
An introduction to evolution PDEs January 16, 2023

CHAPTER 6 - MORE ABOUT LONGTIME ASYMPTOTIC

remarkable solutions, entropy and positivity techniques

- STILL A DRAFT -

I write in blue color additional material with respect to what has been taught during the classes. I
write in brown color the significative changes with respect to the previous version (of January 11).
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In this chapter we introduce several techniques which are useful for analyzing the longtime as-
ymptotic of quite general evolution PDEs. On the one hand, it is an introduction to entropy (or
Lyapunov) methods for general (possibly nonlinear) dynamical system and an illustration on some
exemples of evolution PDEs (linear, positivity preserving) of parabolic type. On the other hand
it is an introduction of the analysis of stochastic semigroup following Harris-Meyn-Tweedie type
approach. The aim is thus to develop some quite general tools which make possible to get a better
understanding of the longtime asymptotic issue.

1. Existence of steady states

In this section we present a general a dynamic system argument for proving the existence of a
steady state for a time autonomous evolution PDE. We illustrate the technique on the Fokker-
Planck equation

(1.1) ∂tf = Lf := ∆f + div(Ef),

on the density f = f(t, x), t ≥ 0, x ∈ Rd, where the force field E ∈ Rd is

- either a given fixed (exterior) vectors field, see the next section and adapt the proofs;

- or a function of the density, the McKean-Vlasov model.
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1.1. Dynamic system and steady states. We recall a result already presented during the
Review course on differential calculus for ODEs and PDEs and which is yet useful for proving
steady state for ODEs.

Definition 1.1. We say that (St)t≥0 is a dynamical system (or a continuous (possibly nonlinear)
semigroup) on a metric space (Z, d) if

(S1) ∀t ≥ 0, St ∈ C(Z,Z) (continuously defined on Z);

(S2) ∀x ∈ Z, t 7→ St x ∈ C([0,∞),Z) (trajectories are continuous);

(S3) S0 = I; ∀ s, t ≥ 0, St+s = St Ss (semigroup property).

We say that z̄ ∈ Z is invariant (or is a steady state, a stationary point) if Stz̄ = z̄ for any t ≥ 0.
We denote by E the set of all steady states,

E := {y ∈ Z; Sty = y ∀ t ≥ 0}.

We remark that E is closed by definition (E = ∩t≥0(St − I)−1({0})).

Theorem 1.2. (Dynamic system and steady state). Consider a bounded and convex subset
Z of a Banach space X which is sequentially compact when it is endowed with the metric associated
to the norm ‖·‖X (strong topology), to the weak topology σ(X,X ′) or to the weak-? topology σ(X,Y ),
Y ′ = X. Then any dynamical system (St)t≥0 on Z admits at least one steady state, that is E 6= ∅.

Proof of Theorem 1.2. For any t > 0, there exists zt ∈ Z such that Stzt = zt thanks to the
Schauder or the Tychonov point fixed Theorem. On the one hand, from the semigroup property
(S3)

(1.2) Si 2−mz2−n = z2−n for any i, n,m ∈ N, m ≤ n.

On the other hand, by compactness of Z, we may extract a subsequence (z2−nk )k which converges
weakly to a limit z̄ ∈ Z. By the continuity assumption (S1) on St, we may pass to the limit
nk → ∞ in (1.2) and we obtain St z̄ = z̄ for any dyadic time t ≥ 0. We conclude that z̄ is a
stationary point by the trajectorial continuity assumption (S2) on St and the density of the dyadic
real numbers in the real line. �

1.2. Nonlinear McKean-Vlasov equation. We consider the evolution PDE

(1.3) ∂tf = Lf := ∆f + div((a ∗ f + x)f), f(0) = f0,

with a ∈ L∞. The analysis follows the classical steps.

