

∫
Rd+1

g(s, y)
{
a(x) · ∇xρε(t− s, x− y) + divy

[
a(y) ρε(t− s, x− y)

]}
dyds.

Define O := [0, T − τ)× Rd. For any (t, x) ∈ O fixed and any ε ∈ (0, τ), we define

(s, y) 7→ ϕ(s, y) = ϕt,xε (s, y) := ρε(t− s, x− y) ∈ D((0, T )× Rd).
We then just write the weak formulation of equation (3.1) for that test function.
We get

0 =

∫ T

0

∫
Rd
g L∗ϕ−

∫ T

0

∫
Rd
Gϕ

=

∫ T

0

∫
Rd
g(s, y) {−∂sϕt,x(s, y)−∇y(a(y)ϕt,x(s, y))} −

∫ T

0

∫
Rd
G(s, y)ϕt,x(s, y)

=

∫ T

0

∫
Rd
g(s, y) ∂tϕ

t,x(s, y)−
∫ T

0

g(s, y)∇y(a(y)ϕt,x(s, y))−
∫ T

0

∫
Rd
G(s, y)ϕt,x(s, y)

= ∂tgε(t, x) + a · ∇xgε(t, x)− rε(t, x)−Gε(t, x),

because,

−
∫ T

0

g(s, y)∇y(a(y)ϕt,x(s, y)) =

∫ T

0

∫
Rd
a(y)·∇yg(s, y) ρε(t−s, x−y) = (a·∇g)∗ρε,

by performing one integration by part. �

Lemma 3.4. Under the assumptions B ∈ W 1,q
loc (Rd) and g ∈ Lploc(Rd) with 1/r =

1/p+ 1/q ≤ 1, then

Rε := (B · ∇g) ∗ ρε −B · ∇(g ∗ ρε)→ 0 Lrloc,

for any mollifier sequence (ρε).

Remark 3.5. For a time dependent function g = g(t, x) satisfying the boundedness
conditions of Theorem 3.2 the same result (with the same proof) holds, so that the
commutator rε defined in Lemma 3.3 satisfies rε → 0 in L1

loc([0, T )× Rd).
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Proof of Lemma 3.4. We only consider the case p = 1, q =∞ and r = 1. We start
writing

Rε(x) = −
∫
Rd
g(y)

{
divy

(
B(y) ρε(x− y)

)
+B(x) · ∇x

(
ρε(x− y)

)}
dy

=

∫
Rd
g(y)

{(
B(y)−B(x)

)
· ∇x(ρε(x− y))

}
dy − ((g divB) ∗ ρε)(x)

=: R1
ε(x) +R2

ε(x).

For the first term, we remark that

|R1
ε(x)| ≤

∫
|g(y)|

∣∣∣B(y)−B(x)

ε

∣∣∣ |(∇ρ)ε(x− y)| dy

≤ ‖∇B‖L∞
∫
|x−y|≤1

|g(y)| |(∇ρ)ε(x− y)| dy,

so that

(3.4)

∫
BR

|R1
ε(x)| dx ≤ ‖∇B‖L∞ ‖∇ρ‖L1 ‖g‖L1(BR+1).

On the other hand, if g is a smooth (say C1) function

R1
ε(x) = ∇x((gB) ∗ ρε)−B · ∇x(g ∗ ρε)

−→ ∇x(gB)−B · ∇xg = (divB) g.

Since every things make sense at the limit with the sole assumption divB ∈ L∞
and g ∈ L1, with the help of (3.4) we can use a density argument in order to get
the same result without the additional smoothness hypothesis on g. More precisely,
for a sequence gα in C1 such that gα → g in L1

loc, we have

R1
ε[gα]→ (divB) g in L1

loc, ‖R1
ε[h]‖L1 ≤ C ‖h‖L1 ∀h,

where R1
ε[h] stands for the function R1

ε defined above but for the function h instead
of the function g, so that

R1
ε[g]− (divB) g = {R1

ε[g]−R1
ε[gα]}+ {R1

ε[gα]− (divB) gα)}
+{(divB) gα − (divB) g)} → 0,

in L1
loc as ε→ 0. For the second term, we clearly have

R2
ε = (g divB) ∗ ρε → g divB,

and we conclude by putting all the terms together. �

Proof of Theorem 3.2. Step 1. We consider a weak solution g ∈ L1
loc to the PDE

Lg = G in [0, T )× Rd.

By mollifying the functions with the sequence (ρε) defined in Lemma 3.3 and using
Lemma 3.3, we get

Lgε = Gε + rε in [0, T )× Rd, rε → 0 in L1
loc.

Because gε is a smooth function, we may perform the following computation (in
the sense of the classical differential calculus)

Lβ(gε) = β′(gε)Gε + β′(gε) rε,
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so that

(3.5)

∫
Rd
β(gε)L

∗ϕ =

∫
Rd
β(gε(0, .))ϕ(0, .) +

∫
Rd
β′(gε)Gε ϕ+

∫
Rd
β′(gε) rε ϕ

for any ϕ ∈ C1
c ([0, T )× Rd. Using that

gε → g, Gε → G, rε → 0 in L1
loc as ε→ 0,

we may pass to the limit ε→ 0 in the last identity and we obtain (3.2) for any test
function ϕ ∈ C1

c ((0, T )× Rd).
Using that g ∈ C([0, T );L1

loc(Rd)), we additionally have

gε → g in C([0, T );L1
loc(Rd)).

In particular gε(0, .) → g(0, .) in L1
loc(Rd) and we may pass to the limit in equa-

tion (3.5) for any test function ϕ ∈ C1
c ([0, T )× Rd). �

4. Consequences of the renormalization result

In this section we present several immediate consequences of the renormalization
formula established in Theorem 3.2.

