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CHAPTER 5 - MORE ABOUT THE HEAT EQUATION

I write in blue color probably the most important part of the material.
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2.3. An second proof of the Poincaré inequality 8
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In this chapter we present some qualitative properties of the heat equation and more particularly
we present several results on the self-similar behavior of the solutions in large time. These results
are deduced from several functional inequalities, among them the Nash inequality, the Poincaré
inequality and the Log-Sobolev inequality.
Let us emphasize that the approach lies on an interplay between evolution PDEs and functional
inequalities and, although we only deal with (simple) linear situations, these methods are robust
enough to be generalized to (some) nonlinear situations.

1. The heat equation

1.1. A first glance over the heat equation. The section is devoted to the heat equation

(1.1)
∂f

∂t
=

1

2
∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd.

We start with formally observing several qualitative properties of the solutions to the heat equation.
On the one hand, we have

d

dt

∫
Rd

f(t, x) dx =
1

2

∫
Rd

∆f dx = 0,

so that the mass is conserved (by the flow of the heat equation)

〈f(t, ·)〉 :=

∫
Rd

f(t, x) dx =

∫
Rd

f0 dx = 〈f0〉, ∀ t ≥ 0.

1
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The dispersion/diffusion effect of the heat equation can be revealed through the decay of Lp norms,
for instance

(1.2)
d

dt

∫
Rd

f2 dx =

∫
Rd

f∆f dx = −
∫
|∇f |2 ≤ 0, ∀ t ≥ 0.

The same computation gives

d

dt

∫
Rd

f2
+ dx =

∫
Rd

f+∆f dx = −
∫
|∇f+|2 ≤ 0,

so that ∫
Rd

(f+(t, ·))2 dx = 0, ∀ t ≥ 0, if

∫
Rd

(f0+)2 dx = 0.

Equivalently, that means

f(t, ·) ≥ 0, ∀ t ≥ 0, if f0 ≥ 0,

and the equation preservers the positivity. More generally, for any convex function β, we similarly
have

d

dt

∫
Rd

β(f) dx =
1

2

∫
Rd

β′(f)∆f dx = −1

2

∫
Rd

β′′(f)|∇f |2 dx ≤ 0, ∀ t ≥ 0,

and we thus obtain a large family of Lyapunov functional. In particular, the Lp-norm, for any
p ∈ [1,∞], falls in this family, and thus

(1.3) ‖f(t, ·)‖Lp ≤ ‖f0‖Lp , ∀ t ≥ 0.

Finally, for a positive solution, the dispersion/diffusion effect of the heat equation can also be
brought out through the increasing of moments: we have indeed

d

dt

∫
Rd

f(t, x)〈x〉k dx =
1

2

∫
Rd

f∆〈x〉k dx ≥ 0, ∀ t ≥ 0,

for k + d− 2 ≥ 0 and 〈x〉2 := 1 + |x|2 (since ∆〈x〉k = k〈x〉k−4[(k + d− 2)|x|2 + d] ≥ 0).

In the very particular case of the Rd framework as considered here, solutions to the heat equation
are given through the representation formula

(1.4) f(t, .) = γt ∗ f0, γt(x) :=
1

(2πt)d/2
exp
(
−|x|

2

2t

)
.

An alternative way for building solutions is the J.-L. Lions theory presented in a previous chapter.
That last approach is a bit more involved but much more robust since it generalizes to many
parabolic equations.

1.2. Nash inequality and heat equation. Thanks to the representation formula (1.4) and the
Hölder inequality, one can classically prove that f(t, .) → 0 as t → ∞. More precisely, for any
p ∈ (1,∞] and a constant Cp,d, the following rate of decay holds:

(1.5) ‖f(t, .)‖Lp ≤ Cp,d

t
d
2 (1− 1

p )
‖f0‖L1 ∀ t > 0.

We aim to give a second proof of (1.5) which is not based on the above representation formula,
which is clearly longer and more complicated, but which is also more robust in the sense that it
applies to more general equations, even sometimes nonlinear. We start with the case p = 2 which
is the key argument and which is based on the so-called Nash inequality together with a nonlinear
ODE estimate.

Nash inequality. There exists a constant Cd such that for any f ∈ L1(Rd) ∩ H1(Rd), there
holds

(1.6) ‖f‖1+2/d
L2 ≤ Cd ‖f‖2/dL1 ‖∇f‖L2 .



CHAPTER 5 - MORE ABOUT THE HEAT EQUATION 3

Proof of Nash inequality. We write for any R > 0

‖f‖2L2 = ‖f̂‖2L2 =

∫
|ξ|≤R

|f̂ |2 +

∫
|ξ|≥R

|f̂ |2

≤ cdR
d ‖f̂‖2L∞ +

1

R2

∫
|ξ|≥R

|ξ|2 |f̂ |2

≤ cdR
d ‖f‖2L1 +

1

R2
‖∇f‖2L2 ,

and we take the optimal choice for R by setting R := (‖∇f‖2L2/cd‖f‖2L1)
1

d+2 so that the two terms
at the RHS pf the last line are equal. �

Alternative proofs of the Nash inequality (1.6) are presented in Exercise 6.1 and Exercise 6.2.

We consider now a solution f to the heat equation (1.1) and we recall that

d

dt

∫
Rd

f(t, x)2 dx = −
∫
Rd

|∇f |2 dx, ∀ t ≥ 0,

and
‖f(t, ·)‖L1 ≤ ‖f0‖L1 , ∀ t ≥ 0,

from (1.2) and (1.3) with p = 1. Putting together that two last equations and the Nash inequality,
we obtain the following ordinary differential inequality

d

dt

∫
Rd

f(t, x)2 dx ≤ −K
(∫

Rd

f(t, x)2 dx
) d+2

d

, K = Cd ‖f0‖−4/d
L1 .

We last observe that for any solution u of the ordinary differential inequality

u′ ≤ −K u1+α, α = 2/d > 0,

some elementary computations (as already performed in the first chapter about Gronwall lemma)
lead to the inequality

u−α(t) ≥ αK t+ uα0 ≥ αK t,

from which we conclude that

(1.7)

∫
Rd

f2(t, x) dx ≤ C

(
‖f0‖4/dL1

)d/2
td/2

= C
‖f0‖2L1

td/2
.

That is nothing but the announced estimate (1.5) for p = 2.

In order to prove the estimate for the full range of exponent p ∈ (1,∞] we use a duality and an
interpolation arguments as follow. We introduce the heat semigroup S(f)f0 = f(t) associated
to the heat equation as well as the dual semigroup S∗(t). We clearly have S∗ = S because
the Laplacian operator is symmetric in L2(Rd). As a consequence, thanks to (1.7) and for any
f0 ∈ L2(Rd), there holds

‖S(t)f0‖L∞ = sup
φ∈BL1

〈S(t)f0, φ〉 = sup
φ∈BL1

〈f0, S(t)φ〉

≤ sup
φ∈BL1

‖f0‖L2 ‖S(t)φ‖L2 ≤ ‖f0‖L2

C

td/4
,

which exactly means that S(t) : L2 → L∞ for positive times with norm bounded by C t−d/4. We
deduce

‖S(t)‖L1→L∞ ≤ ‖S(t/2)‖L2→L∞ ‖S(t/2)‖L1→L2 ≤ C

td/2
,

which establishes (1.5) for p =∞. Finally, for any p ∈ (1,∞) and using the interpolation inequality

‖S(t)f0‖Lp ≤ ‖S(t)f0‖θL1 ‖S(t)f0‖1−θL∞ ≤ ‖S(t)‖1−θL1→L∞ ‖f0‖L1 ∀ t > 0,

with θ = 1/p, we have established (1.5) in the general case.

It is worth emphasizing that by differentiating the heat equation, we can easily establish some
estimates on its smoothing effect. For example, for f0 ∈ H1(Rd), the associated solution to the
heat equation satisfies

∂tf =
1

2
∆f and ∂t∇f =

1

2
∆∇f
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from what we deduce

d

dt
‖f‖2L2 = −‖∇f‖2L2 and

d

dt
‖∇f‖2L2 = −‖D2f‖2L2

and then
d

dt

{
‖f‖2L2 + t‖∇f‖2L2

}
= −t‖D2f‖2L2 ≤ 0, ∀ t > 0.

Integrating in time this differential inequality, we readily obtain that the solution to the heat
equation satisfies

‖∇f(t)‖L2 ≤ 1

t1/2
‖f0‖L2 , ∀ t > 0.