1.2.1. A priori estimates. We compute (formally) successively

d

dt

∫
f = 0,

d

dt

∫
f± ≤ 0,

and (more details are given in section 1.2.4)

(1.4)
d

dt

∫
f2m2 = −

∫
|∇f |2m2 +

∫
f2ψm2,

where ψ is the usual function (see the next Lemma and section 1.2.4), as well as thus

(1.5)
d

dt

∫
f2m2 ≤ −1

2

∫
|∇f |2m2 + C

∫
f −

∫
f2m2,

if L2
m ⊂ L1. At least formally, the set

(1.6) Z :=
{
f ∈ L2

k; f ≥ 0,

∫
f = 1, ‖f‖L2

k
≤ R

}
is invariant if R > 0 is large enough: f(t) ∈ Z for any t ≥ 0 if f0 ∈ Z.

More precisely, the L2
m estimate is a consequence of the following result based on integration by

parts.
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Lemma 1.3. For any f ∈ D(Rd) and any weight function m : Rd → R+, we have∫
(Lf)fp−1mp = −(p− 1)

∫
|∇f |2fp−2mp +

∫
fpmpψ

with

ψ := (p− 1)
|∇m|2

m2
+

∆m

m
+

(
1− 1

p

)
divE − E · ∇m

m
.

Proof of Lemma 1.3. It is a good exercise! Just perform two integrations by part: one on the
term which involves the Laplacian, another on the term which involves the E · ∇f function. �

Observe that (at least formally):

d

dt

∫
Rd
|f |pmp =

p

2

∫
Rd

(|f |2)p/2−1∂t(f f̄)mp

=
p

2

∫
Rd
|f |p−2(Lf f̄ + f L̄f)mp,

so that defining f∗ := ‖f‖2−pLp(m) f̄ |f |
p−2, we get

d

dt
‖f‖2Lp(m) =

2

p
(‖f‖pLp(m))

2/p−1 d

dt
‖f‖pLp(m) =

∫
Rd

(Lf f∗ + f̄∗ Lf)mp

= 2<e〈Lf, f∗〉.(1.7)

As a consequence, (1.7) together with Lemma 1.3 lead to some differential inequality on the Lp-
norm which provides an a priori estimate on a solution of (1.1) when the function ψ in Lemma 1.3
is uniformly bounded above.

As a consequence of the previous identity we obtain several existence results. In the sequel we
assume that

E := E1 + E2

with

(1.8) E1 = E1(t, x) ∈ L∞((0, T )× Rd),

and E2 = E2(x) ∈W 1,∞
loc and, for some γ ≥ 2, (we have taken γ = 2 during the classes)

(1.9) |E2(x)| ≤ K1 〈x〉γ−1, |divE2(x)| ≤ K2 〈x〉γ−2, E2(x) · x ≥ |x|γ ∀x ∈ Rd.
This framework contains the particular case

E := x+ a ∗ f, a ∈ L∞, f ∈ L∞t L1
x.

We define

(1.10) H := L2(m), V := H1(m) ∩ L2(m1),

with m = m1 = 〈x〉k, k ≥ 0, or with m := eκ〈x〉
γ

, m1 := 〈x〉γ−1eκ〈x〉
γ

, κ := γ/4. We next define

XT := C([0, T ];H) ∩ L2(0, T ;V ).

1.2.2. Existence. If f0 ∈ L2
m, m := eα〈x〉

2

, α > 0 small, we may apply J.-L. Lions theory and we
obtain the existence and uniqueness of a solution f ∈ XT to the linear problem

(1.11) ∂tf = Lgf := ∆f + div((a ∗ g + x)f), f(0) = f0,

for any g ∈ L∞(0, T ;L1). It is worth emphasizing that we use here the Poincaré inequality in Rd
in order to prove that the associated Dirichlet form is coercive. We refer to the tutorial where this
problem has been tackled without the term div(xf) so that the same technique applies in a L2

space with polynomial weight of degree k > d/2 (see Section 1.2.3 below).