4.1. Uniqueness in Lp(Rd), 1 ≤ p <∞.

Corollary 4.1. Assume p ∈ [1,∞). For any initial datum g0 ∈ Lp(Rd), the
transport equation admits a unique weak solution g ∈ C([0, T ];Lp(Rd)).

Proof of Corollary 4.1. Consider two weak solutions g1 and g2 to the transport
equation (1.1) associated to the same initial datum g0. The function g := g2− g1 ∈
C([0, T ];Lp(Rd)) is then a weak solution to the transport equation (1.1) associated
to the initial datum g(0) = 0. Thanks to Theorem 3.2, it is also a renormalized
solution, which means∫

Rd
β(g(t, .))ϕdx =

∫ t

0

∫
Rd
β(g) divx(aϕ) dxds,

for any renormalizing function β ∈ W 1,∞(R), β(0) = 0, and any test function
ϕ = ϕ(x) ∈ C1

c (Rd). We fix β such that furthermore 0 < β(s) ≤ |s|p for any s 6= 0,
χ ∈ D(Rd) such that 1B(0,1) ≤ χ ≤ 1B(0,2), and we take ϕ(x) = χR(x) = χ(x/R),
so that∫
Rd
β(g(t, .))χR dx =

∫ t

0

∫
Rd
β(g) (divxa)χR dxds+

1

R

∫ t

0

∫
Rd
β(g) a · ∇χ(x/R) dxds.

For handling the last term, we observe that |a(t, x)| ≤ C (1 + |x|) for any x ∈ Rd
and t ∈ (0, T ) from (1.2) and thus

1

R
|a · ∇χ(x/R)| ≤ 3C‖∇χ‖L∞1|x|≥R, ∀x ∈ Rd, t ∈ (0, T ), R ≥ 1.

Taking advantage of that β(g) ∈ C([0, T ];L1(Rd)), we easily pass to the limit as
R→∞ in the above expression, and we get

(4.1)

∫
Rd
β(g(t, .)) dx =

∫ t

0

∫
Rd
β(g) (divxa) dxds.

By the Gronwall lemma, we conclude that β(g(t, .)) = 0 and then g(t, .) = 0 for
any t ∈ [0, T ]. �
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4.2. Positivity. We can recover in a quite elegant way the positivity as an a pos-
teriori property that we deduce from the renormalization formula.

Corollary 4.2. Consider a solution g ∈ C([0, T ];Lp(Rd)), 1 ≤ p < ∞, to the
transport equation (1.1). If g0 ≥ 0 then g(t, .) ≥ 0 for any t ≥ 0.

Proof of Corollary 4.2. We argue similarily as in the proof of Corollary 4.1 but
fixing a renormalizing function β ∈ W 1,∞(R) such that β(s) = 0 for any s ≥ 0,
β(s) > 0 for any s < 0. We observe that for f ∈ Lp, we have f ≥ 0 iff ‖β(f)‖L1 = 0.
Since then β(g0) = 0, we deduce that (4.1) holds again with that choice of function
β and then, thanks to Gronwall lemma, β(g(t, .)) = 0 for any t ≥ 0. That means
g(t, .) ≥ 0 for any t ≥ 0. �

4.3. A posteriori estimate.

Corollary 4.3. Consider a solution g ∈ C([0, T ];Lp(Rd)), 1 ≤ p < ∞, to the
transport equation (1.1). If g0 ∈ Lq(Rd), 1 ≤ q ≤ ∞, then g ∈ L∞(0, T ;Lq(Rd))
for any T > 0.

Proof of Corollary 4.3. We argue similarily as in the proof of Corollary 4.1 but fixing
an arbitrary renormalizing function β ∈ C1(R)∩W 1,∞(R) such that |β(s)| ≤ C|s|p
for any s ∈ R, and then β(g) ∈ C([0, T ];L1(Rd)). For such a choice, we have∫

Rd
β(g(t, .)) dx =

∫
Rd
β(g0) dx+

∫ t

0

∫
Rd
β(g) (divxa) dxds, ∀ t ≥ 0.

From the Gronwall lemma, we obtain with b = ‖div a‖L∞ , the estimate

(4.2)

∫
Rd
β(g(t, .)) dx ≤ eb t

∫
Rd
β(g0) dx ∀ t ≥ 0.

Since estimate (4.2) is uniform with respect to β, we may choose a sequence of
renormalizing functions (βn) such that βn(s)↗ |s|q in the case 1 ≤ q <∞ and we
get

‖g(t, .)‖Lq ≤ ebt/q ‖g(t, .)‖Lq ∀ t ≥ 0.

In the case q = ∞, we obtain the same conclusion by fixing β ∈ W 1,∞ such that
β(s) = 0 for any |s| ≤ ‖g0‖L∞ , β(s) > 0 for any |s| > ‖g0‖L∞ or by passing to the
limit q →∞ in the above inequality. �

4.4. Continuity. We can recover the strong Lp continuity property from the renor-
malization formula for a given solution.

Corollary 4.4. Let g ∈ L∞(0, T ;Lp(Rd)), 1 < p <∞, be a renormalized solution
to the transport equation (1.1). Then g ∈ C([0, T ];Lp(Rd)).

Proof of Corollary 4.4. Step 1. We claim that g ∈ C([0, T ];Lp(Rd) − w) in the
sense that

t 7→
∫
Rd
g(t, x)ψ(x) dx is continuous for any ψ ∈ Lp

′
(Rd).