1.3. Self-similar solutions and the Fokker-Planck equation. It is in fact possible to describe
in a more accurate way that the mere estimate (1.5) how the heat equation solution f(t, .) converges
to 0 as time goes on.
In order to do so, the first step consists in looking for particular solutions to the heat equation
that we will discover by identifying some good scaling. We thus look for a self-similar solution to
(1.5), namely for a solution F with particular form

F (t, x) = tαG(tβx),

for some α, β ∈ R and a “self-similar profile” G. As F must be mass conserving, we have∫
Rd

F (t, x) dx =

∫
Rd

F (0, x) dx = tα
∫
Rd

G(tβx) dx = tα−βd
∫
Rd

G(y) dy,

and we get from that the first equation α = β d. On the other hand, we easily compute

∂tF = α tα−1G(tβ x) + β tα−1 (tβ x) · (∇G)(tβ x), ∆F = tα t2β (∆G)(tβ x).

In order that (1.1) is satisfied, we need thus to take 2β + 1 = 0. We conclude with

(1.8) F (t, x) = t−d/2G(t−1/2 x),
1

2
∆G+

1

2
div(xG) = 0.

Under the mild regularity assumption G ∈W 1,1(Rd)∩L1
1(Rd) on a solution to the second equation

(profile equation) in (1.8), this one satisfies ∇G+xG = 0 (see Exercise 6.3). Under the additional
assumption G ∈ P(Rd), we observe (and that is not a surprise!) that the profile G is unique and
given by

G(x) := c0 e
−|x|2/2, c−1

0 = (2π)d/2 (normalized Gaussian function).

To sum up, we have proved that F is our favorite solution to the heat equation: that is the
fundamental solution to the heat equation.

Changing of point view, we may now consider G as a stationary solution to the harmonic Fokker-
Planck equation (sometimes also called the Ornstein-Uhlenbeck equation)

(1.9)
∂

∂t
g =

1

2
L g =

1

2
∇ · (∇g + g x) in (0,∞)× Rd.

The link between the heat equation (1.1) and the Fokker-Planck equation (1.9) is as follows. If g
is a solution to the Fokker-Planck equation (1.9), some elementary computations permit to show
that

f(t, x) = (1 + t)−d/2 g(log(1 + t), (1 + t)−1/2 x)

is a solution to the heat equation (1.1), with f(0, x) = g(0, x). Reciprocally, if f is a solution to
the heat equation (1.1) then

(1.10) g(t, x) := ed t/2 f(et − 1, et/2 x)

solves the Fokker-Planck equation (1.9). The last expression also gives the existence of a solution in
the sense of distributions to the Fokker-Planck equation (1.9) for any initial datum f0 = ϕ ∈ L1(Rd)
as soon as we know the existence of a solution to the heat equation for the same initial datum
(what we get thanks to the usual representation formula for instance).
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2. Fokker-Planck equation and Poincaré inequality

2.1. Long time asymptotic behaviour of the solutions to the Fokker-Planck equation.
From now on in this chapter, we consider the Fokker-Planck equation

∂

∂t
f = L f = ∆f +∇ · (f ∇V ) in (0,∞)× Rd(2.1)

f(0, x) = f0(x) on Rd,(2.2)

and we assume that the “confinement potential” V is the harmonic potential

V (x) :=
|x|2

2
+ V0, V0 :=

d

2
log 2π.

We start observing that

d

dt

∫
Rd

f(t, x) dx =

∫
Rd

∇x · (∇xf + f ∇xV ) dx = 0,

so that the mass (of the solution) is conserved. We also have

1

2

d

dt

∫
Rd

(f+)2 dx =

∫
Rd

f+(∆f + div(xf)) dx

= −
∫
Rd

|∇f+|2 −
∫
Rd

f+ x · ∇f+ dx ≤
d

2

∫
Rd

(f+)2 dx,

and thanks to the Gronwall lemma, we conclude that the maximum principle holds. Moreover, the
function G = e−V ∈ L1(Rd) ∩ P(Rd) is nothing but the normalized Gaussian function, and since
∇G = −G∇V , it is a stationary solution to the Fokker-Planck equation (2.1).

Theorem 2.1. Let us fix f0 ∈ Lp(Rd), 1 ≤ p <∞.

(1) There exists a unique global solution f ∈ C([0,∞);Lp(Rd)) to the Fokker-Planck equation (2.1).
This solution is mass conservative

(2.3) 〈f(t, .)〉 :=

∫
Rd

f(t, x) dx =

∫
Rd

f0(x) dx =: 〈f0〉, if f0 ∈ L1(Rd),

and the following maximum principle holds

f0 ≥ 0 ⇒ f(t, .) ≥ 0 ∀ t ≥ 0.

(2) Asymptotically in large time the solution converges to the unique stationary solution with same
mass, namely

(2.4) ‖f(t, .)− 〈f0〉G‖E ≤ e−λP t ‖f0 − 〈f0〉G‖E as t→∞,
where ‖ · ‖E stands for the norm of the Hilbert space E := L2(G−1) defined by

‖f‖2E :=

∫
Rd

f2G−1 dx

and λP is the best (larger) constant in the Poincaré inequality.

More generally, for any weight function m : Rd → R+, we denote by Lp(m) the Lebesgue space
associated to the mesure m(x)dx and by Lpm the Lebesgue space associated to the norm ‖f‖Lp

m
:=

‖f m‖Lp . We will also write Lpk := Lpm, when m := 〈x〉k.

For the proof of point (1) we refer to Chapter 2 as well as the final remark of Section 1. It is worth
emphasizing that gathering (1.4) and (1.10), we also have the representation formula

f(t, x) = ed t(γet−1 ∗ f0)(etx)

for the solution to the Fokker-Planck equation (2.1)–(2.2). We are going to give the main lines of
the proof of point 2. Because the equation is linear, we may assume in the sequel that 〈f0〉 = 0.

Using that GG−1 = 1, we deduce that ∇V = −G−1∇G = G · ∇(G−1). We can then write the
Fokker-Planck equation in the equivalent form

∂

∂t
f = divx

(
∇xf +Gf ∇xG−1

)
(2.5)

= divx
(
G∇x(f G−1)

)
.
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We then compute

1

2

d

dt

∫
f2G−1 =

∫
Rd

(∂tf) f G−1 dx =

∫
Rd

divx

(
G∇x

(
f

G

))
f

G
dx(2.6)

= −
∫
Rd

G

∣∣∣∣∇x fG
∣∣∣∣2 dx.

Using the Poincaré inequality established in the next Theorem 2.2 with the choice of function
h := f(t, .)/G and observing that 〈f/G〉G = 0, we obtain

1

2

d

dt

∫
f2G−1 ≤ −λP

∫
Rd

G

(
f

G

)2

dx = −λP
∫
Rd

f2G−1 dx,

and we conclude using the Gronwall lemma.

Theorem 2.2 (Poincaré inequality). There exists a constant λP > 0 (which only depends on the
dimension) such that for any h ∈ D(Rd), there holds

(2.7)

∫
Rd

|∇h|2Gdx ≥ λP
∫
Rd

|h− 〈h〉G|2Gdx,

where we have defined

〈h〉µ :=

∫
Rd

h(x)µ(dx)

for any given (probability) measure µ ∈ P(Rd) and any function h ∈ L1(µ).

We present below three slightly different proofs of this important result.

2.2. A first proof of the Poincaré inequality. We split the proof into three steps.

2.2.1. Poincaré-Wirtinger inequality (in an open and bounded set Ω).

Lemma 2.3. Let us denote Ω = BR the ball of Rd with center 0 and radius R > 0, and let us
consider ν ∈ P(Ω) a probability measure such that (abusing notations) ν, 1/ν ∈ L∞(Ω). There
exists a constant κ ∈ (0,∞), such that for any (smooth) function f , there holds

(2.8) κ

∫
Ω

|f − 〈f〉ν |2 ν ≤
∫

Ω

|∇f |2 ν, 〈f〉ν :=

∫
Ω

f ν,

and therefore

(2.9)

∫
Ω

f2 ν ≤ 〈f〉2ν +
1

κ

∫
Ω

|∇f |2 ν.

Proof of Lemma 2.3. We start with

f(x)− f(y) =

∫ 1

0

∇f(zt) · (x− y) dt, zt = t x+ (1− t) y.