Next, for any f0 ∈ L2
k, k > d/2, we claim that there exists a solution f ∈ XT , to equation (1.11)

in the sense that
d

dt

∫
fϕ = −

∫
∇f · ∇ϕ−

∫
f(a ∗ g + x) · ∇ϕ,

for any ϕ ∈ Cc(Rd). There is indeed no difficulty for passing to the limit in the above formulation
for a sequence of strongly decaying solutions associated to strongly decaying initial data and given
by the previous existence result. It is worth emphasizing that such a sequence (fn) of solutions is
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a Cauchy sequence in XT if the sequence (f0n) of initial data is a Cauchy sequence in L2
k, what we

see by writing (1.4) on the difference fn − fm. The issue is rather about the uniqueness of such a
solution (see Section 1.2.4).

1.2.3. Well-posedness when m := eκ〈x〉
γ

.

We just present the argument in the case E = a ∗ f and m := 〈x〉k as it has been considered
in a tutorial. We claim that there is no difficulty to adapt the proof to the case E = x + a ∗ f
when m := eκ〈x〉

γ

. We emphasize again on the fact that in that case we may work with variational
solutions by taking advantage of the gain of moment provided by the strong Poincaré inequality.

We first consider the Fokker-Planck equation

(1.12) ∂tf = Lf = ∆f + div(Ef), E ∈ L∞((0, T )× Rd).

Proposition 1.4. For any f0 ∈ H, there exists a unique variational solution f ∈ XT to the
Fokker-Planck equation (1.12). Moreover, if f0 ≥ 0 then f(t) ≥ 0 for any t ≥ 0; if f0 ∈ L1 then
f(t) ∈ L1 and 〈f(t)〉 = 〈f0〉 for any t ≥ 0.

Proof of Proposition 1.4. We observe that the (possibly time dependent) bilinear form

a(t, f, g) := −
∫
L(t)f gm2

=

∫
{m2∇f · ∇g − g∇f∇m2 − fm2E · ∇g − fg E · ∇m2} dx

is continuous in V . Moreover, using twice the Young inequality, we see that it satisfies the following
coercivity-dissipativity estimate

a(t, f, f) =

∫
{m2 |∇f |2 − f ∇f∇m2 − fm2E · ∇f − f2E · ∇m2} dx

≤ −1

2

∫
|∇f |2m2 +

∫
{C2

1 + ‖E‖2L∞ + ‖E‖L∞C1}f2m2 dx,

with C1 := ‖m−2∇m2‖L∞ . We conclude to the existence and the uniqueness of a variational
solution f ∈ XT by applying Lions’ Theorem presented in Chapter 1. �

As announced, we next consider the McKean-Vlasov equation

(1.13) ∂tf = Lf = ∆f + div((a ∗ f)f), a ∈ L∞(Rd).

Proposition 1.5. Assume a ∈ L∞. For any f0 ∈ L2
q, q > d/2, there exists a unique solution

f ∈ XT := C([0, T );L2
q) ∩ L2(0, T ;H1

q ), ∀T > 0,

to the McKean-Vlasov equation (1.13).

Proof of Proposition 1.5. Step 1. A priori bounds. On the one hand, we clearly have∫
Rd
|f | dx ≤

∫
Rd
|f0| dx,

and, using Proposition 1.4 with E = a ∗ f , we then deduce

1

2

d

dt

∫
f2m2 ≤ −1

2

∫
|∇f |2m2 + C3

∫
f2m2,

with

C3 :=
3

2
C2

1 +
3

2
‖a‖2L∞‖f0‖2L1

Step 2. Existence. To prove the existence we consider the mapping g 7→ f defined for g ∈
C([0, T ];L2

k), k > d/2, so that L2
k ⊂ L1, by solving the linear evolution PDE

∂tf = ∆f + div((a ∗ g)f).