Taking β(s) = s and ϕ = χ(t)ψ(x), χ ∈ C1
c ([0, T )), ψ ∈ C1

c (Rd), in the renormalized
formulation of Definition 3.1 with vanishing source term, we have

(4.3)

∫ T

0

uψ χ
′ dt =

∫ T

0

vψ χdt+ u0ψχ(0),
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with

uψ :=

∫
Rd
g ψ dx, vψ :=

∫
Rd
g div(aψ) dx, u0ψ :=

∫
Rd
g0 ψ dx.

Because uψ, vψ ∈ L∞(0, T ), equation (4.3) is nothing but a weak formulation of
the fact that uψ ∈ W 1,∞(0, T ) and u′ψ = vψ. From the W 1,∞(0, T ) ⊂ C([0, T ])

embedding, we deduce that there exists a mesurable set Oψ ⊂ [0, T ] and ũψ ∈
C([0, T ]) such that ũψ ≡ uψ on Oψ and meas([0, T ]\Oψ) = 0.

We classically know that Lp
′
(Rd) is separable, and more precisely, there exists

a countable family {ψm} of C1
c (Rd) such that for any ψ ∈ Lp′(Rd) there exists a

subsequence (ψnk) such that ψnk → ψ in Lp
′

as k →∞. For any fixed ψ ∈ Lp′(Rd),
we define

ũψ := lim
k→∞

ũψnk ∈ C([0, T ])

which does exist because (ũψnk ) is a Cauchy sequence in C([0, T ]). On the one

hand, defining O := ∩Oψm , we have ũψ(t) = uψ(t) for any t ∈ O as well as
meas([0, T ]\O) = 0. On the other hand, for any t ∈ O, we have

|ũψ(t)| = lim
k→∞

|ũψnk | = lim
k→∞

|uψnk | = lim
k→∞

∣∣∣∫
Rd
g(t)ψnk dx

∣∣∣
≤ ‖g‖L∞(0,T ;Lp) lim

k→∞
‖ψnk‖Lp′

≤ ‖g‖L∞(0,T ;Lp)‖ψ‖Lp′ ,
and then, by density,

∀ t ∈ [0, T ], |ũψ(t)| ≤ ‖g‖L∞(0,T ;Lp)‖ψ‖Lp′ .
By construction, the mapping ψ 7→ ũψ(t) is linear, and thus, it is a linear form on

Lp
′
(Rd). In other words, for any t ∈ [0, T ], there exists g̃(t, .) ∈ Lp(Rd) such that

ũψ(t) =

∫
Rd
g̃(t, x)ψ(x) dx, ∀ψ ∈ Lp

′
(Rd).

All together, we have g̃ ∈ C([0, T ];Lp(Rd)−w) and g̃ = g a.e., which is (the precise
statement of) our claim.

Step 2. For β ∈ C1(R), |β(s)| ≤ |s|p, we can proceed similarly as in the proof of
Corollary 4.1 and in Step 1, and we get∫ T

0

uχ′ dt =

∫ T

0

v χ dt, ∀χ ∈ C1
c (0, T ),

with

u :=

∫
Rd
β(g) dx, v :=

∫
Rd
β(g) (diva) dx,

and next, by a approximation argument, with

u :=

∫
Rd
|g|p dx, v :=

∫
Rd
|g|p (diva) dx.

As a consequence, there exists ũ ∈ C([0, T ]) such that ũ ≡ u on a measurable set O
with meas([0, T ]\O) = 0. On O, we then have t 7→ ‖g(t)‖Lp is uniformly continuous
and t 7→ g(t) is weakly uniformly continuous. Because Lp has a strictlty convex
norm, we deduce that the mapping t 7→ g(t) is strongly uniformly continuous from
O into Lp. Again, we can extend by continuity and density the function g as a
function g̃ ∈ C([0, T ];Lp) such that g̃ = g on O. �
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Appendix A. Fundamental results on Lebesgue spaces

We refer to [1, Chapter IV] and [3, Chapters 1 & 2], as well as the references therein, for a good
introduction to the analysis of Lebesgue spaces. We give hereafter a list of classical results we

make use in this chapter and possibly in the next ones.

− Separability of Lp(Rd), 1 ≤ p < ∞. For any f ∈ Lp(Ω), Ω ⊂ Rd open, there exists a

sequence (ϕn) of C∞c (Ω) such that ϕn → f a.e. and for the Lp norm.

− Consequence of the strict convexity of Lp(Rd), 1 < p < ∞. For any sequence (fn) of

Lp(Ω), the two convergences fn ⇀ f and ‖fn‖Lp → ‖f‖Lp together imply fn → f for the Lp

norm.

− de La Vallée Poussin Lemma. For any f ∈ L1(Rd) there exist φ : R → R+ and
m : Rd → [1,∞) such that∫

Rd
[φ(|f |) + |f |m] dx <∞, φ(s)/s→∞ as s→∞, m(x)→∞ as |x| → ∞.

− Dunford-Pettis Lemma. Consider a sequence (fn) of L1(Rd) such that∫
Rd

[φ(|fn|) + |fn|m] dx ≤ C,

for some constant C ∈ R+ and for some functions φ : R → R+, φ(s)/s → ∞ as s → ∞ and
m : Rd → [1,∞), m(x)→∞ as |x| → ∞. Then, there exists f ∈ L1(Rd) and a subsequence (fnk )

such that fnk ⇀ f weakly σ(L1, L∞) as k →∞.

− Egorov Theorem. Any sequence (fn) such that fn → f a.e. as n → ∞ converges almost

uniformaly on any ball: for any R, ε > 0, there exists A ⊂ BR such that |BR\A| < ε and

‖fn − f‖L∞(A) → 0 as n→∞.

Appendix B. Complementary results

In this section we state and give a sketch of the proof of two complementary results of existence

(for a larger class of equations) and uniqueness (in a L∞ framework).

