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In this chapter we introduce several techniques which are useful for analyzing the longtime as-
ymptotic of quite general evolution PDEs. On the one hand, it is an introduction to entropy (or
Lyapunov) methods for general (possibly nonlinear) dynamical system and an illustration on some
exemples of evolution PDEs (linear, positivity preserving) of parabolic type. On the other hand
it is an introduction of the analysis of stochastic semigroup following Harris-Meyn-Tweedie type
approach. The aim is thus to develop some quite general tools which make possible to get a better
understanding of the longtime asymptotic issue.

1. EXISTENCE OF STEADY STATES

In this section we present a general a dynamic system argument for proving the existence of a
steady state for a time autonomous evolution PDE. We illustrate the technique on the Fokker-
Planck equation

(1.1)

Of =Lf:=Af+div(Ef),

on the density f = f(t,z), t > 0, x € R% where the force field E € R? is

- either a given fixed (exterior) vectors field, see the next section and adapt the proofs;

- or a function of the density, the McKean-Viasov model.
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1.1. Dynamic system and steady states. We recall a result already presented during the
Review course on differential calculus for ODEs and PDFEs and which is yet useful for proving
steady state for ODEs.

Definition 1.1. We say that (S;)i>0 is a dynamical system (or a continuous (possibly nonlinear)
semigroup) on a metric space (Z,d) if

(S1) ¥t >0, S € C(Z,Z) (continuously defined on Z);

(S2)Vx € Z,t— Sz € C([0,00), Z) (trajectories are continuous);

(83) So=1;Vs,t>0,S1s=25:Ss (semigroup property).

We say that z € Z is invariant (or is a steady state, a stationary point) if Sz = Z for any t > 0.
We denote by E the set of all steady states,

E={yeZ; Ssy=yVt>0}
We remark that £ is closed by definition (€ = Ny>0(Sy — I)~1({0})).

Theorem 1.2. (Dynamic system and steady state). Consider a bounded and convex subset
Z of a Banach space X which is sequentially compact when it is endowed with the metric associated
to the norm ||-||x (strong topology), to the weak topology o(X, X") or to the weak-x topology o(X,Y),
Y’ = X. Then any dynamical system (S¢)i>0 on Z admits at least one steady state, that is € # 0.

Proof of Theorem 1.2. For any t > 0, there exists z; € Z such that S;z; = z; thanks to the
Schauder or the Tychonov point fixed Theorem. On the one hand, from the semigroup property
(53)

(1.2) Sig-mzg-n = z9-n forany i,n,méeN, m <n.

On the other hand, by compactness of Z, we may extract a subsequence (29—, ) which converges
weakly to a limit Z € Z. By the continuity assumption (S1) on S;, we may pass to the limit
n, — oo in (1.2) and we obtain S;zZ = z for any dyadic time ¢ > 0. We conclude that Z is a
stationary point by the trajectorial continuity assumption ((§2) on S; and the density of the dyadic
real numbers in the real line. g

1.2. Nonlinear McKean-Vlasov equation. We consider the evolution PDE

(1.3) of=Lf=Af+div((ax f+2)f), [f(0)=fo,

with a € L*. The analysis follows the classical steps.

1.2.1. A priori estimates. We compute (formally) successively

G fr=o

— [ f+ <0
dt /
and (more details are given in section 1.2

(1.4) /Fm-—(/Wﬂ%1+/fwm

where 9 is the usual function (see the next Lemma and section 1.2.4), as well as thus

(15) G [t [ivsemt e [1- [ p
if L2, C L. At least formally, the set
(1.6) Zim{fell f20. [f=1 iy < %)

is invariant if £ > 0 is large enough: f(t) € Z for any t > 0 if fy € Z.

More precisely, the L2, estimate is a consequence of the following result based on integration by
parts.
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Lemma 1.3. For any f € D(R?) and any weight function m : R? — R, , we have

/ (L) P mP = —(p— 1) / VP 2m / JPmPy
with

2
¢:O%4ﬂv@ +Am+<yfﬁdWE—E.vm.
m m P m

Proof of Lemma 1.3. 1t is a good exercise! Just perform two integrations by part: one on the
term which involves the Laplacian, another on the term which involves the E - V f function. g

Observe that (at least formally):

d _
I VD e T

= B s i come,

so that defining f* := ||f||2L;fm) F1fIP~2, we get

d 2 d _
G oy = U7 G Wy = / (L P
(1.7) = 2Re(Lf, ).

As a consequence, (1.7) together with Lemma 1.3 lead to some differential inequality on the LP-
norm which provides an a priori estimate on a solution of (1.1) when the function ¢ in Lemma 1.3
is uniformly bounded above.

As a consequence of the previous identity we obtain several existence results. In the sequel we
assume that

E .= E, + E,
with
(1.8) Ey = Ei(t,x) € L>((0,T) x RY),
and Fy = Fs(x) € Wlimoo and, for some vy > 2, (we have taken v = 2 during the classes)
(1.9) |Bo(z)| < Ky (x)Y7Y,  |divEsy(z)| < Ky (2) 72, Es(z)-x > |z VzeR

This framework contains the particular case
E:=xz+axf acl™ fecL’L.
We define
(1.10) H:=L*(m), V:=H"Y(m)NL*(m),
with m = my = (x)*, k > 0, or with m := €@ my := ()7 1e"®)" |k := v/4. We next define
Xr:=C([0,T); H) N L*(0,T; V).

s, m o= 60‘<I>2, « > 0 small, we may apply J.-L. Lions theory and we
obtain the existence and uniqueness of a solution f € X7 to the linear problem

(1.11) hf =Lyf :=Af +div((axg+2)f), [f(0)=fo,

for any g € L>=(0,T; L'). It is worth emphasizing that we use here the Poincaré inequality in RY
in order to prove that the associated Dirichlet form is coercive. We refer to the tutorial where this
problem has been tackled without the term div(xf) so that the same technique applies in a L?
space with polynomial weight of degree k > d/2 (see Section 1.2.3 below).

Next, for any fy € L?, k > d/2, we claim that there exists a solution f € X7, to equation (1.11)
in the sense that

1.2.2. Ezistence. If fo € L2

%/}wz—/vﬁV¢—/ﬂww+x%V%

for any ¢ € C,(R?). There is indeed no difficulty for passing to the limit in the above formulation
for a sequence of strongly decaying solutions associated to strongly decaying initial data and given
by the previous existence result. It is worth emphasizing that such a sequence (f,) of solutions is
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a Cauchy sequence in Xr if the sequence (fo,) of initial data is a Cauchy sequence in L?, what we
see by writing (1.4) on the difference f,, — f,,. The issue is rather about the uniqueness of such a
solution (see Section 1.2.4).