Multiplying that identity by ν(y) and integrating in the variable y ∈ Ω the resulting equation, we
get

f(x)− 〈f〉ν =

∫
Ω

∫ 1

0

∇f(zt) · (x− y) dt ν(y) dy.

Using the Cauchy-Schwarz inequality, we have∫
Ω

(f(x)− 〈f〉ν)2 ν(x) dx ≤
∫

Ω

∫
Ω

∫ 1

0

|∇f(zt)|2 |x− y|2 dt ν(y) ν(x)dydx

≤ C1

∫
Ω

∫
Ω

∫ 1/2

0

|∇f(zt)|2 dtdy ν(x)dx+ C1

∫
Ω

∫
Ω

∫ 1

1/2

|∇f(zt)|2 dtdx ν(y)dy,
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with C1 := ‖ν‖L∞ diam(Ω)2. Performing the the changes of variables (x, y) 7→ (z, y) and (x, y) 7→
(x, z) and using the fact that zt ∈ [x, y] ⊂ Ω, we deduce∫

Ω

(f(x)− 〈f〉ν)2 ν(x) dx

≤ C1

∫
Ω

∫ 1/2

0

∫
Ω

|∇f(z)|2 dz

(1− t)d
dt ν(x)dx+ C1

∫
Ω

∫ 1

1/2

∫
Ω

|∇f(z)|2 dz
td
dt ν(y)dy

≤ 2C1

∫
Ω

|∇f(z)|2 dz.

We have thus established that the Poincaré-Wirtinger inequality (2.8) holds with the constant
κ−1 := 2C1 ‖1/ν‖L∞ . �

2.2.2. Weighted L2 estimate through L2 estimate on the derivative.

Proposition 2.4. There holds

1

4

∫
Rd

h2 |x|2Gdx ≤
∫
Rd

|∇h|2Gdx+
d

2

∫
Rd

h2Gdx,

for any h ∈ C1
b (Rd).

Proof of Proposition 2.4. We define Φ := − logG = |x|2/2 + log(2π)d/2. For a given function h,
we denote g = hG1/2, and we expand∫

Rd

|∇h|2 Gdx =

∫
Rd

∣∣∣∇g G−1/2 + g∇G−1/2
∣∣∣2 Gdx

=

∫
Rd

{
|∇g|2 + g∇g∇Φ +

1

4
g2|∇Φ|2

}
dx,

because ∇G−1/2 = 1
2∇ΦG−1/2. Performing one integration by part, we get∫

Rd

|∇h|2 Gdx =

∫
Rd

|∇g|2 dx+

∫
Rd

h2

(
1

4
|∇Φ|2 − 1

2
∆Φ

)
Gdx.

We conclude by neglecting the first term and computing the second term at the RHS. �

2.2.3. End of the first proof of the Poincaré inequality. We split the L2 norm into two pieces∫
Rd

h2Gdx =

∫
BR

h2Gdx+

∫
Bc

R

h2Gdx,

for some constant R > 0 to be choosen later. One the one hand, we have∫
BR

h2Gdx ≤ CR

∫
BR

|∇h|2 Gdx+
(∫

Bc
R

hGdx
)2

≤ CR

∫
|∇h|2 Gdx+

(∫
Bc

R

Gdx
)∫

h2Gdx,

where in the first line, we have used the Poincaré-Wirtinger inequality (2.9) in BR with

ν := G(BR)−1G|BR
, G(BR) :=

∫
BR

Gdx,

and the fact that 〈hG〉 = 0, and in the second line, we have used the Cauchy-Schwarz inequality.
One the other hand, we have∫

Bc
R

h2Gdx ≤ 1

R2

∫
Rd

h2 |x|2Gdx

≤ 4

R2

∫
Rd

|∇h|2Gdx+
2d

R2

∫
Rd

h2Gdx,

by using Proposition 2.4. All together, we get∫
Rd

h2Gdx ≤
(
CR +

4

R2

) ∫
Rd

|∇h|2Gdx+
( 2d

R2
+

∫
Bc

R

Gdx
)∫

h2Gdx,
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and we choose R > 0 large enough in such a way that the constant in front of the last term at the
RHS is smaller than 1. �

2.3. An second proof of the Poincaré inequality.

2.3.1. A Lyapunov condition. There exists a function W such that W ≥ 1 and there exist some
constants θ > 0, b, R ≥ 0 such that

(2.10) (L∗W )(x) := ∆W (x)−∇V · ∇W (x) ≤ −θW (x) + b1BR
(x), ∀x ∈ Rd,

where again BR = B(0, R) denotes the centered ball of radius R. The proof is elementary. We
look for W as W (x) := eγ〈x〉. We then compute

∇W = γ
x

〈x〉
eγ〈x〉 and ∆W =

(
γ2 + γ

d− 1

〈x〉

)
eγ〈x〉,

and thus

L∗W = ∆W − x · ∇W = γ
d− 1

〈x〉
W +

(
γ2 − γ |x|

2

〈x〉

)
W

≤ −θW + b1BR
,

with the choice θ = γ = 1 and then R and b large enough. �

2.3.2. End of second the proof of the Poincaré inequality. We write (2.10) as

1 ≤ −L
∗W (x)

θW (x)
+

b

θW (x)
1BR

(x), ∀x ∈ Rd.

For any f ∈ C2
b (Rd), we deduce∫

Rd

f2G ≤ −
∫
Rd

f2 L
∗W (x)

θW (x)
G+

b

θ

∫
BR

f2 1

W
G =: T1 + T2.

On the one hand, we have

θ T1 =

∫
∇W ·

{
∇
(
f2

W

)
G+

f2

W
∇G

}
+

∫
f2

W
∇V · ∇W G

=

∫
∇W · ∇

(
f2

W

)
G

=

∫
2
f

W
∇W · ∇f G−

∫
f2

W 2
|∇W |2G

=

∫
|∇f |2G−

∫ ∣∣∣ f
W
∇W −∇f

∣∣∣2G
≤

∫
|∇f |2G.

On the other hand, using the Poincaré-Wirtinger inequality in BR and the notation

G(BR) :=

∫
BR

Gdx, νR := G(BR)−1G|BR
, 〈f〉R =

∫
BR

f νR,

we have

θ

b
T2 =

∫
BR

f2 1

W
G ≤ G(BR)

∫
BR

f2 νR

≤ G(BR)
(
〈f〉2R + CR

∫
BR

|∇f |2 νR
)
.

Gathering the two above estimates, we have shown

(2.11)

∫
Rd

f2G ≤ C
(
〈f〉2R +

∫
Rd

|∇f |2G
)
.

Consider now h ∈ C2
b . We know that for any c ∈ R, there holds

(2.12)

∫
Rd

(h− 〈h〉G)2G ≤ φ(c) :=

∫
Rd

(h− c)2G,
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with 〈h〉G defined in (2.8), because φ is a polynomial function of second degree which reaches is
minimum value in ch := 〈h〉G. More precisely, by mere expantion, we have

φ(c) =

∫
Rd

(h− 〈h〉G)2Gdx+ (c− 〈h〉G)2.

We last define f := h − 〈h〉R, so that 〈f〉R = 0, ∇f = ∇h. Using first (2.12) and next (2.11), we
obtain ∫

Rd

(h− 〈h〉G)2G ≤
∫
Rd

(h− 〈h〉R)2G =

∫
Rd

f2G

≤ C
(
〈f〉2R +

∫
Rd

|∇f |2G
)

= C

∫
Rd

|∇h|2G.

That ends the proof of the Poincaré inequality (2.7). �

2.4. A third proof of the Poincaré inequality. From (2.5), introducing the unknown h := f/G,
we have

∂th = G−1div(G∇h)

= ∆h− x · ∇h =: Lh.

On the one hand, we have

h(Lh) = L(h2/2)− |∇h|2,
L is self-adjoint in L2(G) and L∗1 = 0. We then recover the identity (2.6), namely

(2.13)
1

2

d

dt

∫
h2Gdx = −

∫
|∇h|2Gdx.

We fix h0 ∈ L2(G) with 〈h0G〉 = 0. We accept that hT → 0 in L2(G) as T → ∞, what it has
been already established during the proofs 1 and 2 or can be established without rate using softer
argument (as it will be explained in the chapter about Lyapunov techniques). By time integration
of (2.13), we thus have

‖h0‖2 = − lim
T→∞

[
‖ht‖2

]T
0

= lim
T→∞

∫ T

0

2‖∇ht‖2 dt,

where here and below ‖ · ‖ denotes the L2(G) norm, and therefore

(2.14) ‖h0‖2 =

∫ ∞
0

2‖∇ht‖2 dt.