Other interesting issues such as the existence problem for the transport equation with a nonlinear

RHS term or the wellposedness problem for the transport equation set in a domain Ω ⊂ Rd (and
we possibly have to add boundary conditions) will be not considered in the present notes.

B.1. Semigroup. In the case when a = a(x) and in the same way as in chapter 2, we can

deduce from the existence and uniqueness result on the linear transport equation (1.1) presented

in Theorem 2.4 & Corollary 4.1 that the formula

(B.1) (Stg0)(x) := g(t, x)

defines a C0-semigroup on Lp(Rd), 1 ≤ p < ∞, and on C0(Rd), where g is the solution to the

transport equation (1.1) associated to the initial datum g0. We refer to chapter 4 for a precise

statement and proof of this claim.

B.2. Duhamel formula and existence for transport equation with an additional lower
term. We consider the evolution equation with source term

(B.2) ∂tg = Λ g +G in (0,∞)× Rd,

with

(Λg)(x) := −a(x) · ∇g(x) + c(x) g(x) +

∫
Rd
b(x, y) g(y) dy

Denoting

Ag = c g +

∫
Rd
b(·, y) g(y) dy, Bg = −a · ∇g,

we interpret that equation as a perturbation equation

∂tg = Bg + G̃, G̃ = Ag +G.

We introduce the semigroup SB(t) as defined in (B.1), and we claim that the function

(B.3) g(t) = SB(t)g0 +

∫ t

0
SB(t− s) G̃(s) ds
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is a solution to equation (B.2). Indeed, the semigroup SB satisfies

d

dt
SB(t)h = BSB(t)h,

in a weak sense (that is nothing but (2.6)), and then

d

dt
g(t) =

d

dt
SB(t)g0 +

∫ t

0

d

dt
SB(t− s) G̃(s) ds+ SB(0) G̃(t)

= B
{
SB(t)g0 +

∫ t

0
SB(t− s) G̃(s) ds

}
+ G̃(t)

= B g(t) + G̃(t).

All that computations can be justified when written in a weak sense. The method used here is

nothing but the well-known variation of the constant method in ODE, the expression (B.3) is

called the “Duhamel formula” and a function g(t) which satisfies (B.3) (in an appropriate and
meaningful functional sense) is called a “mild solution” to the equation (B.2).

Theorem B.1. Assume a ∈ W 1,∞, c ∈ L∞, b ∈ Lp
′
y (Lpx), 1 ≤ p < ∞. For any g0 ∈ Lp and

G ∈ L1(0, T ;Lp) there exists a unique mild (weak, renormalized) solution to equation (B.2).

Proof of Theorem B.1. For any h ∈ C([0, T ];Lp), we define the mapping

(Uh)(t) := SB(t)g0 +

∫ t

0
SB(t− s)

{
Ah(s) +G(s)

}
ds,

and we claim that

U : C([0, T ];Lp)→ C([0, T ];Lp)

with Lipschitz constant bounded by C T , for some constant C ∈ R+. The fact that U is well
defined as a mapping of C([0, T ];Lp) is a consequence of the characterics method introduced in

the second section. More precisely, for smooth functions h, c, b, g0, G the above formula makes

sense using characteristics, g = Uh ∈ C([0, T ];Lp) and g is a solution to an evolution PDE similar
to (B.4), from what we deduce that the same is true with Lebesgue functions as considered in the

statement of the theorem. Let us just explain with more details how to get the Lipschitz estimate.

We consider two functions h1, h2 ∈ C([0, T ];Lp) and we observe that g := Uh2−Uh1 is a solution
to the transport equation

(B.4) ∂tg = −a(x) · ∇g(x) + c(x)h(x) +

∫
Rd
b(x, y)h(y) dy, g(0, .) = 0,

where h := h2 − h1. Multiplying that equation by p g |g|p−2, we get

d

dt

∫
Rd
|g|p ≤

∫
Rd

(diva)+|g|p +

∫
Rd
p |c| |h| |g|p−1 +

∫
Rd

∫
Rd
p |b(x, y)| |h(y)| |g(x)|p−1 dxdy.

We then just point out that using twice the Holder inequality and next the Young inequality∫ ∫
|b(x, y)| |h(y)| |g(x)|p−1 dxdy ≤ ‖g‖p/p

′

Lp

∫ (∫
|b(x, y)|pdx

)1/p
|h(y)|dy

≤ ‖b‖
L
p′
y (L

p
x)
‖g‖p/p

′

Lp ‖h‖Lp

≤ ‖b‖
L
p′
y (L

p
x)

( 1

p′
‖g‖pLp +

1

p
‖h‖pLp

)
,

and we conclude thanks to the Gronwall lemma. Choosing T small enough, the mapping U is a

contraction, and we can apply the Banach-Picard contraction theorem. We get the existence of
a fixed point g ∈ C([0, T ];Lp), g = Ug. Proceding by induction, we obtain in that way a global

mild solution to equation (B.2). �

Exercise B.2. We consider the transport equation with source term

∂tg = −a · ∇xg + b g +G

where a, b and G may be time dependent functions.

(1) Write a representation formula for the solution when G = 0 but a = a(t, x), b = b(t, x).

(2) Write a representation formula for the solution when b = 0 but a = a(t, x), G = G(t, x).
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Hint: Prove and try to use the Duhamel formula

g(t) = S0,tg0 +

∫ t

0
Ss,tG(s) ds.

(3) Write the general representation formula.