For the linear (and g dependent) problem, by repeating the same computations as in step 1 and
using the Gronwall lemma, we also have

sup
[0,T ]

‖f‖L1 ≤ ‖f0‖L1 , sup
[0,T ]

‖f‖L2
k
≤ AT ,
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where AT only depends on ‖f0‖L2
k
, k, a and T . We then define

CT := {f ∈ C([0, T ];L2
k), ‖f(t)‖L1 ≤ ‖f0‖L1 , ‖f(t)‖L2

k
≤ AT }

and we have Φ : CT → CT . We consider two solutions

∂tfi = ∆fi + div((a ∗ gi)fi)

so that the differences f = f2 − f1 and g := g2 − g1 satisfy

∂tf = ∆f + div((a ∗ g1)f) + div((a ∗ g)f2).

As a consequence, adapting the proof of Proposition 1.5, we have

1

2

d

dt
‖f‖2L2

m
= −

∫
[∇f + (a ∗ g1)f + (a ∗ g)f2] · ∇(fm2)

≤
∫
{2C2

1 + ‖a ∗ g1‖2L∞ + ‖a ∗ g1‖L∞C1}f2m2 dx+

∫
(a ∗ g)2f2

2m
2 dx.

Because

‖a ∗ g‖L∞ ≤ ‖a‖L∞‖g‖L1 ≤ C ′1‖a‖L∞‖g‖L2
m
,

we deduce

1

2

d

dt
‖f‖2L2

m
≤ {5

2
C2

1 +
3

2
‖a‖2L∞‖f0‖2L1}‖f‖2L2

m
+ C ′1‖f2‖2L2

m
‖a‖2L∞‖g‖2L2

m
.

Using he Gronwall lemma, we then obtain

sup
[0,T ]

‖f‖2L2 ≤ εT sup
[0,T ]

‖g‖L2 ,

with εT → 0 as T → 0. We conclude to the existence and uniqueness of a solution in XT by the
usual argument (Banach fixed point theorem on a small interval and iteration process). �

1.2.4. Well-posedness when m := 〈x〉k.

We come back to the case m := 〈x〉k for the McKean-Vlasov equation (1.3).

Lemma 1.6. Consider f ∈ YT a solution to the Fokker-Planck equation

∂tf = ∆f + div(Ef) + div(F ), f(0) = f0,

with E ∈ Lip(Rd;Rd) and F ∈ L2
tx. For any β ∈ C2(R) such that β′′ ∈ L∞, there holds

∂tβ(f) = ∆β(f)− β′′(f)|∇f |2 + (divE)fβ′(f)

+E · ∇β(f) + div(Fβ′(f))− Fβ′′(f) · ∇f.

As a consequence, we have

d

dt

∫
β(f)ϕ =

∫ {
−∇β(f) · ∇ϕ− β′′(f)|∇f |2ϕ+ (divE)fβ′(f)ϕ

+E · ∇β(f)ϕ− Fβ′(f) · ∇ϕ− Fβ′′(f) · ∇fϕ
}
.

Proof of Lemma 1.6. For a smooth and rapidly decaying function f the two formulas come from
the chain rule and integration. For f ∈ YT , we consider f ∗ ρε, we write de formulas and we pass
to the limit ε→ 0. �

Let us first consider the linear Fokker-Planck equation

(1.14) ∂tf = Lf = ∆f + div((A+B)f), A ∈ L∞, B = x.

• For m∗ := eα〈x〉
2

, α > 0, a previous argument tells us that for any f0 ∈ L2
m∗ , we may associate

a unique variational solution belonging to the usual corresponding space.

• For m := 〈x〉k, k > d/2, using Lemma 1.6 and Proposition 1.4 with E = B and F = Af , we may
write

1

2

d

dt

∫
f2m2 = −

∫
|∇f |2m2 +

∫
f2m2ψB −

∫
Af · ∇(fm2)

≤ −1

2

∫
|∇f |2m2 + C ′1

∫
f2m2,



6 CHAPTER 6 - MORE ABOUT LONGTIME ASYMPTOTIC

for a constant C ′1 := C ′1(k, ‖divB − kB · x〈x〉−2‖L∞ , ‖A‖L∞). Arguing as mentioned at the end
of Section 1.2.2, we deduce that for any f0 ∈ L2

k, there exist at least a solution f ∈ XT to the
Fokker-Planck equation (1.14) in the distributional sense. Now, for two distributional solutions
belonging to XT , we may apply Lemma 1.6 to the difference f and we get