On the other hand, we compute

∇h · ∇Lh = ∇h ·∆∇h−∇h · ∇(x · ∇h)

= ∆(|∇h|2/2)− |D2h|2 − |∇h|2 − xDh : D2h

= L(|∇h|2/2)− |D2h|2 − |∇h|2.
We deduce

1

2

d

dt

∫
|∇h|2Gdx = −

∫
|D2h|2Gdx−

∫
|∇h|2Gdx ≤ −

∫
|∇h|2Gdx.

Similarly, as above, we have

‖∇h0‖2 − ‖∇hT ‖2 = −
∫ T

0

d

dt
‖∇ht‖2 dt ≥

∫ T

0

‖∇ht‖2 dt,

and therefore

(2.15) ‖∇h0‖2 ≥
∫ ∞

0

2‖∇ht‖2 dt.

Gathering (2.14) and (2.15), we conclude with the following Poincaré inequality with optimal
constant (see Exercise 6.5).

Proposition 2.5 (Poincaré inequality with optimal constant). For any h ∈ D(Rd) with 〈hG〉 = 0,

‖∇h‖L2(G) ≥ ‖h‖L2(G).
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We deduce from the above Poincaré inequality with optimal constant, the identity (2.13) and the
Gronwall lemma, the following optimal decay estimate

‖ht‖L2(G) ≤ e−t‖h0‖L2(G), ∀ t ≥ 0,

for any h0 ∈ L2(G) such that 〈h0G〉 = 0.

3. Fokker-Planck equation and Log Sobolev inequality.

The estimate (2.4) gives a satisfactory (optimal) answer to the convergence to the equilibrium
issue for the Fokker-Planck equation (2.1). However, we may formulate two criticisms. The proof
is “completely linear” (in the sense that it can not be generalized to a nonlinear equation) and
the considered initial data are very confined/localized (in the sense that they belong to the strong
weighted space E, and again that it is not always compatible with the well posedness theory for
nonlinear equations).
We present now a series of results which apply to more general initial data but, above all, which
can be adapted to nonlinear equations. On the way, we will establish several functional inequalities
of their own interest, among them the famous Log-Sobolev (or logarithmic Sobolev) inequality.

3.1. Fisher information. We are still interested in the harmonic Fokker-Planck equation (2.1)-
(2.2). We define

D :=

{
f ∈ L1(Rd); f ≥ 0,

∫
f = 1,

∫
f x = 0,

∫
f |x|2 = d

}
and

D≤ :=

{
f ∈ L1(Rd); f ≥ 0,

∫
f = 1,

∫
f x = 0,

∫
f |x|2 ≤ d

}
.

We observe that D (and D≤) are invariant set for the flow of Fokker-Planck equation (2.1). We
also observe that G is the unique stationary solution which belongs to D. Indeed, the equations
for the first moments are

(3.1) ∂t〈f〉 = 0, ∂t〈fx〉 = −〈fx〉, ∂t〈f |x|2〉 = 2d〈f〉 − 2〈f |x|2〉.
It is therefore quite natural to think that any solution to the Fokker-Planck equation (2.1)-(2.2)
with initial datum f0 ∈ D converges to G. It is what we will establish in the next paragraphs.

We define the Fisher information (or Linnik functional) I(f) by

I(f) =

∫
|∇f |2

f
= 4

∫
|∇
√
f |2 =

∫
f |∇ log f |2

and the relative Fisher information I(f |G) by

I(f |G) = I(f)− I(G) = I(f)− d.

Lemma 3.1. For any f ∈ D≤, there holds

(3.2) I(f |G) ≥ 0,

with equality if, and only if, f = G.

Proof of Lemma 3.1. We define V := {f ∈ D≤ and ∇
√
f ∈ L2}. We start with the proof of (3.2).

For any f ∈ V , we have

0 ≤ J(f) :=

∫ ∣∣∣2∇√f + x
√
f
∣∣∣2 dx

=

∫ (
4 |∇

√
f |2 + 2x · ∇f + |x|2 f

)
dx = I(f) + 〈f |x|2〉 − 2 d

≤ I(f)− d = I(f)− I(G) = I(f |G).

We consider now the case of equality. If I(f |G) = 0 then J(f) = 0 and 2∇
√
f + x

√
f = 0 a.e.. By

a bootstrap argument, using Sobolev inequality, we deduce that
√
f ∈ C0. Consider x0 ∈ Rd such

that f(x0) > 0 (which exists because f ∈ V ) and then O the open and connected to x0 component
of the set {f > 0}. We deduce from the preceding identity that ∇(log

√
f + |x|2/4) = 0 in O

and then f(x) = eC−|x|
2/2 on O for some constant C ∈ R. By continuity of f , we deduce that
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O = Rd, and then C = − log(2π)d/2 (because of the normalized condition imposed by the fact
that f ∈ V ). �

In some sense (see below) the relative Fisher information measure the distance to the steady state
G. We also observe that

(3.3)
d

dt
I(f) = I ′(f) · Lf,

with

(3.4) I ′(f) · h = 2

∫
∇f
f
∇h−

∫
|∇f |2

f2
h,

and we wish to establish that I(f) decreases and converges to 0 with exponential decay.

Lemma 3.2. For any smooth probability measure f , we have

1

2
I ′(f) ·∆f = −

∑
ij

∫ ( 1

f2
∂if ∂jf −

1

f
∂ijf

)2

f,(3.5)

1

2
I ′(f) · (∇ · (f x)) = I(f),(3.6)

1

2
I ′(f) · L f = −

∑
ij

∫ ( 1

f2
∂if ∂jf −

1

f
∂ijf − δij

)2

f − I(f |G).(3.7)

As a consequence, there holds

1

2
I ′(f) · L(f) ≤ −I(f |G) ≤ 0.

Proof of Lemma 3.2. Proof of (3.5). Starting from (3.4) and integrating by part with respect to
the xi variable, we have

1

2
I ′(f) ·∆f =

∫
1

f
∂jf ∂iijf −

∫
1

2 f2
(∂jf)2∂iif

=

∫ (
∂if

f2
∂jf ∂ijf −

1

f
∂ijf ∂ijf

)
+

∫ (
1

f2
∂if ∂jf ∂ijf −

∂if

f3
∂if (∂jf)2

)
= −

∑
ij

∫ ( 1

f2
∂if ∂jf −

1

f
∂ijf

)2

f.

Proof of (3.6). We write

1

2
I ′(f) · (∇ · (f x)) =

∫
∂jf

f
∂ij(f xi)−

(∂jf)2

2 f2
∂i(f xi).

We observe that

∂ij(f xi)−
(∂jf)

2 f
∂i(f xi) = (∂ijf)xi + d ∂jf + δij ∂jf − ∂if ∂jf

xi
2 f
− d

2
∂jf

= (∂ijf)xi + (
d

2
+ 1) ∂jf − ∂if ∂jf

xi
2 f

.

Gathering the two preceding equalities, we obtain

1

2
I ′(f) · (∇ · (f x)) = (

d

2
+ 1) I(f) +

∫
∂jf

f
∂ijf xi −

∫
∂jf

f
∂if ∂jf

xi
2 f

.

Last, we remark that thank to an integration by parts

−d
2
I(f) =

1

2

∫
∂i

(
(∂jf)2

f

)
xi =

∫
∂jf ∂ijf

f
xi −

1

2

(∂jf)2

f2
∂if xi,

and we then conclude
1

2
I ′(f) · (∇ · (f x)) = I(f).
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Proof of (3.7). Developing the expression below and using (3.5), we have

0 ≤
∑
ij

∫ ( 1

f2
∂if ∂jf −

1

f
∂ijf − δij

)2

f

= −1

2
I ′(f) ·∆f + 2

∑
i

∫ (
∂iif −

1

f
(∂if)2

)
+ d

∫
f.

From
∫
f = 1,

∫
∂iif = 0 and (3.6), we then deduce

0 ≤ −1

2
I ′(f) ·∆f − 2I(f) + d = −1

2
I ′(f) · Lf + d− I(f),

which ends the proof of (3.7). �

Theorem 3.3. The Fisher information I is decreasing along the flow of the Fokker-Planck equa-
tion, i.e. I is a Lyapunov functional, and more precisely

(3.8) I(f(t, .)|G) ≤ e−2 t I(f0|G).