1.2.3. Well-posedness when m := )"

We just present the argument in the case £ = a * f and m := (z)* as it has been considered
in a tutorial. We claim that there is no difficulty to adapt the proof to the case £ = z + a x f
when m := e®(*)” . We emphasize again on the fact that in that case we may work with variational
solutions by taking advantage of the gain of moment provided by the strong Poincaré inequality.

We first consider the Fokker-Planck equation
(1.12) of=Lf=Af+div(Ef), EeL>®((0,T)xR%).

Proposition 1.4. For any fo € H, there exists a unique variational solution f € Xp to the
Fokker-Planck equation (1.12). Moreover, if fo > 0 then f(t) > 0 for any t > 0; if fo € L' then

f(t) € LY and (f(t)) = (fo) for any t > 0.

Proof of Proposition 1.4. We observe that the (possibly time dependent) bilinear form
at, f,g) = - / L(t)f gm?
= /{m2 Vf-Vg—gVivm? — fm*>E-Vg— fgE-Vm?*}dx

is continuous in V. Moreover, using twice the Young inequality, we see that it satisfies the following
coercivity-dissipativity estimate

a(t, f, f) = /{m2 IVfI? = fVfVM? — fm*E-Vf— f>E-Vm?}dx

< —5 / IVFI2m? + /{Cf + B2 + |E|| 1= C1} f2m? da,
with C; = [[m~2Vm?|p~. We conclude to the existence and the uniqueness of a variational
solution f € X by applying Lions’ Theorem presented in Chapter 1. 0

As announced, we next consider the McKean-Vlasov equation

(1.13) Oif = Lf =Af +div((ax f)f), aeL®R?).

Proposition 1.5. Assume a € L*°. For any fo € L?I, q > d/2, there exists a unique solution
feXr:=C(0,T); L) NL*(0,T;H,), VYT >0,

to the McKean-Viasov equation (1.13).

Proof of Proposition 1.5. Step 1. A priori bounds. On the one hand, we clearly have

/‘f|d$§/ | fol d,
R4 R4

and, using Proposition 1.4 with £ = a % f, we then deduce
1d 1
éﬁ/meQ < —§/|Vf\2m2 +03/f2m2.,

B S e
Cy 1= 503 + Slalli~ I fols

Step 2. Existence.  To prove the existence we consider the mapping g — f defined for g €
C([0,T);L2), k > d/2, so that L} C L', by solving the linear evolution PDE

Of = Af +div((axg)f).

For the linear (and ¢g dependent) problem, by repeating the same computations as in step 1 and
using the Gronwall lemma, we also have

with

sup || fllzr < [[follr, sup[|fllrz < Ar,
[0,7] [0,7]
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where A7 only depends on [[fo| 2, k, @ and T We then define

Cr={f e C([0, T} L), IIf®)llzr < I foller, 1F @)Lz < AT}
and we have ® : Cr — Cp. We consider two solutions
Ocfi = Afi 4+ div((a* g;) fi)
so that the differences f = fo — f1 and g := go — g1 satisfy
of=Af+div((a*xgr)f)+div((a*g)f2).

As a consequence, adapting the proof of Proposition 1.5, we have

1d ‘
33l = [ IV + @xg)f + @x ) fa]- V(sm?)
< /{QCf +la* g1]|2e + ||a * g1||L~C1} f2m? dx + /(a x g)° fim? du.

Because

lax gl < llallz=llglls < Clall<llgll 2z,
we deduce
1d, .9 5 o 3 9 .19 )
5 g llze, < {561 + 5llallie |l follzr I f]

Using he Gronwall lemma, we then obtain

2 /
Lz, +C1

m

| f2]

22 llalZ<llgllZs -

sup || f[|72 < er sup gl Lz,
[0,T) [0,7]

with e — 0 as T'— 0. We conclude to the existence and uniqueness of a solution in X7 by the
usual argument (Banach fixed point theorem on a small interval and iteration process). U

1.2.4. Well-posedness when m := (x)*.
We come back to the case m := (z)* for the McKean-Vlasov equation (1.3).
Lemma 1.6. Consider f € Ypr a solution to the Fokker-Planck equation
Of =Af+div(Ef) +div(F), f(0)= fo,
with E € Lip(R%;R?) and F € L2,. For any B € C?(R) such that 8" € L*°, there holds
aB(f) = AB) =B "(NIVI + (divE) fB'(f)
+E-VB(f) + div(FB'(f)) — FB"(f) - Vf.

As a consequence, we have
G [ = [{-98()- T = 8" (1T + W@ivE)B (1)
+E-VB(f)o = FB'(f)- Vo~ FB"(f) Vfe}.

Proof of Lemma 1.6. For a smooth and rapidly decaying function f the two formulas come from
the chain rule and integration. For f € Yp, we consider f x p., we write de formulas and we pass
to the limit € — 0. O

Let us first consider the linear Fokker-Planck equation
(1.14) hf=Lf=Af+div(A+B)f), AeL>, B=ux.

2 . . . ; .
e For m* := e**)” o > 0, a previous argument tells us that for any f, € L2,., we may associate
a unique variational solution belonging to the usual corresponding space.

e For m := (x)*, k > d/2, using Lemma 1.6 and Proposition 1.4 with £ = B and F = Af, we may

write
1d S o o ‘
5%/.)02777,2 = _/‘vf‘zmz"'_/fzmzﬁi’n—/Af-V(fmz)
( .

/ |
~5 [197Pw? v ci [

IN
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. . _9 . .
for a constant C] := C|(k,||divB — kB - x{x)"?||p~, ||Al|L~). Arguing as mentioned at the end
of Section 1.2.2, we deduce that for any fo € Lf,, there exist at least a solution f € Xp to the
Fokker-Planck equation (1.14) in the distributional sense. Now, for two distributional solutions
belonging to X7, we may apply Lemma 1.6 to the difference f and we get

1 d

s | o = [5P8e-IViPe+ FldivB)e - div(Be)

- [+ a1,
for any ¢ € D(R?), as well as f(0) = 0. Because f € X7, we may choose ¢ = m?yg € D(R?) for

a usual truncation function xr and we may pass to the limit R — oo, getting the same equation
with ¢ := m?2. We recover as an a posteriori estimate the classical estimate

(1.15) %/}‘Zg < - / IV f|?m? + Cs / f?m?,
(' D . D
with Cy = Cy(m, B,||Al|z~). Because f € C([0,7];L2) and f(0) = 0, we obtain that f = 0
thanks to the Gronwall lemma, and thus the uniqueness.

Exercise 1.7. Prove that we have the same uniqueness result for solutions which belong to the
space
X§ = L>(0,T; L) N C([0,T); Ly, oq) N L?(0,T : Hy), q>d/2
We will first establish that any such a solution f satisfies
t— f2 is continuous in D'(R?)

and thus
feC(0,T); L) N L*(0,T : H}), Y{<q.