1

2

d

dt

∫
f2ϕ =

∫
1

2
f2∆ϕ− |∇f |2ϕ+ f2[(divB)ϕ− 1

2
div(Bϕ)]

−
∫

[f2A · ∇ϕ+Af · ∇fϕ],

for any ϕ ∈ D(Rd), as well as f(0) = 0. Because f ∈ XT , we may choose ϕ = m2χR ∈ D(Rd) for
a usual truncation function χR and we may pass to the limit R → ∞, getting the same equation
with ϕ := m2. We recover as an a posteriori estimate the classical estimate

(1.15)
d

dt

∫
f2ϕ ≤ −

∫
|∇f |2m2 + C2

∫
f2m2,

with C2 = C2(m,B, ‖A‖L∞). Because f ∈ C([0, T ];L2
m) and f(0) = 0, we obtain that f ≡ 0

thanks to the Gronwall lemma, and thus the uniqueness.

Exercise 1.7. Prove that we have the same uniqueness result for solutions which belong to the
space

Xw
T := L∞(0, T ;L2

q) ∩ C([0, T ];L2
weak) ∩ L2(0, T : H1

q ), q > d/2

We will first establish that any such a solution f satisfies

t 7→ f2
t is continuous in D′(Rd)

and thus

f ∈ C([0, T ];L2
`) ∩ L2(0, T : H1

` ), ∀ ` < q.

Proposition 1.8. Fix q > d/2 and T > 0. For any f0 ∈ L2
q, there exists a unique solution f ∈ Xw

T

to the McKean-Vlasov equation (1.3).

Proof of Proposition 1.8. One just has to repeat the proof of Proposition 1.5 with minor modifi-
cations using the last a posteriori bound (with A := a ∗ f) and the last uniqueness result. �

1.3. Existence of steady state for the McKean-Vlasov equation.

Theorem 1.9. There exists at least one stationary state G ∈ Z to the McKean-Vlasov equation
(1.3).

We aim to apply Theorem 1.2 to the McKean-Vlasov equation (1.3). We check that the assumptions
of the Theorem 1.2 are satisfied. We set H := L2

m ⊂ L1.

The nonlinear flow St : H → H is well defined thanks to the well-posedness results established
in the previous section. Furthermore the set Z defined in (1.6) is invariant. Clearly, the set
Z is compact for the weak topology L2. We choose to provide Z with this weak topology (the
alternative to choose the strong topology is also possible and leads to similar arguments). We then
have (S2) and (S3) in the Definition 1.1 of a dynamical system because of the strong continuity of
the trajectories and the uniqueness of the solutions yet established. In order to establish (S1) we
start with the classical Aubin-Lions Lemma (that is reverse with respect to what has been taught
during the classes, but simplifies a bit the presentation).

Lemma 1.10 (Aubin-Lions). Consider a sequence (fn) such that
(1) (fn) is bounded in L2(0, T ;H1);
(2) fn satisfies

∂tfn = ∆fn + divgn

with (gn) bounded in L2((0, T )×BR), for any R > 0.

Then (fn) is strongly sequentially compact in L2((0, T )×BR) for any R > 0.
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Proof of Lemma 1.10. Up to the extraction of a subsequence we may assume that there exists
f ∈ L2(0, T ;H1) such that

(1.16) fn ⇀ f, ∇xfn ⇀ ∇xf, weakly in L2((0, T )× Rd).

