
An introduction to evolution PDEs October 21, 2022

CHAPTER 4 - EVOLUTION EQUATION AND SEMIGROUP

- COMPLEMENTS -

Contents

1. Transport equation 1

1. Transport equation

Proposition 1.1. Under the standard assumptions on the vector field a = a(x) and the usual
definition on the associated flow Φt, for any f0 ∈ Lp(Rd), the function

(1.1) f̄(t, x) := f0(Φ−t(x))

is the unique weak solution in C([0, T );Lp(Rd)) when p ∈ [1,∞) (resp. in C([0, T );L1
loc(Rd)) ∩

L∞(0, T ;L∞(Rd)) when p =∞) to the transport equation

∂tf + a · ∇xf = 0, f(0) = f0.

Proof of Proposition 1.1. From the above definition and the group property of the flow, for a.e.
y ∈ Rd and for any t ∈ (0,∞), we observe that

(1.2) f̄(t + s,Φs(y)) = f̄(t, y), ∀ s ≥ 0.

Recalling Liouville theorem, we know that the Jacobian function J := detDΦt(y) satisfies the ODE

d

dt
J = (diva(t,Φt(y)))J, J(0, y) = 1,

so that

(1.3) detDΦt(y) = e
∫ t
0

(diva(s,Φs(y)))ds.

Let us then fix ϕ ∈ D((0, T )× Rd). We compute

0 =
d

ds

∫ T

0

∫
Rd

f̄(t, y)ϕ(t, y) dydt

=
d

ds

∫ T

0

∫
Rd

f̄(t + s,Φs(y))ϕ(t, y) dydt

=
d

ds

∫ T

0

∫
Rd

f̄(t, x)ϕ(t− s,Φ−s(x))e−
∫ s
0

(diva)(Φτ (x))dτ dxdt

=

∫ T

0

∫
Rd

f̄(t, x)
d

ds
[ϕ(t− s,Φ−s(x))e−

∫ s
0

diva(xτ (x))ds] dxdt

=

∫ T

0

∫
Rd

ḡ(t, x)[−∂tϕ− a · ∇ϕ− divaϕ](t− s,Φ−s(x)) dxdt,

where we have used the relation (1.2) in the second line and the change of variables x = Φs(y)
together with the Liouville theorem (1.3) in the third line. Taking s = 0, we get

0 =

∫ T

0

∫
Rd

ḡ(t, x)[−∂tϕ− a · ∇ϕ− (diva)ϕ](t, x) dxdt,

which exactly means that ḡ is a solution to equation (1.1) in the distributional sense. �
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Proposition 1.2. Under the same assumptions as in the above Proposition and defining the semi-
group S on Lp(Rd) by

(Stf0)(x) := f0(Φ−t(x)), ∀ f0 ∈ Lp(Rd),
the generator L of S has domain

D(L) = Wp := {f ∈ Lp(Rd); a · ∇f ∈ Lp(Rd)}
and is defined by

Lf = −a · ∇f, ∀ f ∈ D(L).

Proof of Proposition 1.2. For f0 ∈ Lp(Rd) and ϕ ∈ C1
c (Rd), we compute〈Stf0 − f0

t
, ϕ
〉

=
1

t

∫
Rd

[f0(Φ−t(x))− f0(x)]ϕ(x) dx

=
1

t

∫
Rd

f0(x)[ϕ(Φt(x))e
∫ t
0

(diva)(Φs(x))ds − ϕ(x)] dx.

We may pass to the limit in the RHS term, and we get

lim
t→0

〈Stf0 − f0

t
, ϕ
〉

=

∫
Rd

f0(x)[a · ∇ϕ + (diva)ϕ] dx.

If now, f0 ∈ D(L), we also have for any ϕ ∈ C1
c (Rd), We may pass to the limit in the RHS term,

and we get

lim
t→0

〈Stf0 − f0

t
, ϕ
〉

=

∫
Rd

(Lf0)ϕdx,

and thus ∫
Rd

f0(x)[a · ∇ϕ + (diva)ϕ] dx =

∫
Rd

(Lf0)ϕdx, ∀ϕ ∈ C1
c (Rd).

In particular, ∣∣∣∫
Rd

f0(x)[div(aϕ)] dx
∣∣∣ ≤ ‖Lf0‖Lp ‖ϕ‖Lp′ ∀ϕ ∈ C1

c (Rd),

which exactly means that a · ∇f0 ∈ Lp and thus f0 ∈ Wp. We have established that D(L) ⊂ Wp

and Lf0 = −a · ∇f0.
On the other way round, let us consider f0 ∈ C1

c (Rd). The Taylor expansion formula writes

f0(Φ−t(x)) = f0(x) +

∫ t

0

(a · ∇f0)(Φ−s(x)) ds.

Using a duality argument, this formula extends to a Wp framework: for any fixed f0 ∈ W p, there
holds

f0(Φt(x)) = f0(x) +

∫ t

0

(a · ∇f0)(Φ−s(x)) ds, for a.e. x ∈ Rd, ∀ t > 0.

We deduce
Stf0 − f0

t
+ a · ∇f0 =

1

t

∫ t

0

[(a · ∇f0)(Φ−s(x)) + (a · ∇f0)(x)] ds,

and we have to prove that the last term tends to 0 in Lp norm as t→ 0. �
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