Proposition 1.8. Fixq > d/2 and T > 0. For any fo € Li, there exists a unique solution f € X7
to the McKean-Vlasov equation (1.3).

Proof of Proposition 1.8. One just has to repeat the proof of Proposition 1.5 with minor modifi-
cations using the last a posteriori bound (with A := a * f) and the last uniqueness result. U

1.3. Existence of steady state for the McKean-Vlasov equation.

Theorem 1.9. There exists at least one stationary state G € Z to the McKean-Viasov equation
(1.3).

We aim to apply Theorem 1.2 to the McKean-Vlasov equation (1.3). We check that the assumptions
of the Theorem 1.2 are satisfied. We set H := L2 C L.

The nonlinear flow S; : H — H is well defined thanks to the well-posedness results established
in the previous section. Furthermore the set Z defined in (1.6) is invariant. Clearly, the set
Z is compact for the weak topology L2. We choose to provide Z with this weak topology (the
alternative to choose the strong topology is also possible and leads to similar arguments). We then
have (S2) and (S3) in the Definition 1.1 of a dynamical system because of the strong continuity of
the trajectories and the uniqueness of the solutions yet established. In order to establish (S1) we
start with the classical Aubin-Lions Lemma (that is reverse with respect to what has been taught
during the classes, but simplifies a bit the presentation).

Lemma 1.10 (Aubin-Lions). Consider a sequence (fy) such that
(1) (fn) is bounded in L*(0,T; H');
(2) fn satisfies
8tfn = Afn + dngn
with (g,) bounded in L*((0,T) x Bg), for any R > 0.
Then (f,) is strongly sequentially compact in L?>((0,T) x Br) for any R > 0.
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Proof of Lemma 1.10. Up to the extraction of a subsequence we may assume that there exists
f € L?(0,T; H') such that

(1.16) fn = f, Vafa — Vof, weakly in L?((0,T) x R?).

Step 1. We introduce a sequence of mollifiers (p.) and more precisely we set p.(z) := e~ %p(e 1)

with 0 < p € D(R?), (p) = 1. We observe that

9]
ot /]Rd fn(t7’y) PE(LU - y) dr = /]Rd (fn Ape — gn - vpe) dy,

where the RHS term is bounded in L?((0,T) x Bg) uniformly in n for any fixed ¢ > 0. We also
clearly have

Va /]Rz fn(t,y) pe(z —y) do = — /Rz In(t,y)Vype(xz —y) dy,

where again the RHS term is bounded in L?((0,T) x Bg) uniformly in n for any fixed ¢ > 0. In
other words, f,,*p is bounded in H'((0,7T)x Bg). Thanks to the Rellich-Kondrachov Theorem, we
get that (up to the extraction of a subsequence) (f,, * pc)n is strongly convergent in L?((0,7) x Bg).
Thanks to (1.16) and for any fixed € > 0, we then get

fn % pe — f* pe strongly in L?((0,T) x Br) as n — oo.

Step 2. Now, we observe that

T T
lo=gspelis, = [ lo—gsplizdr < [ ol i
where the inequality has been proved in a previous chapter. We conclude by writing
So=F=Un—=Foxp)+ (fnxp—fxp)+(f*pe— 1)
and using the convergence established in step 1 and the above estimate. O
We deduce the following result which in particular implies (S1).

Lemma 1.11. Let (fon) be a sequence of initial data which elements belong to Z and such that
fon — fo weakly in L?. Denoting by f, (resp. f) the solutions to the McKean-Vlasov equation
(1.3) associated to fo, (resp. fo), we have f, — f strongly in L?>((0,T) x R?) for any T > 0 and
fn(t) = f(t) weakly in L} for any t > 0, what is nothing but (S1).

Proof of Lemma 1.11. Step 1. We fix T > 0. Because (f,,) is bounded in L>°(0,T; L), there exists
a function f € L*°(0,T; L}) and a subsequcne (not relabeled) such that

fn — f weakly in L>°(0,T; L3).
The solution f,, satisfies

(1'17> 8tfn = Afn + dngna gn = (a * fn)fna

with (g,,) bounded in L2((0,T) x R?) because (f,,) is bounded in L>°(0,T; L?) C L>(0,T; L") and
a € L™, so that (a  f,) is bounded in L>=((0,T) x R?). We may apply Lemma 1.10 and we get
that f, — f strongly in L2((0,T) x Bys) for any M > 0. Together with the estimate

191 Bl L2(0,:22) < <]Wc;j,;_g|9Loo(o,T;L§);
for ¢ € (d/2,k), we deduce that f,, — f strongly in L*(0,T;L?) C L'(0,T; L").
Step 2. As a consequence of Step 1, for any R > 0, we have
lax (fn = FllzrcoryxBr) < llallzellfn = flloro,rxrey — 0
and a * f, — ax* f in L'((0,T) x Bgr) and a.e. (for another subsequence). Using also that
lla s CllLe < llallzes ISl Lo 0,7;12)5

we classically deduce (exercise) that

(a* fo)fn — (ax f)f strongly in L'((0,T) x Bg).
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We may pass to the limit in (1.17) and we get that f € Y} is a solution to the McKean-Vlasov
equation (1.3) associated to the initial datum fy. By uniqueness of the solution, that is the whole
sequence (f,,) which converges to f.

Step 3. For any fixed ¢ € D(R?) and any t € [0, 7], we have
uf (t) == / fapdx bounded in C([0,T])
Rd

and

%uﬁ(t) = / (fn Ap — gn - V) dy bounded in L?(0,T).
R4

By Morrey estimate H'(0,T) € C*/2([0,T]) and the Ascoli theorem, we have u¥ — u¥ in C([0, T))

for a subsequence. Thanks to a Cantor diagonal process, we may assume that the same holds for
any ¢ in a coutable subset .# of D(R?) which is dense L?(R%), in particular

T T
/ (1) / fupla) dadt - / PuP(dt, Vo € D((0,T)).
0 R4 0

Thanks to the previous step, we have

/OT U(t) /Rd fo(z) dedt = /OTll)(t)u*”(t)dt.

In other words, we identify the limit as
u?(t) ::/ ft,x)e(x)dx, Vtel0,T],
R4

and it is the whole sequence (uy(t)) which converges to u¥(t) for any ¢ € [0,T]. Finally, because
(fn(t)) is bounded in L? for any fixed ¢ € [0, T, there exists a subsequence ( f,,/(t)) which converges
weakly L? to a limit g;. We have both

u?l, (t) = vP(t) == /(pgt and u?,(t) — u®(t)

for any ¢ € #, so that v?(t) = u?(t). On other words, it is the whole sequence (f,(¢)) which
converges weakly L? to the limit f(¢). O

2. THE FIRST EIGENVALUE PROBLEM

2.1. An abstract Krein-Rutman theorem (existence part). In this section, we consider a
real Banach lattice X, that is a real Banach space (X, || - ||) endowed with a partial order denoted
by > (or <) such that the following holds:

(1) The set X4 := {f € X; f > 0} is a nonempty convex cone (compatibility of the order with
the vector space structure).

