CHAPTER 4-EVOLUTION EQUATION AND SEMIGROUP - COMPLEMENTS -

Contents

1. Transport equation

1. Transport equation

Proposition 1.1. Under the standard assumptions on the vector field $a=a(x)$ and the usual definition on the associated flow Φ_{t}, for any $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right)$, the function

$$
\begin{equation*}
\bar{f}(t, x):=f_{0}\left(\Phi_{-t}(x)\right) \tag{1.1}
\end{equation*}
$$

is the unique weak solution in $C\left([0, T) ; L^{p}\left(\mathbb{R}^{d}\right)\right.$) when $p \in[1, \infty)$ (resp. in $C\left([0, T) ; L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)\right) \cap$ $L^{\infty}\left(0, T ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$ when $\left.p=\infty\right)$ to the transport equation

$$
\partial_{t} f+a \cdot \nabla_{x} f=0, \quad f(0)=f_{0}
$$

Proof of Proposition 1.1. From the above definition and the group property of the flow, for a.e. $y \in \mathbb{R}^{d}$ and for any $t \in(0, \infty)$, we observe that

$$
\begin{equation*}
\bar{f}\left(t+s, \Phi_{s}(y)\right)=\bar{f}(t, y), \quad \forall s \geq 0 \tag{1.2}
\end{equation*}
$$

Recalling Liouville theorem, we know that the Jacobian function $J:=\operatorname{det} D \Phi_{t}(y)$ satisfies the ODE

$$
\frac{d}{d t} J=\left(\operatorname{div} a\left(t, \Phi_{t}(y)\right)\right) J, \quad J(0, y)=1
$$

so that

$$
\begin{equation*}
\operatorname{det} D \Phi_{t}(y)=e^{\int_{0}^{t}\left(\operatorname{div} a\left(s, \Phi_{s}(y)\right)\right) d s} \tag{1.3}
\end{equation*}
$$

Let us then fix $\varphi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$. We compute

$$
\begin{aligned}
0 & =\frac{d}{d s} \int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{f}(t, y) \varphi(t, y) d y d t \\
& =\frac{d}{d s} \int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{f}\left(t+s, \Phi_{s}(y)\right) \varphi(t, y) d y d t \\
& =\frac{d}{d s} \int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{f}(t, x) \varphi\left(t-s, \Phi_{-s}(x)\right) e^{-\int_{0}^{s}(\operatorname{div} a)\left(\Phi_{\tau}(x)\right) d \tau} d x d t \\
& =\int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{f}(t, x) \frac{d}{d s}\left[\varphi\left(t-s, \Phi_{-s}(x)\right) e^{-\int_{0}^{s} \operatorname{div} a\left(x_{\tau}(x)\right) d s}\right] d x d t \\
& =\int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{g}(t, x)\left[-\partial_{t} \varphi-a \cdot \nabla \varphi-\operatorname{div} a \varphi\right]\left(t-s, \Phi_{-s}(x)\right) d x d t
\end{aligned}
$$

where we have used the relation (1.2) in the second line and the change of variables $x=\Phi_{s}(y)$ together with the Liouville theorem (1.3) in the third line. Taking $s=0$, we get

$$
0=\int_{0}^{T} \int_{\mathbb{R}^{d}} \bar{g}(t, x)\left[-\partial_{t} \varphi-a \cdot \nabla \varphi-(\operatorname{div} a) \varphi\right](t, x) d x d t
$$

which exactly means that \bar{g} is a solution to equation (1.1) in the distributional sense.