Step 1. We introduce a sequence of mollifiers (ρε) and more precisely we set ρε(x) := ε−dρ(ε−1x)
with 0 ≤ ρ ∈ D(Rd), 〈ρ〉 = 1. We observe that

∂

∂t

∫
Rd
fn(t, y) ρε(x− y) dx =

∫
Rd

(fn ∆ρε − gn · ∇ρε) dy,

where the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any fixed ε > 0. We also
clearly have

∇x
∫
R2

fn(t, y) ρε(x− y) dx = −
∫
R2

fn(t, y)∇yρε(x− y) dy,

where again the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any fixed ε > 0. In
other words, fn∗ρε is bounded in H1((0, T )×BR). Thanks to the Rellich-Kondrachov Theorem, we
get that (up to the extraction of a subsequence) (fn∗ρε)n is strongly convergent in L2((0, T )×BR).
Thanks to (1.16) and for any fixed ε > 0, we then get

fn ∗ ρε → f ∗ ρε strongly in L2((0, T )×BR) as n→∞.

Step 2. Now, we observe that

‖g − g ∗ ρε‖2L2
tx

=

∫ T

0

‖g − g ∗ ρε‖2L2
x
dt ≤ ε2

∫ T

0

‖g‖2H1
x
dt,

where the inequality has been proved in a previous chapter. We conclude by writing

fn − f = (fn − fn ∗ ρε) + (fn ∗ ρ− f ∗ ρ) + (f ∗ ρε − f)

and using the convergence established in step 1 and the above estimate. �

We deduce the following result which in particular implies (S1).

Lemma 1.11. Let (f0n) be a sequence of initial data which elements belong to Z and such that
f0n ⇀ f0 weakly in L2. Denoting by fn (resp. f) the solutions to the McKean-Vlasov equation
(1.3) associated to f0n (resp. f0), we have fn → f strongly in L2((0, T )× Rd) for any T > 0 and
fn(t) ⇀ f(t) weakly in L2

k for any t ≥ 0, what is nothing but (S1).

Proof of Lemma 1.11. Step 1. We fix T > 0. Because (fn) is bounded in L∞(0, T ;L2
k), there exists

a function f ∈ L∞(0, T ;L2
k) and a subsequcne (not relabeled) such that

fn ⇀ f weakly in L∞(0, T ;L2
k).

The solution fn satisfies

(1.17) ∂tfn = ∆fn + divgn, gn := (a ∗ fn)fn,

with (gn) bounded in L2((0, T )×Rd) because (fn) is bounded in L∞(0, T ;L2
k) ⊂ L∞(0, T ;L1) and

a ∈ L∞, so that (a ∗ fn) is bounded in L∞((0, T ) × Rd). We may apply Lemma 1.10 and we get
that fn → f strongly in L2((0, T )×BM ) for any M > 0. Together with the estimate

‖g1BM ‖L2(0,T ;L2
`)
≤ CT
〈M〉k−`

‖g‖L∞(0,T ;L2
k),

for ` ∈ (d/2, k), we deduce that fn → f strongly in L2(0, T ;L2
`) ⊂ L1(0, T ;L1).

Step 2. As a consequence of Step 1, for any R > 0, we have

‖a ∗ (fn − f)‖L1((0,T )×BR) ≤ ‖a‖L∞‖fn − f‖L1((0,T )×Rd) → 0

and a ∗ fn → a ∗ f in L1((0, T )×BR) and a.e. (for another subsequence). Using also that

‖a ∗ ζ‖L∞ ≤ ‖a‖L∞‖ζ‖L∞(0,T ;L2
k),

we classically deduce (exercise) that

(a ∗ fn)fn → (a ∗ f)f strongly in L1((0, T )×BR).



8 CHAPTER 6 - MORE ABOUT LONGTIME ASYMPTOTIC

We may pass to the limit in (1.17) and we get that f ∈ Y wT is a solution to the McKean-Vlasov
equation (1.3) associated to the initial datum f0. By uniqueness of the solution, that is the whole
sequence (fn) which converges to f .

Step 3. For any fixed ϕ ∈ D(Rd) and any t ∈ [0, T ], we have

uϕn(t) :=

∫
Rd
fnϕdx bounded in C([0, T ])

and
d

dt
uϕn(t) =

∫
Rd

(fn ∆ϕ− gn · ∇ϕ) dy bounded in L2(0, T ).