(2) For any f € X, there exist some unique positive part f; € X and negative part f_ € X such
that f = fi — f— which are minimal: f =g —h, g,h > 0 imply ¢ > f+ and h > f_ (generation
and properness of the positive cone). We set |f| := f+ + f— € X the absolute value of f € X.
(3) For any f,g € X, |f| < |g| implies ||f|| < |lg|l (compatibility of norm and order structures).

In the examples, we will only deal with the weighted Lebesgue space X = LP case endowed with
its usual partial order: f > 0in L} (E, &, p) iff f(z) > 0 for p-ae. x € E.

Theorem 2.12. Consider a positive semigroup S = S, on a Banach lattice X in duality with a
Banach lattice Y (we take X =Y and Y separable). We assume

(1) there exist ko € R and v € Y. \{0} such that [S;flo > e™[flo for any f € X, where X,
denotes the vector space X endowed with the (semi) norm || f|x, = [flo := (| f], %o);
(2) there exist two familly of operators v,w such that

(2.18) S=v+wxS,
and Cy,Cy >0, k € R such that
. v B(X) > by, w B(Xo0,X) > LwC
(2.19) [o(@)] < Cue™, Ju(t)] < Cye™
(3) there holds k < ko and X1 N Bx is compact in X.
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Then there exists a pair (A1, f1) € Ry x X3 \{0} such that Lf1 = A1 f1.

When there exists a splitting £ = A + B and kg € R such that A is bounded, the operator B
generates a semigroup Sg and

[1(S5A) ) 5 Sp(t) | x) = O(e™),  [(SsA)(t)

at)

B(Xo,X) = 0(6 )

for any ¢ > 0, £ > 0 and « > kg, then (2.18) holds with any x € (kg, ko) and

N—
(2.20) vi= > Sp# (ASE) M0, w = (SpA)*N.
£=0

—

Proof of Theorem 2.12. Step 1. We define the set

C={feXy [flo=1 lfl <R},
for a convenient constant R > 0 to be fixed later. We next define the nonlinear mapping

Sif
[Seflo

Thanks to assumption (1), we may observe that it is well defined because

¢:C— X, [

(2.21) [Seflo > e[ f]o = e™' > 0.

For any f € C, we thus immediately have ®;f > 0 and [®;f]p = 1. On the other hand, from
assumption (1) again and the semigroup property, we have

(2.22) [S(t)flo > €™ =[S (5) flo-

For f € C and t > 0, we next compute

[@.f] < Cpet 171 +/t Cwen(t—s)Mds
0 [

[S(8)flo S(t)flo
t

< CUG(H*HO)tHfH-FCw/ e(nfmg)(tfs) ds
0
< Cyetroig g o

Ko — K’

where we have used the estimate (2.19) in the first line, the lower bounds (2.21) and (2.22) in
the second line and then just the fact that kK — kg < 0 in the last line. Fixing Ty such that
Cpeti=r0)To < 1/2 and next R > 2C,,/(ko — x), we have thus &7, : C — C. We also notice that
O, is continuous for the weak *o(X,Y") topology. Thanks to the Tykonov fixed point Theorem,
there exists fr, € C such that @1, fr, = fr,.

Step 2. In other words, we have established the existence of fr, € X such that

(2'23> fTo >0, [fTo]O =1, STofTo = e)\lTofToa
with Ay := (1/T0) log[ST, f1,]o € R. We then write
To
0= €_A1TOSTofTo - fTo = (‘C - A1)/ e_)\ltSthodt7
0
and we define
To
fi:= / e MUS, fr,dt € D(L) N X4\ {0},
0

which satisfies Lf; = A1 f1- O
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2.2. Existence of first eigenvalue for a Fokker-Planck type equation. We consider the
Fokker-Planck type equation

(2.24) Ouf = Lf = Af + div(Ef) + cf,
on the density f = f(t,z), t > 0, z € R?% where the force field £ € R? is a given fixed (exterior)

vector field and c is a potential function.

Theorem 2.13. Assume E =z and 0 < ¢ € L®(R?), ¢ # 0. There ezists a solution (A1, f1) to
the first eigenvalue problem with \; >0 and 0 < f, € HE, Vk.
Proof of Theorem 2.13. We apply Theorem 2.12 with X = L2, k > d/2.
(1) We observe that
L1=¢c>0,
so that (1) holds with g = 1 and k¢ = 0.
(2) We introduce the spliting
Af == Mxrf, 1p, < xr € C(RY), B:=L— A
On the one hand, for any kg < 0, we may find M and R large enough such that
Sp: LX — LY, O(e"s"),
for some k > 0 when p =1 and for some k > d/2 when p = 2. Using Nash argument, we also have
1 9 eHBt
SB:Lk;_>Lk;7 O(W .
Choosing d € {1,2,3} for simplicity, we may take N = 2 in (2.20) and we deduce that
t KBS
P
k 0 s /4 k

e = Iy S e fllo

~

A

for any t > 0 and any x € (kp,0). We have established (2).
(3) We obviously have L? C L*, By is weakly compact and f +— || f||z: is continuous from X
into R for the weak L7 topology. O

2.3. The Krein-Rutman theorem for the Fokker-Planck equation.

Proposition 2.14. The operator L satisfies “Kato’s inequality” and the “strong mazimum prin-
ciple” in H = L}, k > d/2.

Proof of Proposition 2.14. Step 1. Kato’s inequality. For a convex function 5 : R — R such that
B(s) = s’ (s), we clearly have
LB(f) =B"(NIVIE+B(HLf =B (LS.

Step 2. Strong maximum principle.  Consider f € H\{0} such that £f = 0. By a bootstrap

regularization argument, we classically have f € leo’cd (R?) ¢ C(R?). By assumption there exist

then zg € R, ¢,7 > 0, such that | f(z)| > ¢ on B(zg,r). From Lemma 1.3, we also have that £ —a
is —1-dissipative for a > 0 large enough, in the sense that

(2.25) VheDL) ((£-a)hh)mg < —|hlE.