B.3. Explicit formula by the characteristics method. We consider the transport equation

(B.5) ∂tf + a · ∇f + c f = G, f(0) = f0,

with a = a(t, x), c = c(t, x) and G = G(t, x) smooth functions. With the notation of section 2.1
on the flow associated to the associated ODE (2.1), if a smooth solution f to the above equation

does exist, we must have

d

dt

[
f(t,Φt(x)) e

∫ t
0 c(s,Φs(x)) ds

]
= G(t,Φt(x)) e

∫ t
0 c(s,Φs(x)) ds,

from which we deduce

f(t,Φt(x)) = f0(x) e−
∫ t
0 c(τ,Φτ (x)) dτ +

∫ t

0
G(s,Φs(x)) e−

∫ t
s c(τ,Φτ (x)) dτ ds.

Using that Φ−1
t = Φ0,t and the semigroup property of Φs,t, we deduce that the solution to the

transport equation (B.5) is given through the explicit formula

(B.6) f(t, x) := f0(Φ0,t(x)) e−
∫ t
0 c(τ,Φτ,t(x)) dτ +

∫ t

0
G(s,Φs,t(x)) e−

∫ t
s c(τ,Φτ,t(x)) dτ ds.

B.4. Duality and uniqueness in the case p =∞.

Theorem B.3. Assume a = a(x) ∈ W 2,∞. For any g0 ∈ L∞, there exists at most one weak

solution g ∈ L∞((0, T )× Rd) to the transport equation (1.1).

Proof of Theorem B.3. Since the equation is linear, we only have to prove that the unique weak
solution g ∈ L∞((0, T )× Rd) associated to the initial datum g0 = 0 is g = 0.

By definition, for any ψ ∈ C1
c ([0, T ]× Rd), there holds∫ T

0

∫
Rd
g L∗ψ dxdt = −

∫
Rd
g(T )ψ(T ) dx

with L∗ψ := −∂tψ− div(aψ). We claim that for any Ψ ∈ C1
c ((0, T )×Rd) there exists a function

ψ ∈ C1
c ([0, T ]× Rd) such that

(B.7) L∗ψ = Ψ, ψ(T ) = 0.

If we accept that fact, we obtain∫ T

0

∫
Rd
gΨ dxdt = 0 ∀Ψ ∈ C1

c ((0, T )× Rd),

which in turns implies g = 0 and that ends the proof.

Here we can solve easily the backward equation (B.7) thanks to the characterics method which
leads to an explicit representation formula. In order to make the discussion simpler, we exhibit
that formula for the associated forward problem (we do not want to bother with backward time,

but one can pass from a formula to another just by changing time t→ T − t). We then consider

the equation

∂tψ + a · ∇ψ + c ψ = Ψ, ψ(0) = 0,

with c := div a. As in the preceding section and observing that Φ−1
t = Φ−t because the associated

ODE ẋ = a(x) is time autonomous, we introduce the function

ψ(t, x) :=

∫ t

0
Ψ(s,Φs−t(x)) e−

∫ t
s c(Φτ−t(x)) dτ ds.

It is clear that ψ defined by the above formula is the solution to our dual problem from which we

get (reversing time) the solution to (B.7) we were trying to find. �
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Appendix C. Transport equation in conservative form

In this section we extend the existence and uniqueness theory to a bounded Radon measures
framework, and then a probability measures framework, for the important class of transport

equations which may be writen in a “conservative form”.

More precisely, we consider a time depend vectors field a = a(t, y) : (0, T ) × Rd → Rd of class

C1 ∩ Lip and we note L the Lipschitz constant of a in the second variable:

∀ t ∈ [0, T ], ∀x, y ∈ Rd |a(t, x)− a(t, y)| ≤ L |x− y|.

We are interested in the transport equation in conservative form

(C.8)
∂f

∂t
+∇ (a f) = 0 in D′((0, T )× Rd),

where f = f(t, dx) = dft(x) is a mapping from (0, T ) into the space of bounded Radon measures
M1(Rd) or the space of probability measures P(Rd). We recall that

M1(Rd) := {f ∈ (Cc(Rd))′; ‖f‖TV := sup
‖ϕ‖∞≤1

|〈f, ϕ〉| <∞}

and

P(Rd) := {f ∈ (Cc(Rd))′; f ≥ 0, 〈f, 1〉 = 1} ⊂M1(Rd).

We also define

P1(Rd) := {f ∈P(Rd); 〈f, |x|〉 < 1}
and the Monge-Kantorovich-Wasserstein distance on P1(Rd) by

∀ f, g ∈P1(Rd), W1(f, g) = ‖f − g‖(Lip)′ := sup
ϕ∈C1;‖∇ϕ‖∞≤1

〈f − g, ϕ〉.

We point out that W1(f, g) is well-defined and finite for any f, g ∈P1(Rd) because

|〈f − g, ϕ〉| = |〈f − g, ϕ− ϕ(0)〉| ≤ 〈|f |+ |g|, |x|〉 <∞,

for any ϕ ∈ C1(Rd), ‖∇ϕ‖∞ ≤ 1, and that W1(f, g) = 0 implies f = g because C1
c (Rd) ⊂ Cc(Rd)

with continuous and dense embedding.

We finally denote as M1(Rd)−w the weak topology on M1(Rd) defined through the weak conver-
gence: we say that a sequence (fn) in M1(Rd) weakly converges to f ∈M1(Rd), we write fn ⇀ f

in M1(Rd)− w, if ∫
ϕfn →

∫
ϕf ∀ϕ ∈ Cc(Rd).

We emphasize that for fn, f ∈ P1(Rd) the following holds: the convergence W1(fn, f) → f
implies that fn ⇀ f ; the convergence fn ⇀ f implies the “tightness” of sequence (fn) and then

the (stronger) convergence ∫
ϕfn →

∫
ϕf ∀ϕ ∈ Cb(Rd).