That implies the convergence in large time to G of any solution to the Fokker-Planck equation
associated to any initial condition f0 ∈ D ∩ V . More precisely,

(3.9) ∀ f0 ∈ D ∩ V f(t, .)→ G in Lp ∩ L1
2 as t→∞,

for any p ∈ [1, 2]) where 2] =∞ when d = 1, 2 and 2] = d/(d− 2) when d ≥ 3.

During the proof of Theorem 3.3, we will need the following result (see Excercise 6.8).

Lemma 3.4. A sequence (fn) which is bounded in L1
2 ∩ Lq, q > 1, and is such that fn → g a.e.

in Rd, also satisfies

fn → g in Lp ∩ L1
k, ∀ k ∈ [0, 2), ∀ p ∈ [1, q).

If furthemore, ‖fn‖L1
2

= ‖g‖L1
2

for any n ≥ 1, then fn → g in L1
2.

Proof of Theorem 3.3. We only consider the case d ≥ 3. On the one hand, thanks to (3.7), we have

(3.10)
d

dt
I(f |G) ≤ −2 I(f |G),

and we conclude to (3.8) thanks to the Gronwall lemma. On the other hand, thanks to the Sobolev
inequality, we have

‖f‖L2∗/2 = ‖
√
f‖2L2∗ ≤ C ‖∇

√
f‖2L2 = C I(f) ≤ C I(f0).

Consider now an increasing sequence (tn) which converges to +∞. Thanks to estimate (3.8)

and the Rellich Theorem, we may extract a subsequence still denoted as (tn) such that
√
f(tn)

converges a.e. and weakly in Ḣ1 to a limit denoted by
√
g. As a consequence, f(tn) → g a.e.

and (f(tn)) is bounded in L2∗/2 ∩ L1
2, so that fn → g in Lp ∩ L1

k, ∀ k ∈ [0, 2), ∀ p ∈ [1, q), thanks

to Lemma 3.6. From the lower semicontinuity of the norms, we have g is bounded in L2∗/2 ∩ L1
2,

〈|v|2g〉 ≤ lim inf〈|v|2f(tn)〉 = d and I(g) ≤ lim inf I(f(tn)) <∞, so that g ∈ D≤∩V . Finally, since

2∇
√
f(tn)− x

√
f(tn)→ 2∇√g − x√g weakly in L2

loc (for instance) and (3.8), we have

0 ≤ J(g) ≤ lim inf
k→∞

J(f(tn, .) = lim inf
k→∞

I(f(tn, .)|G) = 0.

From J(g) = 0 and g ∈ V ∩D≤, we get g = G as a consequence of Lemma 3.1, and it is then the
all family (f(t))t≥0 which converges to G as t → ∞. The L1

2 convergence is a consequence of the
fact that 〈f(t) |v|2〉 = 〈G |v|2〉 for any time t ≥ 0 together with Lemma 3.6. �
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3.2. Entropy and Log-Sobolev inequality. For a function f ∈ D, we define the entropy H(f) ∈
R ∪ {+∞} and the relative entropy H(f |G) ∈ R ∪ {+∞} by

H(f) =

∫
Rd

f log f dx, H(f |G) = H(f)−H(G) =

∫
Rd

j(f/G)Gdx,

where j : R+→ R+, j(s) := s log s− s+ 1. It is worth emphasizing that the last integral is always
defined in R ∪ {+∞} because j(f) ≥ 0 and that for establishing the last equality we use that∫

Rd

f logGdx =

∫
Rd

G logGdx

because f ∈ D.

We start observing that for f ∈ P(Rd) ∩ S(Rd), there holds

H ′(f) · Lf :=

∫
Rd

(1 + log f) [∆f +∇ · (x f)]

= −
∫
Rd

∇f · ∇ log f −
∫
Rd

x f · ∇ log f

= −I(f) + d 〈f〉 = −I(f |G).

As a consequence, the entropy is a Lyapunov functional for the Fokker-Planck equation and more
precisely

(3.11)
d

dt
H(f) = −I(f |G) ≤ 0.

Theorem 3.5. (Logarithmic Sobolev inequality). For any f ∈ D ∩ V , the following Log-
Sobolev inequality holds

(3.12) H(f |G) ≤ 1

2
I(f |G).

That one also writes equivalently as∫
Rd

f ln f −
∫
Rd

G lnG ≤ 1

2

(∫
Rd

|∇f |2

f
− d
)

or also as ∫
Rd

u2 log(u2)G(dx) ≤ 2

∫
Rd

|∇u|2G(dx).

For some applications, it is worth emphasizing that the Log-Sobolev inequality depends on a nicer
way of the dimension than the Poincaré inequality.

During the proof of Theorem 3.5, we will need the following result (see Excercise 6.10).

Lemma 3.6. Consider a sequence (fn) such that 0 ≤ fn → f in Lq ∩ L1
k, q > 1, k > 0, then

H(fn)→ H(f).

Proof of Theorem 3.5. We denote by ft the solution to the Fokker-Planck equation (2.1) associated
to the initial datum f0 := f . On the one hand, from (3.9), Lemma 3.6 and (3.11), we get

H(f)−H(G) = lim
T→∞

[H(f)−H(fT )] = lim
T→∞

∫ T

0

[
− d

dt
H(f)

]
dt

= lim
T→∞

∫ T

0

[I(f |G)] dt.

From that identity and (3.10), we deduce

H(f)−H(G) ≤ lim
T→∞

∫ T

0

[
−1

2

d

dt
I(f |G)

]
dt

= lim
T→∞

1

2
[I(f |G)− I(fT |G)] =

1

2
I(f |G),

thanks to (3.8). �
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Lemma 3.7. (Csiszár-Kullback inequality). Consider probability measure µ and a nonneg-
ative measurable function g such that g µ is also a probability measure. Then

(3.13) ‖g − 1‖2L1(dµ) ≤ 2

∫
g log g dµ.

Proof of Lemma 3.7. First proof. Thanks to the Taylor-Laplace expansion formula, there holds

j(g) := g log g − g + 1 = j(1) + (g − 1) j′(1) + (g − 1)2

∫ 1

0

j′′(1 + s (g − 1)) (1− s) ds

= (g − 1)2

∫ 1

0

1− s
1 + s (g − 1)

ds.

Using Fubini theorem, we get

H(g) :=

∫
(g log g − g + 1) dµ =

∫ 1

0

(1− s)
∫

(g − 1)2

1 + s (g − 1)
dµ ds.

For any s ∈ [0, 1], we use the Cauchy-Schwarz inequality and the fact that both µ and g µ are
probability measures in order to deduce(∫

|g − 1| dµ
)2

≤
(∫

(g − 1)2

1 + s (g − 1)
dµ

)(∫
[1 + s (g − 1)]dµ

)
=

∫
(g − 1)2

1 + s (g − 1)
dµ.

As a conclusion, we obtain

H(g) ≥
∫ 1

0

(∫
|g − 1| dµ

)2

(1− s) ds =
1

2

(∫
|g − 1| dµ

)2

,

which ends the proof of the Csiszár-Kullback inequality.

Second proof. We give a shorter but probably more obscure proof. One easily checks (by differen-
tiating three times both functions) that

∀u ≥ 0 3 (u− 1)2 ≤ (2u+ 4) (u log u− u+ 1).

Thanks to the Cauchy-Schwarz inequality one deduces∫
|g − 1| dµ ≤

√
1

3

∫
(2 g + 4) dµ

√∫
(g log g − g + 1) dµ =

√
2

∫
g log g dµ,

which is nothing but the Csiszár-Kullback inequality again. �

Putting together (3.11), (3.12) and (3.13) with G := µ and g := f/G, we immediately obtain the
following convergence result.

Theorem 3.8. For any f0 ∈ D such that H(f0) < ∞, the associated solution f to the Fokker-
Planck equation (2.1)-(2.2) satisfies

H(f |G) ≤ e−2tH(f0|G),

and then

‖f −G‖L1 ≤
√

2 e−tH(f0|G)1/2.

3.3. From log-Sobolev to Poincaré. The next result makes a possible connection between the
log-Sobolev inequality and the Poincaré inequality.