We next observe that for o > 0 large enough, the function g(x) := cexp(or? — o|x — x¢|7) satisfies
g = c on 0B(zg,r) and

(—L+a)g = [-0*P|z =207V +oy(d+7 - 2)[x —zo| 7
—divE + E - (x — zo)yolz — z0["* —a] g <0 on B(zo,r)".
We define h := (g — |f|)+ and Q := R\ B(zg, 7). We have h € HZ (2, mdz) and
(L—a)h = 0'(g—1|f])Llg—If]) —ah
= 09— IfDU£L—a)g+alf]] >0,
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where we have used the notation 0(s) = s;. Thanks to a straightforward generalization of (2.25)
to H (2, m), we deduce

0 < ((£ = a)h, h)r2(@m) < =IIhlIE2(@m)»

and then h = 0. That implies |f| > g on , next |f| > 0 on R? and then f > 0 or f < 0 because
f € C(RY). O

Theorem 2.15. Under the same conditions on E and c, there exists a solution 0 < ¢1 € Hik,,
Vk > d/2, to the dual eigenvalue problem L*¢1 = A1 $1. Furthermore, f1 > 0, ¢1 > 0 and they are
the unique (up to normalization) solutions to the eigenvalue problem with positive eigenvectors.

Proof of Theorem 2.15. Step 1. Positivity of fi. Since (L — A1)f1 =0, f1 > 0 and f; # 0, the
strong maximum principle implies that f; > 0 on R

Step 2. Dual problem. We observe that
LYo=Ap—FE-Vo+ co,

so that for m = ()%, we have
/(L*d))mdx = /(;S(Am + div(Em) + em)dx
[ ol0t@) ™ 2) = kia) s

IN

and similarly

/(£*¢)¢m2d$ = —/\V¢>|2m2dx+/¢2(%Am2 + %div(EmQ) + em?)dx

IN

/¢%0«w*%*y+wm—www*%wn

We may also write
Se =SB+ ...+ Sc x (ASp) "N,
so that
Sﬁ* = SB* + ee + (SB*A)(*N) * SE*

and by duality we have

Spe: LY, — LP ., O(e"8"), Vk > d/p';

Spe : LYy, — L2, Ot~ Y% st Vi > d/2.
On the other hand, we have

G o= [ =2on = [eier - an=o

for any solution ¢; to the dual evolution equation d;¢, = (L* — A\1)¢¢, and thus

/cbtfl z/qbofl, Vit > 0.

[1651 < 1612, 111123

so that the previous integral is well defined. The two pieces of information together imply

It is worth observing that

A

t
15* (ol < @wwmg+AcMWﬂw%mmw

IN

K Cw
Coe™ R + — Al [l < B,
for t > T} large enough and ¢ € Z, with
zZ = {’(/} € L3k7 ’l/) Z Oa [w]fl = 17 ||w||L27k S R}7
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with R > 0 fixed and large enough. We may apply Theorem 1.2 or argue in the following way. We
define

R
Up = T/o S (1)t

Because of the previous analysis, we have Upr € Z for any T > T; > 0 if we choose ¢ € Z. We
deduce that there exists (T}) such that T}, — oo and ¢; € Z such that Ur, — ¢1 weakly in L? .
We compute

_ 1 [Tk

{/ST’#S 5 (Wodt = 7 | 5*(t)¢dt}

) Tk+s N 1 s
- klinio{ﬂ/n S* ()t — ﬁ/o S (t)¢dt} —0,

for any s > 0. That implies that (£L* — A1)¢; = 0.
Step 3. Positivity of ¢1. For the same reason as in step 1, we have ¢; > 0 on R?. g

Il
3

S*(s)¢1 — é1

3. RELATIVE ENTROPY FOR LINEAR AND POSITIVE PDE AND LONGTIME BEHAVIOR

3.1. General relative entropy. We briefly discuss the long-time asymptotic for the linear and
nonlinear Fokker-Planck equations (1.1).

We consider the general evolution PDE

(3.1) 8tf:Affa~Vf+cf+/bf*, /bf* ::/b(x,x*)f(:c*)d:r*, b>0.
If g > 0 is a solution
8tg=Ag—a-Vg+cg+/bg*

and if ¢ > 0 is a solution to the dual evolution problem

—8tqb:A¢+div(a¢)+c¢+/b* Dss /b* o] ::/b(ac*,x) O(xy) das,

we can exhibit a family of entropies associated to the evolution PDE (3.1). More precisely, we
establish the following result (and in fact a bit more accurate formulation of it).

Theorem 3.1. For any real values convex function H, the generalized entropy functional

(32 froH) = [ (g0

is an Lyapunov function for the evolution PDE (3.1) (meaning that is is decaying function of time
along the flows of the evolution PDE).
Step 1. First order PDE. We assume that
Of = —a-Vf+cf
Oty —a-Vg+cg
-0 = div(a¢) + co,

and we show that
O(H(X)g9) +div(aH (X)gp) =0, X =f/g.
We compute
9(H(X)g9) + div(aH (X)g¢)
= H'(X)g¢[0:X + aVX]+ H(z) [0:(9¢) + div(ags)]

The first term vanishes because

8tX + GVX = f f

1 1
5(3tf+avf) - ?(&g—kan) :g(cf) - E(CQ) = 0.
The second term also vanishes because

9 (9¢) + div(agp) = ¢ [0rg + aVyg| + g [0:¢ + div(ad)] = ¢ [—cg] + g [+c¢] = 0.
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Step 2. Second order PDE. We assume that

of = Af+4cf
09 = Ag+cg
-0 = Ap+co,

and we show
0y(H (X)g¢) — div(¢V(H (X)g)) + div(¢H(X)V¢) = —H"(X)go|VX|*.

We first observe that
. /Vf 1
AX = ohv(7 - f—QVg)

- Agf 2Vf—+2f|vg‘2 I ag

92
VR TV T
g ) g

which in turn implies
0 X —AX =2 @ VX.
g
We then compute

O (H(X)go) — div(¢V(H (X)g)) + div(gH(X)Ve) =
= (0:H(X)) 9o + H(X) 01(9¢) — ¢ div[gH'(X)VX + H(X)Vg] + gH(X)Ad

=H'(X)gp {0: X — AX — 2% VX} — g H'(X)|VX|* + H(X) [0:(9¢) — 6Ag + gAg)
=—gp H"(X) VX,

since the first term and the last term independently vanish.

cf+/bf*

og = cg+/bg*

C¢ + /b*¢*;
with the notations

/bz/)* .—/b Z, ) Y(xy) d., /b*w* .—/b Ty ) Y(T4) d,
and we show

,(H(X)g) + / H(X)gb.o - / bH(X.)get = — / bg.6{ H(X.) — H(X) — H'(X)(X, - X)}

Step 3. Integral equation. We assume that

of

09

We compute indeed

Oi(99H(X)) = H(X)g0i¢+ H(X)¢dg + H'(X)p(0rf — XOrg)

/ H(X)gbo.+ [ bH(X.)g.0

+/bg*¢ CH(X,) + H(X) + H' (X)X, — H’(X)X}
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Step 4. Conclusion. For any solutions (f, g, ¢) to the system of (full) equations, we have summing
up the three computations

DugsH (X)) +
V(@ (X)g9) — div(OV(H(X)g)) + divH(XV6) + [bH(X)g.0— [ HX)gb.0.