By Morrey estimate H1(0, T ) ⊂ C1/2([0, T ]) and the Ascoli theorem, we have uϕn → uϕ in C([0, T ])
for a subsequence. Thanks to a Cantor diagonal process, we may assume that the same holds for
any ϕ in a coutable subset F of D(Rd) which is dense L2(Rd), in particular∫ T

0

ψ(t)

∫
Rd
fnϕ(x) dxdt→

∫ T

0

ψ(t)uϕ(t)dt, ∀ψ ∈ D((0, T )).

Thanks to the previous step, we have∫ T

0

ψ(t)

∫
Rd
fϕ(x) dxdt =

∫ T

0

ψ(t)uϕ(t)dt.

In other words, we identify the limit as

uϕ(t) :=

∫
Rd
f(t, x)ϕ(x) dx, ∀ t ∈ [0, T ],

and it is the whole sequence (un(t)) which converges to uϕ(t) for any t ∈ [0, T ]. Finally, because
(fn(t)) is bounded in L2 for any fixed t ∈ [0, T ], there exists a subsequence (fn′(t)) which converges
weakly L2 to a limit gt. We have both

uϕn′(t)→ vϕ(t) :=

∫
ϕgt and uϕn′(t)→ uϕ(t)

for any ϕ ∈ F , so that vϕ(t) = uϕ(t). On other words, it is the whole sequence (fn(t)) which
converges weakly L2 to the limit f(t). �

2. The first eigenvalue problem

2.1. An abstract Krein-Rutman theorem (existence part). In this section, we consider a
real Banach lattice X, that is a real Banach space (X, ‖ · ‖) endowed with a partial order denoted
by ≥ (or ≤) such that the following holds:
(1) The set X+ := {f ∈ X; f ≥ 0} is a nonempty convex cone (compatibility of the order with
the vector space structure).
(2) For any f ∈ X, there exist some unique positive part f+ ∈ X+ and negative part f− ∈ X+ such
that f = f+ − f− which are minimal: f = g − h, g, h ≥ 0 imply g ≥ f+ and h ≥ f− (generation
and properness of the positive cone). We set |f | := f+ + f− ∈ X+ the absolute value of f ∈ X.
(3) For any f, g ∈ X, |f | ≤ |g| implies ‖f‖ ≤ ‖g‖ (compatibility of norm and order structures).

In the examples, we will only deal with the weighted Lebesgue space X = Lpm case endowed with
its usual partial order: f ≥ 0 in Lpk(E,E , µ) iff f(x) ≥ 0 for µ-a.e. x ∈ E.

Theorem 2.12. Consider a positive semigroup S = SL on a Banach lattice X in duality with a
Banach lattice Y (we take X = Y ′ and Y separable). We assume

(1) there exist κ0 ∈ R and ψ0 ∈ Y+\{0} such that [Stf ]0 ≥ eκ0t[f ]0 for any f ∈ X+, where X0

denotes the vector space X endowed with the (semi) norm ‖f‖X0
= [f ]0 := 〈|f |, ψ0〉;

(2) there exist two familly of operators v, w such that

(2.18) S = v + w ∗ S,
and Cv, Cw ≥ 0, κ ∈ R such that

(2.19) ‖v(t)‖B(X) ≤ Cveκt, ‖w(t)‖B(X0,X) ≤ Cweκt;
(3) there holds κ < κ0 and X+ ∩BX is compact in X0.



CHAPTER 6 - MORE ABOUT LONGTIME ASYMPTOTIC 9

Then there exists a pair (λ1, f1) ∈ R+ ×X+\{0} such that Lf1 = λ1f1.

When there exists a splitting L = A + B and κB ∈ R such that A is bounded, the operator B
generates a semigroup SB and

‖(SBA)(∗`) ∗ SB(t)‖B(X) = O(eαt), ‖(SBA)(∗`)(t)‖B(X0,X) = O(eαt),

for any t ≥ 0, ` ≥ 0 and α > κB, then (2.18) holds with any κ ∈ (κB, κ0) and

(2.20) v :=

N−1∑
`=0

SB ∗ (ASB)(∗`), w := (SBA)(∗N).