Definition C.4. (Image Measure). Let (E, E, µ) be a measure space, F be a set and Φ : E → F
a mapping. We define the σ-algebra F on F by F := {A ⊂ F ; Φ−1(A) ∈ E} (it is the smallest
σ-algebra on F for which Φ is measurable) and we define the measure ν on F by ∀A ∈ F ,
ν[A] := µ[Φ−1(A)]. We denote ν = Φ ] µ and we say that ν is the image measure of µ by Φ. By

definition, for any measurable function ϕ : (F,F)→ R+, we have∫
F
ϕd(Φ ] µ) =

∫
E
ϕ ◦ Φ dµ.

Theorem C.5. (Characterictics). For any f0 ∈M1(Rd), the unique solution f ∈ C([0, T ];M1(Rd)−
w) to the transport equation (C.8) associated to the initial datum f0 is given by

(C.9) f(t, .) = Φt ] f0 ∀ t ∈ [0, T ],

where Φt denotes the flow associated to the ODE of characterictics defined in section 2.1. More-
over, given two initial data f0, g0 ∈P1(Rd), the corresponding solutins f, g ∈ C([0,∞);M1(Rd)−
w) to the transport equation (C.8) satisfy

(C.10) ∀ t ∈ [0, T ] W1(ft, gt) ≤ eL tW1(f0, g0).
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Remark C.6. For a deterministic system associated to a vectors field a, we say that (2.1) is a

Lagragian description of the dynamics while (C.8) is an Eulerian description. The formula (C.9)

shows the equivalence between these two points of view.

Proof of Theorem C.7. Step 1. We prove that f(t) := Φt ] f0 is a solution to (C.8). Fix ϕ ∈ D(Rd)
and just compute〈∂f

∂t
, ϕ
〉

=
d

dt

∫
Rd
ϕf(t) =

d

dt

∫
Rd
ϕ(Φt(y0)) f0(dy0)

=

∫
Rd

(∇ϕ)(Φt(y0)) ·
d

dt
(Φt(y0)) f0(dy0)

=

∫
Rd

(∇ϕ)(Φt(y0)) · a(t,Φt(y0)) f0(dy0)

=

∫
Rd

(∇ϕ)(y) · a(t, y) f(t, dy)

= −
〈
∇(a f), ϕ

〉
,

in the sense of duality in D′((0, T )). That means that (C.8) holds in the sense of duality in
(D(0, T )×D(Rd))′, and thanks to a density argument, in the sense of duality in D′((0, T )×Rd).

Step 2. We establish the uniqueness of the solution. Because the equation is linear, we just have
to prove that fT = 0 if f0 = 0. We argue by duality. We define the backward flow Ψt by setting

Ψt(z) = z(t), where z(t) is the solution to the ODE

z′(t) = a(t, z(t)), z(T ) = z.

For a given function ϕT ∈ C1
c (Rd), we define ϕ(t, y) := ϕT (Ψ−1

t (y)) ∈ C1
b ([0, T ]× Rd). From the

implicit equation ϕ(t, z(t)) = ϕT (z), we obtain

0 =
d

dt
[ϕ(t, z(t))] = (∂tϕ)(t, z(t)) + (∇ϕ)(t, z(t)) z′(t)

= [∂tϕ+ a · ∇ϕ] (t, z(t)),

and the following transport equation holds (in the sense of classical differential calculus)

∂tϕ+ a · ∇ϕ = 0 in [0, T ]× Rd.

We then compute

d

dt
〈ft, ϕt〉 =

∫
Rd

[∂tϕ(x)] ft(dx) + 〈∂tft, ϕt〉

=

∫
Rd

[a · ∇ϕt(x)] ft(dx) +

∫
Rd

[−a · ∇ϕt(x)] ft(dx) = 0.

It implies ∫
Rd
ϕT (x) fT (dx) =

∫
Rd
ϕ0(x) f0(dx) = 0,

for any ϕT ∈ C1
b (Rd), which means fT ≡ 0.

Step 3. We start recalling that the flow Φt satisfies

(C.11) ∀ t ∈ [0, T ] ‖∇yΦt‖∞ ≤ etL.

Indeed, for x0, y0 ∈ Rd, the two solutions solutions xt = Φt(x0), yt = Φt(y0) satisfy

d

dt
|xt − yt| ≤ |ẋt − ẏt| ≤ |a(t, xt)− a(t, yt)| ≤ L |xt − yt|,

and we conclude thanks to the Gronwall lemma.
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Now, thanks to Theorem C.7 and by definition of W1 and ], we have

W1(ft, gt) = W1(Φt]f0,Φt]g0)

= sup
‖∇ϕ‖≤1

∫
Rd
ϕd(Φt]f0 − Φt]g0)

= sup
‖∇ϕ‖≤1

∫
Rd
ϕ ◦ Φt d(f0 − g0)

≤ sup
‖∇ϕ‖≤1

‖∇(ϕ ◦ Φt)‖ sup
‖∇ψ‖≤1

∫
Rd
ψ d(f0 − g0)

≤ ‖∇Φt‖W1(f0, g0)

and we conclude thanks to (C.11). �

Remark C.7. 1. When the solution has a density with respect to the Lebesgue measure ft(dy) =
gt(y) dy with gt ∈ L1(Rd), the theorem of changement of variables in the definition of the image

measure implies

g0(x) = gt(Φt(x)) det(DΦt(x)).

In particular, g0(y) is not equal to gt(Φt(y)) in general.

2. However, one can classically show that J(t, y) := det(DΦt(y)) satisfies the Liouville equation

d

dt
J(t, y) = [(div a)(t,Φt(y))] J(t, y), J(0, y) = det(Id) = 1.

In the case of a free-divergence verctors field a, namely div a = 0, we deduce of it the incompress-
ibility of the flow J(t, y) ≡ 1. In that case, gt(Φt(x)) = g0(x).