— g0 H'(O) VAP - [ bg.o{HOX) - HOXY) - H(X)(X. - X)),
Since when we integrate in the x variable the term on the second line vanishes, we find out

d
SH() = ~Dulf),
with
Dulf)i= [ 90O IVXP + [ [bg.0{H0X) ~ HOO) - HOOCX. - 0} 2 0

so that (3.2) is proved. O

Exercise 3.2. We consider a semigroup S; = e'* of linear and bounded operators on L and we
assume that

(i) Sy > 0;

(i1) 3g > 0 such that Lg = 0, or equivalently Sig = g for any t > 0;

(i) 3¢ > 0 such that L*¢ = 0, or equivalently (Sih, ) = (h,¢) for any h € L* and t > 0.

Our aim is to generalize to that a bit more general (and abstract) framework the general relative
entropy principle we have presented for the evolution PDE (3.1).

(a) Prove that for any real affine function €, there holds £[(Stf)/g9lg = St[¢(f/9)g].

(b) Prove that for any convex function H and any f, there holds H[(S:f)/9lg < St[H(f/g)g].
(Hint. Use the fact that H = sup,<p €).

(¢) Deduce that
[ Hisdos < [ Hirsalos, vi>o

3.2. Dissipation of entropy method. We briefly present some general result about the longtime
asymptotic of dynamical system that we will take over in the next section on a concrete example
of application.

Consider a dynamical system (S;);>0 on a metric space (Z,d). We say that a functional # : Z — R
is an entropy if there exists a dissipation of entropy functional D : Z — R such that for any z € Z
there holds

d

aH(StZ) = —D(Stz) <0 Vit> 0,

or equivalently

t
(3.3) H(Siz) + / D(Ssz)ds = H(z).

0
As a consequence t — H(S;z) is a decreasing function, and more importantly here, under the

additional lower bound assumption

(3.4) H,>—o00, H.:= inf H(y),

yEwo (z)

there holds
(3.5) / D(Ssz)ds < H(z) — H, < oo.
0

We define
wp(z) :={y € wo(z); D(Sry) =0Vt >0},
and we observe that £, C wp(z) at least when (3.3) holds. (not clear ?)
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Theorem 3.3. (Dissipation of entropy method - weak version). Consider a dynamical
system (Si)i>0 on a metric space (Z,d) and z € Z. We assume

(S4') (Si2)e>0 is “locally uniformly compact” in the sense that (S;™")i>o is relatively compact in
C([0,T); Z) for any fized time T € R, where we have defined s — S (s) := Sy 12;

(H1) there exists a lsc dissipation of entropy functional D on Z such that t — D(S;z) € L.
Then, we have w(z) C wp(z), and therefore d(Siz,wp(z)) — 0 as t — oo.

Proof of Theorem 3.3. We define 2! := 87" € C([0,T]; Z), T > 0, and we observe that

/OT D(z'(s)) ds = /tHT D(Ss2)ds < /toO D(Ssz) ds.

Consider y € w(z) and a sequence ¢, — oo such that Sy z — y as n — co. From the compactness
assumption (S4') and a diagonal Cantor procedure, there exist a subsequence (,/) and a function
z* € C(|0,00); Z) such that z» — z* in C([0,T]; Z) for any T > 0 and obviously z*(s) = S,y
for any s > 0. From the assumptions (H1) made on the dissipation of entropy and the above
inequality, we then deduce

T e8]
/ D(z*(s)) ds < liminf D(Ssz)ds = 0.
0

n’/—oo
t,,r

As a consequence D(z*(s)) = 0 for any s > 0 and then y € wp(z). We conclude thanks to the
general result Theorem 6.6.-(iii) about the w-limit set which have been presented during the Review

course on differential calculus for ODEs and PDEFEs. 0
Theorem 3.4. (Dissipation of entropy method - strong version). We assume furthermore
that

(3.6) wp(z) s discrete.

Then, w(z) is a singleton and w(z) C E,. More explicitly, we have w(z) = {z*} C &, Nwp(z) for
some z* € Z or equivalently Siz — z* as t — oo.

Proof of Theorem 3.4. From Theorem 3.3 we have w(z) C wp(z) which is assumed to be discrete.
We conclude thanks to (iv) in Theorem 6.6 (in Review course on differential calculus for ODEs and
PDEs). We conclude thanks to the general result Theorem 6.6.-(iv) about the w-limit set which
have been presented during the Review course on differential calculus for ODEs and PDFEs. 0

3.3. Long-time behaviour. We consider the Fokker-Planck equation
Of = Af+div(zf)+cf = Lf,

¢ € L, for which we have yet established the existence of a solution (A1, f1, 1) to the eigentriplet
problem

AMER, Lfi=Mf1, i >0, L1 =X¢1, ¢1>0.
We also have established that any solution f to the rescaled Fokker-Planck equation
(3.7) nf=Lf=Lf=M\Ff
satisfies

d
SH() = ~D(f) <0
with
H(f) := / H(f/f1)fiprdx, H:R — R, convex.
Rd

In particular and more precisely, we have

G <0, with Half) = [ 17 - chlon

for the choice Hi(s) :=|s —¢|, ¢ € R, and

(3.8) %Hz(f) = —Ds(f),
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with
yim [1f=chiPion D)= [ Bl RP
for the choice Hy(s) := (s —¢)?, c € R.

Theorem 3.5. For any fy € L}bl(ﬂLé), the associated solution to the rescaled Fokker-Planck
equation (3.7) satisfies
f#) = filfo,d1) as t— oo

Proof of Theorem 3.5. Step 1. If f2f7 ¢ € L' then Ha(fy) < oo (whatever is ¢ € R) and
integrating (3.8), we get

sup Ha(f(t))t < Ha(fo), / Da(f(t)) dt < Ha(fo)-

>0
We fix T > 0 and we define f,(t) := f(t + n). We deduce that
sup Ha(fn) < Ha(fo),
(0,77

so that (f,) is bounded in L>(0,T; L?(Bg)), VR > 0, and

T ')
/ Da(fn(t))dt < / Do(fn(t))dt — 0,
0 n

so that (V(fn(t)/f1)) is bounded in L?((0,T) x Bg, VR > 0. By compactness of the L? ball (and
a Cantor diagonal process), there exist (f,,) and f € L2 _ such that

fun = F and V(fu,(0)/fr) = V(f/f1) weakly L*((0,T) x Br).