Proposition 1.2. Under the same assumptions as in the above Proposition and defining the semigroup S on $L^{p}\left(\mathbb{R}^{d}\right)$ by

$$
\left(S_{t} f_{0}\right)(x):=f_{0}\left(\Phi_{-t}(x)\right), \quad \forall f_{0} \in L^{p}\left(\mathbb{R}^{d}\right)
$$

the generator \mathcal{L} of S has domain

$$
D(\mathcal{L})=W_{p}:=\left\{f \in L^{p}\left(\mathbb{R}^{d}\right) ; a \cdot \nabla f \in L^{p}\left(\mathbb{R}^{d}\right)\right\}
$$

and is defined by

$$
\mathcal{L} f=-a \cdot \nabla f, \quad \forall f \in D(\mathcal{L})
$$

Proof of Proposition 1.2. For $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, we compute

$$
\begin{aligned}
\left\langle\frac{S_{t} f_{0}-f_{0}}{t}, \varphi\right\rangle & =\frac{1}{t} \int_{\mathbb{R}^{d}}\left[f_{0}\left(\Phi_{-t}(x)\right)-f_{0}(x)\right] \varphi(x) d x \\
& =\frac{1}{t} \int_{\mathbb{R}^{d}} f_{0}(x)\left[\varphi\left(\Phi_{t}(x)\right) e^{\int_{0}^{t}(\operatorname{div} a)\left(\Phi_{s}(x)\right) d s}-\varphi(x)\right] d x
\end{aligned}
$$

We may pass to the limit in the RHS term, and we get

$$
\lim _{t \rightarrow 0}\left\langle\frac{S_{t} f_{0}-f_{0}}{t}, \varphi\right\rangle=\int_{\mathbb{R}^{d}} f_{0}(x)[a \cdot \nabla \varphi+(\operatorname{div} a) \varphi] d x
$$

If now, $f_{0} \in D(\mathcal{L})$, we also have for any $\varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, We may pass to the limit in the RHS term, and we get

$$
\lim _{t \rightarrow 0}\left\langle\frac{S_{t} f_{0}-f_{0}}{t}, \varphi\right\rangle=\int_{\mathbb{R}^{d}}\left(\mathcal{L} f_{0}\right) \varphi d x
$$

and thus

$$
\int_{\mathbb{R}^{d}} f_{0}(x)[a \cdot \nabla \varphi+(\operatorname{div} a) \varphi] d x=\int_{\mathbb{R}^{d}}\left(\mathcal{L} f_{0}\right) \varphi d x, \quad \forall \varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)
$$

In particular,

$$
\left|\int_{\mathbb{R}^{d}} f_{0}(x)[\operatorname{div}(a \varphi)] d x\right| \leq\left\|\mathcal{L} f_{0}\right\|_{L^{p}}\|\varphi\|_{L^{p^{\prime}}} \quad \forall \varphi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)
$$

which exactly means that $a \cdot \nabla f_{0} \in L^{p}$ and thus $f_{0} \in W_{p}$. We have established that $D(\mathcal{L}) \subset W_{p}$ and $\mathcal{L} f_{0}=-a \cdot \nabla f_{0}$.
On the other way round, let us consider $f_{0} \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$. The Taylor expansion formula writes

$$
f_{0}\left(\Phi_{-t}(x)\right)=f_{0}(x)+\int_{0}^{t}\left(a \cdot \nabla f_{0}\right)\left(\Phi_{-s}(x)\right) d s
$$

Using a duality argument, this formula extends to a W_{p} framework: for any fixed $f_{0} \in W^{p}$, there holds

$$
f_{0}\left(\Phi_{t}(x)\right)=f_{0}(x)+\int_{0}^{t}\left(a \cdot \nabla f_{0}\right)\left(\Phi_{-s}(x)\right) d s, \quad \text { for a.e. } x \in \mathbb{R}^{d}, \forall t>0
$$

We deduce

$$
\frac{S_{t} f_{0}-f_{0}}{t}+a \cdot \nabla f_{0}=\frac{1}{t} \int_{0}^{t}\left[\left(a \cdot \nabla f_{0}\right)\left(\Phi_{-s}(x)\right)+\left(a \cdot \nabla f_{0}\right)(x)\right] d s
$$

and we have to prove that the last term tends to 0 in L^{p} norm as $t \rightarrow 0$.

