CHAPTER 4 - EVOLUTION EQUATION AND SEMIGROUP - COMPLEMENTS -

CONTENTS

1. Transport equation

1. TRANSPORT EQUATION

Proposition 1.1. Under the standard assumptions on the vector field a = a(x) and the usual definition on the associated flow Φ_t , for any $f_0 \in L^p(\mathbb{R}^d)$, the function

(1.1)
$$\bar{f}(t,x) := f_0(\Phi_{-t}(x))$$

is the unique weak solution in $C([0,T); L^p(\mathbb{R}^d))$ when $p \in [1,\infty)$ (resp. in $C([0,T); L^1_{loc}(\mathbb{R}^d)) \cap L^{\infty}(0,T; L^{\infty}(\mathbb{R}^d))$ when $p = \infty$) to the transport equation

$$\partial_t f + a \cdot \nabla_x f = 0, \quad f(0) = f_0.$$

Proof of Proposition 1.1. From the above definition and the group property of the flow, for a.e. $y \in \mathbb{R}^d$ and for any $t \in (0, \infty)$, we observe that

(1.2)
$$\bar{f}(t+s,\Phi_s(y)) = \bar{f}(t,y), \quad \forall s \ge 0.$$

Recalling Liouville theorem, we know that the Jacobian function $J := \det D\Phi_t(y)$ satisfies the ODE

$$\frac{d}{dt}J = (\operatorname{div}a(t, \Phi_t(y)))J, \quad J(0, y) = 1,$$

so that

(1.3)
$$\det D\Phi_t(y) = e^{\int_0^t (\operatorname{dIV}a(s,\Phi_s(y)))ds}.$$

Let us then fix $\varphi \in \mathcal{D}((0,T) \times \mathbb{R}^d)$. We compute

$$\begin{aligned} 0 &= \frac{d}{ds} \int_0^T \int_{\mathbb{R}^d} \bar{f}(t, y) \varphi(t, y) \, dy dt \\ &= \frac{d}{ds} \int_0^T \int_{\mathbb{R}^d} \bar{f}(t + s, \Phi_s(y)) \varphi(t, y) \, dy dt \\ &= \frac{d}{ds} \int_0^T \int_{\mathbb{R}^d} \bar{f}(t, x) \varphi(t - s, \Phi_{-s}(x)) e^{-\int_0^s (\operatorname{div} a)(\Phi_\tau(x)) d\tau} \, dx dt \\ &= \int_0^T \int_{\mathbb{R}^d} \bar{f}(t, x) \frac{d}{ds} [\varphi(t - s, \Phi_{-s}(x)) e^{-\int_0^s \operatorname{div} a(x_\tau(x)) ds}] \, dx dt \\ &= \int_0^T \int_{\mathbb{R}^d} \bar{g}(t, x) [-\partial_t \varphi - a \cdot \nabla \varphi - \operatorname{div} a \varphi] (t - s, \Phi_{-s}(x)) \, dx dt \end{aligned}$$

where we have used the relation (1.2) in the second line and the change of variables $x = \Phi_s(y)$ together with the Liouville theorem (1.3) in the third line. Taking s = 0, we get

$$0 = \int_0^T \int_{\mathbb{R}^d} \bar{g}(t, x) [-\partial_t \varphi - a \cdot \nabla \varphi - (\operatorname{div} a) \varphi](t, x) \, dx dt,$$

which exactly means that \bar{g} is a solution to equation (1.1) in the distributional sense.

1

Proposition 1.2. Under the same assumptions as in the above Proposition and defining the semigroup S on $L^p(\mathbb{R}^d)$ by

$$(S_t f_0)(x) := f_0(\Phi_{-t}(x)), \quad \forall f_0 \in L^p(\mathbb{R}^d),$$

the generator $\mathcal L$ of S has domain

$$D(\mathcal{L}) = W_p := \{ f \in L^p(\mathbb{R}^d); \ a \cdot \nabla f \in L^p(\mathbb{R}^d) \}$$

and is defined by

$$\mathcal{L}f = -a \cdot \nabla f, \quad \forall f \in D(\mathcal{L}).$$

Proof of Proposition 1.2. For $f_0 \in L^p(\mathbb{R}^d)$ and $\varphi \in C^1_c(\mathbb{R}^d)$, we compute

$$\begin{split} \left\langle \frac{S_t f_0 - f_0}{t}, \varphi \right\rangle &= \frac{1}{t} \int_{\mathbb{R}^d} [f_0(\Phi_{-t}(x)) - f_0(x)] \varphi(x) \, dx \\ &= \frac{1}{t} \int_{\mathbb{R}^d} f_0(x) [\varphi(\Phi_t(x)) e^{\int_0^t (\operatorname{div}_a)(\Phi_s(x)) ds} - \varphi(x)] \, dx. \end{split}$$

We may pass to the limit in the RHS term, and we get

$$\lim_{t \to 0} \left\langle \frac{S_t f_0 - f_0}{t}, \varphi \right\rangle = \int_{\mathbb{R}^d} f_0(x) [a \cdot \nabla \varphi + (\operatorname{div} a) \varphi] \, dx.$$

If now, $f_0 \in D(\mathcal{L})$, we also have for any $\varphi \in C_c^1(\mathbb{R}^d)$, We may pass to the limit in the RHS term, and we get

$$\lim_{t \to 0} \left\langle \frac{S_t f_0 - f_0}{t}, \varphi \right\rangle = \int_{\mathbb{R}^d} (\mathcal{L} f_0) \varphi \, dx,$$

and thus

$$\int_{\mathbb{R}^d} f_0(x) [a \cdot \nabla \varphi + (\operatorname{div} a) \varphi] \, dx = \int_{\mathbb{R}^d} (\mathcal{L} f_0) \varphi \, dx, \quad \forall \, \varphi \in C_c^1(\mathbb{R}^d).$$

In particular,

$$\left| \int_{\mathbb{R}^d} f_0(x) [\operatorname{div}(a\varphi)] \, dx \right| \le \|\mathcal{L}f_0\|_{L^p} \, \|\varphi\|_{L^{p'}} \quad \forall \varphi \in C^1_c(\mathbb{R}^d),$$

which exactly means that $a \cdot \nabla f_0 \in L^p$ and thus $f_0 \in W_p$. We have established that $D(\mathcal{L}) \subset W_p$ and $\mathcal{L}f_0 = -a \cdot \nabla f_0$.

On the other way round, let us consider $f_0 \in C_c^1(\mathbb{R}^d)$. The Taylor expansion formula writes

$$f_0(\Phi_{-t}(x)) = f_0(x) + \int_0^t (a \cdot \nabla f_0)(\Phi_{-s}(x)) \, ds.$$

Using a duality argument, this formula extends to a W_p framework: for any fixed $f_0 \in W^p$, there holds

$$f_0(\Phi_t(x)) = f_0(x) + \int_0^t (a \cdot \nabla f_0)(\Phi_{-s}(x)) \, ds, \quad \text{for a.e. } x \in \mathbb{R}^d, \ \forall t > 0.$$

We deduce

$$\frac{S_t f_0 - f_0}{t} + a \cdot \nabla f_0 = \frac{1}{t} \int_0^t [(a \cdot \nabla f_0)(\Phi_{-s}(x)) + (a \cdot \nabla f_0)(x)] \, ds,$$

and we have to prove that the last term tends to 0 in L^p norm as $t \to 0$.