3. When div a = 0, we can obtain gt(Φt(y)) = g0(y) (and thus recover the incompressibility of

the flow) in a maybe much simpler way. We come back to the uniqueness argument in the proof

of Theorem C.7. We define h(t, z) := g0(Φ−1
t (z)) for g0 ∈ C1

b (Rd), and we compute

0 =
d

dt
[h(t, y(t))] = [∂th+ a · ∇h] (t, y(t)).

We deduce

0 = ∂th+ a · ∇h = ∂th+∇(a h), h(0, .) = g0.

From the uniqueness of the solution, there holds h = g, and then

g(t,Φt(x)) = h(t,Φt(x)) = g0(x) = g(t,Φt(x)) J(t, x).

Choosing g0 → 1, we get J ≡ 1.

4. For f0 = δx0 , we have

Φt ]δx0 = δΦt(x0).

Indeed, for any test function ϕ ∈ Cb(Rd), we write∫
Rd
ϕ(x)(Φt ]δx0 )(dx) =

∫
Rd
ϕ(Φt(x)) δx0 (dx)

= ϕ(Φt(x0)) =

∫
Rd
ϕ(x) δΦt(x0)(dx).

Lemma C.8. For an initial f0 ∈ L1(Rd), the solution f ∈ C([0, T ];M1(Rd)−w) to the conser-

vative transport equation (C.8) satisfies
(1) the mass conservation property:∫

Rd
f(t, x) dx =

∫
Rd
f0 dx ∀ t ∈ [0, T ];

(2) the L1 stability property:∫
Rd
|f(t, x)| dx =

∫
Rd
|f0| dx ∀ t ∈ [0, T ].

Proof of Lemma C.8. We only prove (2), point (1) can be proved similarly. We write

∂tf = −a · ∇f − (diva) f,
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which has an unique solution f ∈ C([0,∞);L1
loc(R

d)) thanks to Theorem 2.4 or its variant Theo-

rem B.1. For any renormalizing function β ∈ C1 ∩W 1,∞, we have

∂tβ(f) = −a · ∇β(f)− (diva) f β′(f) in D′((0, T ))

and then
d

dt

∫
Rd
β(f)χ =

∫
Rd

{
χ(diva) [β(f)− f β′(f)] dx+ (a · ∇χ)β(f)

}
for any χ ∈ D(Rd). We first take βε(s) = s2/2 for |s| ≤ ε, βε(s) = |s| − ε/2 for |s| ≥ ε, and

observing that |βε(s) − s β′ε(s)| ≤ ε ∀ s ∈ R, ∀ ε ∈ (0, 1) as well as βε(s) → |s| as ε → 0, we may
pass to the limit ε→ 0 and we get∣∣∣∫

Rd
(|f(t)| − |f0|)χ−

∫ t

0

∫
Rd

(a · ∇χ) |f(s)| dxds
∣∣∣

= lim
ε→0

∫ t

0

∫
Rd

{
χ(diva) [βε(f)− f β′ε(f)] dxds

}
= 0.

Taking χ(x) = ψ(x/R) with ψ ∈ D(Rd), ψ ≡ 1 on B(0, 1), 0 ≤ ψ ≤ 1, suppψ ⊂ B(0, 2), we may

pass to the limit R→∞, and we get∫
Rd
|f(t)| dx =

∫
Rd
|f0|+ lim

R→∞

1

R

∫ t

0

∫
Rd
a(s, x) · ∇ψ(x/R)) |f(s)| dxds =

∫
Rd
|f0|,

so that the L1 stability property is proved. �

Appendix D. Exercices

Exercise D.1. We define the weak distance on L1(Rd) by

D(f, g) := sup
‖ϕ‖

W1,∞≤1

∫
Rd

(f − g)ϕdx,

for any f, g ∈ L1(Rd). The topology induced by the distance D on any fixed ball of L1(Rd) is
the weak ∗ topology σ(M1(Rd), C0(Rd)). Prove that any solution f ∈ C([0, T ];L1(Rd)) to the

transport equation (1.1) is Lipschitz continuous for the distance D.

Exercise D.2. Consider a weak solution g ∈ L1
loc([0, T ] × Rd) to the transport equation (3.1)

associated to an initial datum g0 ∈ L1
loc(R

d) and a source term G ∈ L1
loc([0, T ] × Rd) in the

following sense: ∫ T

0

∫
Rd
g L∗ϕ =

∫
Rd
g0ϕ(0, .) +

∫ T

0

∫
Rd
ϕG,

for any ϕ ∈ C1
c ([0, T ) × Rd). Prove that the approximation sequence (gε) introduced in The-

orem 3.2 is a Cauchy sequence in C([0, T ];L1(BR)), for any R > 0, and deduce that g ∈
C([0, T ];L1

loc(R
d)). (Hint. Write the renormalized formulation of the equation satisfied by gε−gε′

for a renormalizing function β(s) ∼ |s|, a test function 1B(0,R) ≤ χ ∈ D(Rd), Corollary 4.3).

Exercise D.3. Consider a renormalized solution g ∈ L1
loc([0, T ] × Rd) in the sense of Defini-

tion 3.1 to the transport equation (1.1) associated to the initial datum g0 ∈ Lp(Rd), 1 < p <∞,

and such that β(g) ∈ L1((0, T ) × Rd) for any β ∈ A, the class of renormalizing functions
β ∈ C1(R) such that β(0) = 0 and β′ ∈ Cc(R\{0}).
(1) Prove that for any given β ∈ A, the function

t 7→
∫
Rd
β(g) dx is continuous,

up to the modification of g on a negligible set of times. (Hint. Repeat Step 1 of the proof of
Corollary 4.4).

(2) Deduce that g ∈ L∞(0, T ;Lp(Rd)). (Hint. Repeat the proof of Corollary 4.3).