Lemma 3.9. If the log-Sobolev inequality

λH(f |G) ≤ 1

2
I(f |G), ∀ f ∈ D,

holds for some constant λ > 0, then the Poincaré inequality

(λ+ d) ‖g‖2L2(G−1) ≤
∫
|∇g|2G−1, ∀ g ∈ D(Rd), 〈g[1, x, |x|2] 〉 = 0,

also holds (for the same constant λ > 0).



CHAPTER 5 - MORE ABOUT THE HEAT EQUATION 15

That lemma gives an alternative proof of the Poincaré inequality. Of course that proof is not very
“cheap” in the sense that one needs to prove first the log-Sobolev inequality which is somewhat more
difficult to prove than the Poincaré inequality. Moreover, the log-Sobolev inequality is known to be
true under more restrictive assumption on the confinement potential than the Poincaré inequality.
However, that allows to compare the constants involved in the two inequalities and the proof is
robust enough so that it can be adapted to nonlinear situations.

Proof of Lemma 3.9. Consider g ∈ D(Rd) such that
∫
g(x) [1, x, |x|2] dv = [0, 0, 0]. Applying the

Log-Sobolev inequality to the function f = G+ ε g ∈ D for ε > 0 small enough, we have

λ
H(G+ ε g)−H(G)

ε2
=

λ

ε2
H(f |G) ≤ 1

2 ε2
I(f |G) =

I(G+ ε g)− I(G)

2 ε2
.

Expending up to order 2 the two functionals, we have

f log f = G logG+ ε g (1 + logG) +
ε2

2

g2

G
+O(ε3),

|∇f |2

f
=
|∇G|2

G
+ ε

{
2
∇G
G
· ∇g − |∇G|

2

G2
g

}
+
ε2

2

{
|∇g|2

G
− 2 g

∇G
G2
· ∇g +

|∇G|2

G3
g2

}
+O(ε3).

Passing now to the limit ε→ 0 in the first inequality and using that the zero and first order terms
vanish because (performing one integration by parts)

H ′(G) · g =

∫
Rd

(logG+ 1) g = 0,

I ′(G) · g =

∫
Rd

{ |∇G|2
G2

− 2
∆G

G

}
g = 0,

we get

λH ′′(G) · (g, g) ≤ I ′′(G) · (g, g).

More explicitly, we have

λ

∫
g2

G
≤
∫ {

|∇g|2

G
+∇

(∇G
G2

)
g2 +

|∇G|2

G3
g2

}
,

and then

(λ+ d)

∫
g2

G
=

∫
g2

G

{
λ− ∆G

G
+
|∇G|2

G2

}
≤
∫
|∇g|2

G
,

which is nothing but the Poincaré inequality. �

4. Weighted L1 decay through semigroups factorization technique

In this section, we establish the following weighted L1 decay through a semigroups factorization
technique and the already known weighted L2 decay (consequence and equivalent to the Poincaré
inequality).

Theorem 4.1. For any a ∈ (−λP , 0) and for any k > k∗ := λP there exists Ck,a such that for
any ϕ ∈ L1

k, the associated solution f to the Fokker-Planck equation (2.1)-(2.2) satisfies

(4.1) ‖f − 〈ϕ〉G‖L1
k
≤ Ck,a ea t ‖ϕ− 〈ϕ〉G‖L1

k
.

A refined version of the proof below shows that the same estimate holds with a := −λP .

Proof of Theorem 4.1. In order to simplify a bit the presentation, we only present the proof in the
case of the dimension d ≤ 3, but the same arguments can be generalized to any dimension d ≥ 1.

Step 1. The splitting. We introduce the splitting L = A+ B with

Bf := ∆f +∇ · (f x)−M f χR, Af := M f χR,

where χR(x) = χ(x/R), χ ∈ D(Rd), 1B1 ≤ χ ≤ 1B2 , and where R,M > 0 are two real constants to
be chosen later. We define, in any Banach space X such that G ∈ X ⊂ L1, the projection operator

Πf := 〈f〉G,
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which thus satisfies Π2 = Π and Π ∈ B(X ). When SL is well defined as a semigroup in X , we have

(4.2) SL(I −Π) = (I −Π)SL = (I −Π)SL(I −Π)

as a consequence of the projection property (I−Π)2 = (I−Π)2, of the facts that G is a stationary
solution to the Fokker-Planck equation and that the mass is preserved by the associated flow. Now,
iteraration the Duhamel formula

SL = SB + SL ∗ ASB,
we have

(4.3) SL = SB + SB ∗ (ASB) + SL ∗ (ASB) ∗ (ASB).

The two identities (4.2) and (4.3) together and using the shorthand Π⊥ = I −Π, we have

SLΠ⊥ = Π⊥SBΠ⊥ + Π⊥SB ∗ (ASB)Π⊥ + SLΠ⊥ ∗ (ASB) ∗ (ASBΠ⊥) =:

3∑
i=1

Ti(t).

In order to get (4.1), we will establish that

SB(t) : L1
k → L1

k, with bound O(ea
′t), ∀ t ≥ 0, ∀ a′ > a∗, ∀ k > k∗,(4.4)

SB(t) : L1
K → L2

K , with bound O
( ea′t
t3/4

)
, ∀ t > 0, ∀ a′ > a∗, ∀K > K∗,(4.5)

A : L1
k → L1

K , A : L2
K → L2(G−1), ∀K > k∗, ∀ k > k∗,(4.6)

with K∗ := λP + d/2. We also recall that

SL(t)Π⊥ : L2(G−1)→ L2(G−1), with bound O(e−λP t), ∀ t ≥ 0,(4.7)

which is nothing but (2.4). We finally observe that

(4.8) u ∗ w(t) = O(eat) and u ∗ v ∗ w(t) = O(eat), ∀ t ≥ 0, ∀ a > a∗,

if

(4.9) u(t) = O(ea
′t), v(t) = O

( ea′t
t3/4

)
, w(t) = O(ea

′t), ∀ t > 0, ∀ a′ > a∗.

The first estimate in (4.8) is obtained by writing

u ∗ w(t) =

∫ t

0

u(s)w(t− s) ds .
∫ t

0

ea
′sea

′(t−s) ds . tea
′t . eat,

for any t ≥ 0 and any a > a′ > a∗. For the second estimate in (4.8), we first write

v ∗ w(t) =

∫ t

0

v(s)w(t− s) ds .
∫ t

0

ea
′′s

s3/4
ea
′′(t−s) ds . t1/4ea

′′t . ea
′t,

for any t ≥ 0 and any a′ > a′′ > a∗, and we conclude by combining that estimate with the first
estimate in (4.8).

Step 2. The conclusion. With the help of the estimates stated in step 1, we are in position to prove
(4.1) or equivalently that

(4.10) ‖Ti(t)‖L1
k→L

1
k
. eat, ∀ t ≥ 0, ∀ a > a∗, ∀ k > k∗,

for any i = 1, 2, 3. For i = 1, (4.10) is nothing but (4.4) together with Π⊥ ∈ B(L1
k). For proving

(4.10) when i = 2, we use the first estimate in (4.8) with

u(t) := ‖Π⊥SB(t)‖L1
k→L

1
k
, w(t) := ‖ASB(t)Π⊥‖L1

k→L
1
k
,

where both functions satisfy the hypothesizes of (4.9) because of Π⊥ ∈ B(L1
k), of the first estimate

on A with K = k in (4.6) and of the estimate (4.5) on SB(t) in L1
k. For proving (4.10) when i = 3,

we use the second estimate in (4.8) with

u(t) := ‖SL(t)Π⊥‖L2(G−1)→L1
k
, v(t) := ‖ASB(t)‖L1

K→L2(G−1), w(t) := ‖ASB(t)Π⊥‖L1
k→L

1
K
,

where the three functions satisfy the hypothesizes of (4.9). To check the estimate on u, we use
(4.7) and L2(G−1) ⊂ L1

k. For the estimate on v, we use (4.5) and the second estimate on A in
(4.6). Finally, to check the estimate on w, we use the first estimate on A in (4.6), the estimate
(4.4) on SB(t) in L1

k and Π⊥ ∈ B(L1
k).
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In order to conclude the proof of Theorem 4.1, we thus need to establish (4.4), (4.5) and (4.6).
That is done in the three following steps.

Step 3. Proof of (4.6). The operator A is clearly bounded in any Lebesgue space and more precisely

‖A f‖Lp(m) ≤ CR,M ‖f‖Lp
`
, ∀ f ∈ Lp` , ∀ p = 1, 2,

for m := 〈x〉K or m := G−1 and with

CR,M := M‖ m

〈·〉p`
‖1/pL∞(B2R).