By convexity / lsc of the norm, we get

T
//BRyvf| f1¢1da:dt<hmmf// f”k| flgzﬁldxdtgliminf/o Dy (f,)dt = 0.

We may next pass to the limit as R — oo (by monotonous convergence) and we deduce that
Do(f/f1) =0, so that V(f/f1) =0 and finally f = ¢f; for some constant ¢ € R.
On the other hand, by Nash argument (...), we have ¢, € L%, for any ¢ > d, as well as for some

q>1{>d,
d
G [ <<c [io- [ 1wy

ggg/\fquscfmm4/"ﬁmm,/Wmuxw)
We deduce that

/f0¢1:/f7lk¢1: 5 Je®1 + e S @1 — 5 f¢1+0 RZ q /f¢)1

so that

Together with f = cf; and the normalization (f;, #1) = 1, we identify ¢ = cg := (fo, ¢1).
Step 2. From the very definition of f,,, the Aubin-Lions Lemma 1.10 and the Lé estimate, we have

fn, = cofi in L?((0,T) x Bg),
next

f(tnk7 ) — COfl in Léla tnk S (nkann+1)'
But since

) :/|f—cof1|¢1 o

we deduce that

sup /um—%ﬁwng/umg—%ﬁwr»u

t>2np41

When fj € Ll, we use an approximation argument fy,, — fo in Lé and Ha(fon) < oo in order to
get the same conclusion. O
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4. ASYMPTOTIC OF STOCHASTIC SEMIGROUPS

4.1. Generalities. From now on, we will be interested in Stochastic semigroups which is a class
of semigroups which enjoy both a positivity and a “conservativity” property. The importance of
Stochastic semigroups comes from its deep relation with Markov processes in stochastic theory
as well as from the fact that a quite satisfactory description of the longtime behaviour of such a
semigroups can be performed.

We start with the notion of positivity. It can be formulated in the abstract framework of Banach
lattices (X, ||-]|, >) which are Banach spaces endowed with compatible order relation or equivalently
with an appropriate positive cone X.. To be more concrete, we just observe that the following
three examples are Banach lattices when endowed with their usual order relation:

e X := Cy(F), the space of continuous functions which tend to 0 at infinity (when E is not a
compact set) endowed with the uniform norm | - ||;

e X :=LP(F)=LP(E,E, ), the Lebesgue space of functions associated to the Borel o-algebra &,
a positive o-finite measure p and an exponent p € [1, o0];

e X := M(E) = (Cyo(E))', the space of Radon measures defined as the dual space of Cy(FE).

Here E denotes a o-locally compact metric space (typically £ C R?) and in the last example the
positivity can be defined by duality: p > 0 if (i, ) > 0 for any 0 < ¢ € Co(E).

Lemma 4.1. Consider X a Banach lattice (one of the above examples), a bounded linear operator
A on X and its dual operator A* on X'. The following equivalence holds:

(1) A is positive, namely Af >0 for any f € X, f > 0;

(2) A* is positive, namely A*p > 0 for any ¢ € X', ¢ > 0.

The (elementary) proof is left as an exercise. We emphasize that (f, ) > 0 for any ¢ € X/ (resp.
for any f € X ) implies f € X (resp. p € X',).

There are two “equivalent” (or “dual”) ways to formulate the notion of Stochastic and Markov

semigroup.

Definition 4.2. On a Banach lattice Y D Cy(E) we say that (P;) is a Markov semigroup if

(1) (P;) is a continuous semigroup in'Y ;

(2) (P;) is positive, namely Py > 0 for any t > 0;

(3) (P;) is conservative, namely 1 €Y and P,1 =1 for any t > 0.

Definition 4.3. On a Banach lattice X C M (E) we say that (S;) is a stochastic semigroup if
(1) (Sy) is a (strongly or weakly * continuous) continuous semigroup in X ;

(2) (St) is positive, namely Sy > 0 for any t > 0;

(3) (St) is conservative, namely (S:f) = (f), Vt >0, V f € X, where (g) := (g,1).

The two notions are dual. In particular, if (P;) is a Markov semigroup on Y O Cy(FE), the dual

semigroup (S;) defined by S; := P on X := Y’ is a stochastic semigroup. In the sequel we will
only consider stochastic semigroups defined on X C L'(E).

Stochastic semigroup and semigroup of contractions for the L' are closely linked.
Proposition 4.4. A Stochastic semigroup is a semigroup of contractions for the L' norm. In the

other way round, a mass conservative semigroup of contractions for the L' norm is positive, and
thus it is a Stochastic semigroup.

Proof of Proposition 4.4. We fix f € X and t > 0. We write
ISefl = [Sefy — Sef-|
< ISefl + [Sef-
Sefy + Sef-
= Silfl,
where we have used the positivity property in the third line. We deduce

[1si1< [sin= [ 111

N
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because of the mass conservation. For the reciprocal part, we consider f > 0. From both the
contraction property and the mass conservation, we have

1Se £l < 1] = /f: /stf.

As a consequence,

I(Se)-llor = 5 [ (151~ $us) <0

so that (S;f)— = 0 and thus S;f > 0. That proves the positivity property.

We may also characterize a Stochastic semigroup in terms of its generator.
Theorem 4.5. Let S = S; be a strongly continuous semigroup on a Banach space X C L*. There
s equivalence between

(a) S¢ is a Stochastic semigroup;
(b) L*1 =0 and L satisfies Kato’s inequality

(sign f)Lf < LIfl, ¥ e D(L).

Partial proof of Theorem 4.5. Step 1. We prove (a) = (b). On the one hand, for any f € D(L)
and any 0 < ¢ € D(L*), we have

(v, (g f)Lf) = lm %w, (sign ) (SO f 1)
< lim S, SO - 1)
< lim S, SO - 1)
= lim (8700 — o, 1)

t—0 ¢

= (L5, [f]),

where we have used the inequality (signf)g < |g| in the second line and the positivity assumption
in the third line. That inequality is the weak formulation of Kato’s inequality. On the other hand
and similarly, for any f € D(L), we have

(£71, 1) (L,Lf)

lim 2 {1,5()] ~ /) =0,

by just using the mass conservation property.

Step 2. We prove (b) = (a). On the one hand, for any f € D(L£) and ¢ > 0, we denote f; := Sif
and we write

(Sif — f) = /L‘fsdsl /;(fs,/:*l)ds:o.