(3) Deduce that g ∈ C([0, T ];Lp(Rd)).

(4) We define L0((0, T ) × Rd) as the set of measurable functions g on (0, T ) × Rd such that
meas(|g| ≥ ε) <∞ for any ε > 0. Consider a weak solution g ∈ L1

loc([0, T ]×Rd)∩L0((0, T )×Rd)

to the transport equation (1.1) associated to an initial datum g0 ∈ Lp(Rd), 1 < p < ∞, in the
sense of equation (2.5). Prove that g ∈ C([0, T ];Lp(Rd)).
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Exercise D.4. Consider a renormalized solution g ∈ L∞(0, T ;L1(Rd)) in the sense of Defini-

tion 3.1 to the transport equation (1.1) associated to the initial datum g0 ∈ L1(Rd).

(1) Prove that g0 ω ∈ L1(Rd) for a smooth and positive function ω such that 〈x〉|∇ω| ≤ ω and
ω(x)→∞ when |x| → ∞. (Hint. That is the de La Vallée Poussin Lemma).

(2) Prove that g ω ∈ L∞(0, T ;L1(Rd)).

(3) Using the continuity property g ∈ C([0, T ];L1
loc(R

d)) established in Exercise D.2, prove that

g ∈ C([0, T ];L1(Rd)).

We propose an alternative proof by following a line of arguments developed in Exercise D.3.

(4) Prove that Φ(g0) ∈ L1(Rd) for a smooth and positive function Φ such that Φ(s)/|s| → ∞
when s→∞. (Hint. That is again the de La Vallée Poussin Lemma).

(5) Prove that Φ(g) ∈ L∞(0, T ;L1(Rd)) and deduce that g ∈ C([0, T ];L1(Rd) − w). (Hint. Use

the Dunford-Pettis Lemma).

(6) Prove that there exists a one-to-one function β ∈ C1(R) ∩W 1,∞(R) such that t 7→ β(g(t, .))

and t 7→ β(g(t, .))2 are weakly continuous functions (for instance in L2
loc(R

2)). (Hint. Repeat

some arguments developed during the proof of Corollary 4.4, see also Exercise D.3).

(7) Deduce that t 7→ g(t, .) is continuous in the a.e. sense in Rd and next that g ∈ C([0, T ];L1(Rd)).

(Hint. Use the Egorov Theorem in the last step).

Exercise D.5. We define

J(t, x) := exp
(∫ t

0
(div a)(s,Φs(x)) ds

)
.

(1) Show that for f0 ∈ C1
c (Rd), the function f defined implicitely by

f(t,Φt(x))J(t, x) = f0(x) ∀ t ∈ [0, T ], ∀x ∈ Rd,

is the (unique) solution to the transport equation in divergenece form (C.8) associated to the

inital datum f0.

(2) Show or use Liouville Theorem J(t, .) = detDΦt, in order to get an alternative proof of
Lemma C.8.

Exercise D.6. (1) Prove the existence of a (weak in the sense of distributions) solution f ∈
L∞(0, T ;L2(Rd)) to the first order equation

∂tf = a(x) · ∇f(x) + c(x) f(x) +

∫
Rd
b(y, x) f(y) dy,

with the usual assumptions on a, c, b by the vanishing viscosity method: that is by passing to the

limit in the familly of equation

∂tfε = ε∆fε + a · ∇fε + c fε +

∫
Rd
b(y, x) fε(y) dy,

as ε→ 0.

(2) Prove that the above solution is a renomalized solution.

(3) Prove that f ∈ C([0, T ];L2(Rd)).

Exercise D.7. Consider the transport equation

Lf = ∂tf + a · ∇f = 0

with a Lipschitz vector field a : Rd → Rd.

(1) Prove the existence of a weak solution f ∈ L∞(0, T ;Lp) for any T > 0 and any initial datum
f0 ∈ Lp(Rd), p ∈ (1,∞]. Why f ∈ C([0,∞);Lp) if p ∈ (1,∞)?

(2) Prove the uniqueness of the solution in the case p ∈ (1,∞).

(3) Prove the existence and uniqueness of the solution in the case p = 1. (Hint. Use the Dunford-

Pettis Theorem).

(4) Prove the uniqueness of the solution in the case p =∞. (Hint. Use a duality argument).
(4a) Consider f ∈ L∞((0, T )×Rd)∩C([0, T ];L1

loc(R
d) a weak solution to the transport equation

with vanishing initial datum and prove that there exits (fε) a sequence in C1([0, T ) × Rd) such
that fε → f a.e., (fε) is bounded in L∞((0, T )× Rd) and

Lfε = rε → 0 in L1
loc([0, T ]× Rd).
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(4b) Consider Ψ ∈ L1((0, T )× Rd) and prove that there exists a sequence of functions (ψε) in

C1([0, T ]×Rd) and a function ψ ∈ C([0, T ];L1(Rd)) such that ψε → ψ a.e. and in C([0, T ];L1(Rd)),

ψε(T ) = 0 and

L∗ψε −Ψ = Rε → 0 in L1
loc([0, T ]× Rd),

(4c) For a function χ ∈ D(Rd), 0 ≤ χ ≤ 1, χ(0) = 1, and a real number R > 0, define

χR(x) := χ(x/R). For any ε,R > 0, establish that∫ T

0

∫
Rd
fεL
∗(ψεχR) =

∫ T

0

∫
Rd
rεψεχR

=

∫ T

0

∫
Rd
fε(Ψ +Rε)χR −

∫ T

0

∫
Rd
fεψεdiv(aχR).

Passing to the limit ε→ 0 and next R→∞ in the last identity, prove that∫ T

0

∫
Rd
fΨ = 0

and conclude.
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