Step 4. Proof of (4.4). For any k, ε > 0 and for any M,R > 0 large enough (which may depend
on k and ε) the operator B is dissipative in L1

k in the sense that

(4.11) ∀ f ∈ D(Rd),
∫
Rd

(Bf) (signf) 〈x〉k ≤ (ε− k) ‖f‖L1
k
.

We immediately deduce (4.4) from (4.11) and the Gronwall lemma. In oder to establish (4.11), we
set β(s) = |s| (and more rigorously we must take a smooth version of that function) and m = 〈x〉k,
and we compute∫

(L f)β′(f)m =

∫
(∆f + d f + x · ∇f)β′(f)m

=

∫
{−∇f ∇(β′(f)m) + d |f |m+mx · ∇|f |}

= −
∫
|∇f |2 β′′(f)m+

∫
|f | {∆m+ d−∇(xm)}

≤
∫
|f | {∆m− x · ∇m},

where we have used that β is a convex function. Defining

ψ := ∆m− x · ∇m−MχRm

= (k2 |x|2 〈x〉−4 − k |x|2 〈x〉−2 −M χR)m

we easily see that we can choose M,R > 0 large enough such that ψ ≤ (ε− k)m and then (4.11)
follows.

Step 5. Proof of (4.5). Fix now K > K∗ and a > −λP . There holds

(4.12) ‖SB(t)ϕ‖L2
K
≤ Ca,K

td/4
ea t ‖ϕ‖L1

K
, ∀ϕ ∈ L1

K ,

which immediately implies (4.5) since we are restricted to the case of a dimension d ≤ 3. We set
m = 〈x〉K . A similar computation as in step 4 gives∫

(B f) f m2 = −
∫
|∇(f m)|2 +

∫
|f |2

{ |∇m|2
m2

+
d

2
− x · ∇m−M χR

}
m2

= −
∫
|∇(f m)|2 + (

d

2
+ ε−K)

∫
|f |2m2,

for M,R > 0 chosen large enough. Denoting by f(t) = SB(t)ϕ the solution to the evolution PDE

∂tf = Bf, f(0) = ϕ,

we (formally) have

1

2

d

dt

∫
f2m2 =

∫
(B f) f m2 ≤ −

∫
|∇(f m)|2 + a

∫
|f |2m2.

On the one hand, throwing away the last (negative) term at the RHS of the above differential
inequality and using the same Nash trick as in the proof of estimate (1.5) in section 1.2, we get

(4.13) ‖f(t)m‖L2 ≤ C

td/4
‖f(0)m‖L1 , ∀ t > 0.

On the other hand, throwing away the first (negative) term at the RHS of the above differential
inequality and using the Gronwall lemma exactly as in step 4, we get

(4.14) ‖f(t)m‖L2 ≤ Cea(t−t0) ‖f(t0)m‖L2 , ∀ t ≥ t0 ≥ 0.
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Using (4.13) for t ∈ (0, 1] and (4.14) for t ≥ 1, we deduce (4.12). �

5. Coming back to local in time estimates

We consider a smooth, positive and fast decaying initial datum f0, the solution f to the associated
heat equation, and for a given α ∈ Rd, we define g := f eψ, ψ(x) := α · x. The equation satisfied
by g is

∂tg =
1

2
eψ∆(g e−ψ) =

1

2
∆g −∇ψ · ∇g +

1

2
|∇ψ|2g

=
1

2
∆g − α · ∇g +

1

2
|α|2g.

For the L1 norm, we have
d

dt
‖g‖L1 =

1

2
α2 ‖g‖L1 ,

and then ‖g(t, .)‖L1 = eα
2t/2 ‖g0‖L1 for any t ≥ 0. For the L2 norm and thanks to the Nash

inequality (1.6), we have

d

dt
‖g‖2L2 = −‖∇g‖2L2 + α2 ‖g‖2L2

≤ −K0 e
−2α2t/d ‖g‖2(1+2/d)

L2 + α2 ‖g‖2L2 ,

with K0 := CN ‖g0‖−4/d
L1 . We see that the function u(t) := e−α

2t ‖g(t)‖2L2 satisfies the differential
inequality

u′ ≤ −K0 u
1+2/d,

from what, exactly as in the Section 1.2, we deduce

‖g(t)‖2L2 e−α
2t ≤

‖g0‖2L1

(2/dCN t)d/2
, ∀ t > 0.

Denoting by T (t) the semigroup associated to the parabolic equation satisfies by g, the above
estimate writes

‖T (t)g0‖L2 ≤ C eα
2t/2

td/4
‖g0‖L1 , ∀ t > 0.

Because the equation associated to the dual operator is

∂th =
1

2
∆h+ α · ∇h+

1

2
|α|2h, h(0) = h0,

the same estimate holds on T ∗(t)h0 = h(t), and we thus deduce

‖T (t)g0‖L∞ ≤
C eα

2t/2

td/4
‖g0‖L2 , ∀ t > 0.

Using the trick T (t) = T (t/2)T (t/2), both estimates together give an accurate time depend estimate
on the mapping T (t) : L1 → L∞ for any t > 0. More precisely and in other words, we have proved
that the heat semigroup S satisfies

‖(S(t)f0) eψ‖L∞ ≤
C

td/2
eα

2t/2 ‖f0 e
ψ‖L1 , ∀ t > 0.

Denoting F (t, x, y) := (S(t)δx)(y) the fundamental solution associated to the heat equation when
starting from the Dirac function in x ∈ Rd, the above estimate rewrites as

F (t, x, y) ≤ C

td/2
eα·(x−y)−α2t/2, ∀ t > 0,∀x, y, α ∈ Rd.

Choosing α := (x− y)/t, we end with

F (t, x, y) ≤ C

td/2
e−
|x−y|2

2t , ∀ t > 0,∀x, y ∈ Rd.
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6. Exercises and Complements

Exercise 6.1. 1. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d ≥ 3. (Hint. Write the interpolation estimate

‖f‖L2 ≤ ‖f‖θL1 ‖f‖1−θL2∗

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.
(Hint. Prove the interpolation estimate

‖f‖L2 ≤ ‖f‖1/4L1 ‖f3/2‖1/2L2 ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := 2 and finally
the Cauchy-Schwartz inequality in order to bound the second term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate

‖f‖L2 ≤ ‖f‖1/2L1 ‖f3/2‖1/3L∞ ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ :=∞ and finally
the Cauchy-Schwartz inequality in order to bound the second term).

We propose now a third proof based on the Poincaré-Wirtinger inequality.

Exercise 6.2. Prove that for any f ∈ H1(Rd), there holds

‖ρε ∗ f − f‖L2 ≤ C ε ‖∇f‖L2 ,

for a constant C > 0 which only depends on the function ρ ∈ P(Rd)∩D(Rd) used in the definition
of the mollifier (ρε). Deduce the Nash inequality. (Hint. Write f = f − ρε ∗ f + ρε ∗ f).

We present the proof in the case when ρ is the characteristic function of a ball. We write

‖f‖2L2 = (f, f − fr) + (f, fr), with fr(x) :=
1

|B(x, r)|

∫
B(x,r)

f(y) dy.

We have

‖f‖2L2 ≤ ‖f‖L2 ‖f − fr‖L2 + ‖f‖L1 ‖fr‖L∞ .
On the one hand,

‖fr‖L∞ ≤
C

rd
‖f‖L1 .

On the other hand,

‖f − fr‖2L2 =

∫
Rd

∣∣∣Cd
rd

∫
B(x,r)

(f(y)− f(x)) dy
∣∣∣2dy

≤
∫
Rd

∫
Rd

1|y−x|≤r|f(y)− f(x)|2 dxdy

≤ r2

∫ 1

0

∫
Rd

∫
Rd

1|y−x|≤r|∇f((1− t)x+ ty)|2 dxdydt

≤ r2

∫ 1/2

0

∫
Rd

∫
Rd

1|y−x|≤r|∇f((1− t)x+ ty)|2 dxdydt

+r2

∫ 1

1/2

∫
Rd

∫
Rd

1|y−x|≤r|∇f((1− t)x+ ty)|2 dxdydt

≤ r2

∫ 1/2

0

∫
Rd

∫
Rd

1|y−x|≤r|∇f(z)|2 dzdydt

+r2

∫ 1

1/2

∫
Rd

∫
Rd

1|y−x|≤r|∇f(z)|2 dxdzdt

≤ r2 C

∫
Rd

|∇f(z)|2 dz.
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All together, we get

‖f‖2L2 ≤ C1 r ‖f‖L2 ‖∇f‖L2 + C2 r
−d ‖f‖2L1

≤ 1

2
‖f‖2L2 +

C1

2
r2 ‖∇f‖2L2 + C2 r

−d ‖f‖2L1

and we obtain the Nash inequality by choosing r := (‖f‖2L1/‖∇f‖2L2)1/(d+2).