On the other hand, in order to conclude it is enough to prove that (S;) is a semigroup of contrac-
tions. We consider f € D(L£?),t > 0, n € N*, we introduce the notation f; := S;f, ¢, := kt/n, and
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we write

n—1

1Sefl=1f] =

(]

(fenn | = 1fui])

il
|
=

(]

Signftk-u (ftk,+1 - ftk)

1T
|
= O

I
(]

te4+1
signfi, / Lfsds

123

Tl
= o

(]

) 1 trya
Slgnftk-#l{gﬂftk-f—l + / L(fs - ftk+1) dS}

tr

1T
= O

1 ) tkt1 s )
< {7E‘ftk+1 ‘ + Slgnftk+1 / / (Suﬁ f) duds},
n ty trt1

k=(

(o]

where we have used the inequality (signf)g < |g| in the second line and Kato’s inequality in the
last line. Taking the mean and using the mass conservation, we have

n=1 otpiq ptrgr )
TS / / 15 £ duds
k=0 k

N

S

IN

1t
f/ |\Su£2f|\du—>07

nJo

as n — oo. O

Exercise 4.6. Consider Sc+ a (constant preserving) Markov semigroup and ® : R — R a concave
function. Prove that L*®(m) < ®'(m)L*m. (Hint. Use that ®(a) = inf{l(a); ¢ affine such that £ >
O} in order to prove SF(®(m)) < ®(SFm) and ®(b) — P(a) > ®'(a)(b—a)).

4.2. Strong positivity condition and Doblin Theorem. We consider the case of a strong
positivity condition.
Theorem 4.7 (Doeblin). Consider a Stochastic semigroup S; such that
Srf>av(f), VfeXy,
for some constants T > 0 and o € (0,1) and some probability measure v. There holds
1Seflle < Ce”|fller, VE20,VfeX, (f)=0,
for some constants C' > 1 and a < 0.

Proof of Theorem 4.7. We fix f € X such that (f) = 0 and we define n := av{f;) = av(f_). We
write
|Srfl = |Stf+ —n—Srf-+n
1S f+ =l + S0~ —nl
= Srfy—n+Srf-—n,

where in the last equality we have used the Doeblin condition. Integrating, we deduce

IN

[isent < [sere=atira + [ ser- - atir)
< [r-atts [1-alr)
<

(1-a) [111

By induction, we obtain a := [log(1l — «)]/T and C := exp||a|T]. O
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4.3. Geometric stability under Harris and Lyapunov conditions. We consider now a semi-
group S with generator £ and we assume that

(H1) there exists some weight function m : R? — [1, c0) satisfying m(x) — oo as x — oo and there
exist some constants a > 0,b > 0 such that

L'm < —am +b;

(H2) for any R > 0, there exists a constant T' > T > 0 and a positive and not zero measure v = vg
such that

Sef>v | f VfeXx,.
Br
Theorem 4.8 (Doeblin). Consider a Stochastic semigroup S on X := L*(m) which satisfies (H1)
and (H2). There holds
1Sefllimy < C e flligmy, V>0, VfeX, (f)=0,
for some constants C' > 1 and a < 0.
We start with a variant of the key argument in the above Doeblin’s Theorem.

Lemma 4.9 (Doeblin’s variant). Under assumption (H2), if f € L'(m), with m(z) — oo as
|x| — oo, satisfies

4

(4.1) £l ZmellLl(m) and (f) =0,

we then have

{v)
ISt fller < (1 — T)HfHLl-
Proof of Lemma 4.9. From the hypothesis (4.1), we have

BRfi = /f:i:* Bcf:l:

> 5 [l [ 1= 1 [151

STfiZ%/m:”?-

Together with (H2), we get

We deduce
|STf| < [Srfy —nl+|S7f- —nl=Srfr —n+Srf- —n=Sr|f] —2n,

[1seni< [siin=2 [n=[151- w15 [ 151

which is nothing but the announced estimate. O

Proof of Theorem 4.8.  We split the proof in several steps. We fix fo € L'(m), (fo) = 0 and we
denote f; := S; fo.

Step 1. From (H1), we have

and next

d
%”ft”Ll(m) < —allfellzrom) + bl fellzr,

from what we deduce

—a —a b
[ fellziomy <e t”.fO”Ll(m)"'(l_e t)aHfOHLl vt > 0.
In other words, for any T' > Ty > 0, we have

(4.2) ST follLr(my < ALl follromy + Kl follors

with vz, € (0,1) and K > 0, both constants depending only of Ty. We fix R > 0 large enough such
that K/A < 1—~g with A :=m(R)/4.

On the other hand, we recall that

(4.3) 157 follr < [ follr, VT 20,
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and because of Lemma 4.9, there exists yg € (0,1) and T > Tp only depending on R defined above
such that

(4.4) ST follLr < ~vmllfollr  when Al follzr > | foll 21 (m)-
Step 2. We introduce the modified norm

llgll := llgllzr + BllgllLrm)
and we observe that we have the alternative

AH.[O”L1 > HfOHLl('m) or AHfO”Ll < ||./.UHL'(m)-

In the first case of the alternative, using the Lyapunov estimate (4.2) and the coupling estimate
(4.4), we have

Stfoll = 1St foller + BIST foll L1 (m)
(va + BE)| follr + Byl follrm)
Yl follls

with v; := max(yy + BK,vr) < 1, by fixing from now on 8 > 0 small enough. In the second case
of the alternative, using the Lyapunov estimate (4.2) and the non expansion estimate (4.4), we
have

IAIA

ISt foll = ST follzr + BIST follLr(m)
< (1+BK =Bl foller + B(yr + 0/A)IST foll 1 (1m)
< llfoll,

with o := max(1 + SK — 84,y + §/A) for any 0 < 85 < 1+ K. We take 6 := K +¢, € > 0, so
that we get
Yo = max(l — e, (v, + K/A) +¢/A) < 1,

by choosing € > 0 small enough and by recalling from the very definition of A that v, + K/A < 1.
In any cases, we have thus established that

ISz folll < Al folll,  with v := max(y1,72) < L.
We then conclude as in the proof of Theorem 4.7.
Step 3 (Alternative argument). Alternatively, the two estimates (4.3) and (4.4) together give

1—m

(4.5) 1SFoller < vl foller + == follr(m)-
Together with step 1, we deduce that
urtt = MU"
with || |
St foll 1 v K
U= (T (m) d M:=|(,' .
( Isgfolls ) ™ o
The eigenvalues of M are
1
ft = i(Ti T2 —4D),

with
T:=ttM =~ +vg, D:= detM:”yL’yH—(l—’yH)

=

We observe that
Yy > D>ypym — A=)l —y) =T -1,
so that
(vir — L) =T% —dypyy <T? —4D < T? — 4T — 1) = (T — 2)?
and finally
0 := max(|pi ], |p-|) < max(ye,ve, [T —1],1) = 1.
We have established that | M™| < C 6™ — 0 for some constant C' > 1, and we then conclude as in
the proof of Theorem 4.7. O
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