Exercise 6.3. Establish that E ∈ L1(Rd) and divE = 0 imply E = 0. (Hint. First observe that

∀ i = 1, . . . , d, ∀ϕ ∈ C1
b (Rd), ϕ(x) = ϕ(xi),

∫
Rd

Eiϕ
′ dx = 0.

Next establish that u′ = 0 in D′(R) implies that u is a constant. Conclude).

Exercise 6.4. Establish that for any λ < λP , there exists ε > 0 so that the following stronger
version ∫

Rd

∣∣∣∣∇( fG
)∣∣∣∣2 Gdx ≥ λ

∫
Rd

f2G−1dx(6.1)

+ε

∫
Rd

(
f2 |x|2 + |∇f |2

)
G−1dx

holds for any f ∈ D(Rd) with 〈f〉 = 0. (Hint: Proceed along the lines of the proof of Proposi-
tion 2.4).

Proof of (6.1). We define Φ := − logG = |x|2/2 + log(2π)d/2. On the one hand, by developing
the LHS term, we find

T :=

∫
Rd

∣∣∣∣∇( fG
)∣∣∣∣2 Gdx =

∫
Rd

|∇f |2 G−1dx−
∫
Rd

f2 (∆Φ)G−1dx.

On the other hand, a similar computation leads to the following identity

T =

∫
Rd

∣∣∣∇(fG−1/2)G1/2 + (fG−1/2)∇G1/2
∣∣∣2 Gdx

=

∫
Rd

∣∣∣∇(f G−1/2)
∣∣∣2 dx+

∫
Rd

f2

(
1

4
|∇Φ|2 − 1

2
∆Φ

)
G−1dx.

The two above identities together with (2.7) imply that for any θ ∈ (0, 1)

T ≥ (1− θ)λP
∫
Rd

f2G−1dx+ θ

∫
Rd

f2

(
1

16
|∇Φ|2 − 3

4
∆Φ

)
G−1dx

+
θ

16

∫
Rd

f2 |∇Φ|2G−1dx+
θ

2

∫
Rd

|∇f |2 G−1dx.

Observe that |∇Φ|2 − 12∆Φ ≥ 0 for x large enough, and we can choose θ > 0 small enough to
conclude the proof. �

Exercise 6.5. Observe that the function H := xk satisfies

H ∈ L2(G), 〈HG〉 = 0, LH = −H, ‖∇H‖2L2(G) = ‖H‖2L2(G).

Conclude that the constant λP = 1 in the Poincaré inequality established in Proposition 2.5 is
optimal.

Exercise 6.6. Establish (2.10) in the following situations:

(i) V (x) := 〈x〉α with α ≥ 1;
(ii) there exist α > 0 and R ≥ 0 such that

x · ∇V (x) ≥ α ∀x /∈ BR;

(iii) there exist a ∈ (0, 1), c > 0 and R ≥ 0 such that

a |∇V (x)|2 −∆V (x) ≥ c ∀x /∈ BR;

(iv) V is convex (or it is a compact supported perturbation of a convex function) and satisfies
e−V ∈ L1(Rd).
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Exercise 6.7. Generalize the Poincaré inequality to a general superlinear potential V (x) = 〈x〉α/α+
V0, α ≥ 1, in the following strong (weighted) formulation∫

|∇g|2 G ≥ κ
∫
|g − 〈g〉G |2 (1 + |∇V |2)G ∀ g ∈ D(Rd),

where we have defined G := e−V ∈ P(Rd) (for an appropriate choice of V0 ∈ R).

Exercise 6.8. Establish Lemma 3.6.

A possible solution of Exercise 6.8. We first establish that fn → g strongly in L1. We write

‖fn − g‖L1 ≤
∫
BR

|fn − g| ∧M + 2R−2 sup
n

∫
Bc

R

|fn||x|2 + 2M1−q sup
n

∫
BR

|fn|q,

for any R,M > 0 and any k ≥ 1, and by using the dominated convergence theorem of Lebesgue
for the first term. Thanks to the interpolation inequalities

‖h‖Lp ≤ ‖h‖1−αL1 ‖h‖αLq and ‖h‖L1
k
≤ ‖h‖k/2

L1
2
‖h‖1−k/2L1 ,

with 1/p = 1− α+ α/q, we next get that fn → g strongly in Lp ∩L1
k, for any p ∈ [1, q), k ∈ [0, 2).

When we furthermore assume fn, g ≥ 0 and 〈g|x|2〉 = 〈fn|x|2〉 = d for any n ≥ 1, from Fatou
lemma, we may first deduce

lim sup
n

∫
Bc

R

fn|x|2 = d− lim inf
n

∫
BR

fn|x|2

≤ d−
∫
BR

f |x|2 =

∫
Bc

R

f |x|2,

for any R > 0. On the other hand, we have∫
|fn − f | |x|2 dx ≤

∫
BR

|fn − f | |x|2 dx+

∫
Bc

R

fn |x|2 dx+

∫
Bc

R

f |x|2 dx.

From the two above informations together with the convergence fn → f in L1, we deduce

lim sup
n
‖f − fn‖L1

2
≤ 2

∫
Bc

R

f |x|2 dx,

for any R > 0, and thus the conclusion by letting R→∞. �

Exercise 6.9. Prove the convergence (3.8) for any f0 ∈ P(Rd) ∩ L1
2(Rd) such that I(f0) <∞.

(Hint. Compute the equations for the moments of order 1 and 2 and introduce the relative Fisher
information I(f |M1,u,θ) associatred to a normalized Gaussian with mean velocity u ∈ Rd and
temperature θ > 0).

Exercise 6.10. Prove that 0 ≤ fn → f in Lq ∩ L1
k, q > 1, k > 0, implies that H(fn)→ H(f).

(Hint. Use the splitting

s | log s| ≤
√
s1

0≤s≤e−|x|k + s |x|k 1
e−|x|k≤s≤1

+ s(log s)+ 1s≥1 ∀ s ≥ 0

and the dominated convergence theorem).

Exercise 6.11. Generalize Theorem 3.8 to the case when f0 ∈ P(Rd) ∩ L1
q(Rd), q = 2 or q > 1,

such that H(f0) <∞. (Hint. Proceed along the same line as in Exercise 6.9).

Exercise 6.12. Generalize Theorem 3.5 and Theorem 3.8 to the case of a super-harmonic potential
V (x) = 〈x〉α/α, α ≥ 2, and to an initial datum ϕ ∈ P(Rd) ∩ L1

2(Rd) such that H(ϕ) <∞.

Exercise 6.13. Establish Theorem 4.1 in any dimension d ≥ 1.
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7. Bibliographic discussion

The Nash inequality and its application to the heat equation are due to Nash [12]. The Poincaré
inequality for gaussian measure can be proved thanks to the help to Hermit polynomial and it is
quite hold (see again [12] for instance). The proof we present here is based on the use of Lyapunov
fiunction and it is picked up from [2]. The strong version of the Poincaré inequality belongs to
folklore. The logarithmic Sobolev inequality is due to Stam [15], Blachman [4] and rediscoved by
Gross [8]. It is related to the hypercontractivity property of Nelson [13] and the Γ2 calculus of
Bakry and Emery [3]. We follow here the presentation given by Toscani [16]. The Csiszár-Kullback
inequality is due to Kullback [10], Pinsker [14] and Csiszár [5]. The proofs we present here are
picked up (first proof) from [1] and (second proof) from some notes I read from C. Villani. The
fact that the log-Sobolev inequality implies the Poincaré inequality (as stated in Lemma 3.9) is
due to Gross [8]. The weighted L1 convergence presented in Section 4 are taken from recent results
due to Gualdani, Mouhot and myself [9, 11]. See also [7] for related previous results. The third
proof of the Nash inequality presented in Section 6 is due to Diaconis and Saloff-Coste [6].
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