Proof of Theorem 2.12. Step 1. We define the set

C := {f ∈ X+, [f ]0 = 1, ‖f‖ ≤ R},

for a convenient constant R > 0 to be fixed later. We next define the nonlinear mapping

Φt : C → X, f 7→ Stf

[Stf ]0
.

Thanks to assumption (1), we may observe that it is well defined because

(2.21) [Stf ]0 ≥ eκ0t[f ]0 = eκ0t > 0.

For any f ∈ C, we thus immediately have Φtf ≥ 0 and [Φtf ]0 = 1. On the other hand, from
assumption (1) again and the semigroup property, we have

(2.22) [S(t)f ]0 ≥ eκ0(t−s)[S(s)f ]0.

For f ∈ C and t ≥ 0, we next compute

‖Φtf‖ ≤ Cve
κt ‖f‖

[S(t)f ]0
+

∫ t

0

Cwe
κ(t−s) [S(s)f ]0

[S(t)f ]0
ds

≤ Cve
(κ−κ0)t‖f‖+ Cw

∫ t

0

e(κ−κ0)(t−s) ds

≤ Cve
(κ−κ0)tR+

Cw
κ0 − κ

,

where we have used the estimate (2.19) in the first line, the lower bounds (2.21) and (2.22) in
the second line and then just the fact that κ − κ0 < 0 in the last line. Fixing T0 such that
Cve

(κ−κ0)T0 ≤ 1/2 and next R ≥ 2Cw/(κ0 − κ), we have thus ΦT0
: C → C. We also notice that

ΦT0
is continuous for the weak ∗σ(X,Y ) topology. Thanks to the Tykonov fixed point Theorem,

there exists fT0
∈ C such that ΦT0

fT0
= fT0

.

Step 2. In other words, we have established the existence of fT0
∈ X such that

(2.23) fT0
≥ 0, [fT0

]0 = 1, ST0
fT0

= eλ1T0fT0
,

with λ1 := (1/T0) log[ST0fT0 ]0 ∈ R. We then write

0 = e−λ1T0ST0fT0 − fT0 = (L − λ1)

∫ T0

0

e−λ1tStfT0dt,

and we define

f1 :=

∫ T0

0

e−λ1tStfT0dt ∈ D(L) ∩X+ \ {0},

which satisfies Lf1 = λ1f1. �
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2.2. Existence of first eigenvalue for a Fokker-Planck type equation. We consider the
Fokker-Planck type equation

(2.24) ∂tf = Lf = ∆f + div(Ef) + cf,

on the density f = f(t, x), t ≥ 0, x ∈ Rd, where the force field E ∈ Rd is a given fixed (exterior)
vector field and c is a potential function.

Theorem 2.13. Assume E = x and 0 ≤ c ∈ L∞(Rd), c 6≡ 0. There exists a solution (λ1, f1) to
the first eigenvalue problem with λ1 ≥ 0 and 0 ≤ f1 ∈ H2

k , ∀ k.

Proof of Theorem 2.13. We apply Theorem 2.12 with X = L2
k, k > d/2.

(1) We observe that

L∗1 = c ≥ 0,

so that (1) holds with ψ0 = 1 and κ0 = 0.

(2) We introduce the spliting

Af := MχRf, 1BR ≤ χR ∈ Cc(Rd), B := L −A.

On the one hand, for any κB < 0, we may find M and R large enough such that

SB : Lpk → Lpk, O(eκBt),

for some k > 0 when p = 1 and for some k > d/2 when p = 2. Using Nash argument, we also have

SB : L1
k → L2

k, O
(eκBt
td/4

)
.

Choosing d ∈ {1, 2, 3} for simplicity, we may take N = 2 in (2.20) and we deduce that

‖SBA ∗ SB(t)Af‖L2
k
.

∫ t

0

eκB(t−s) e
κBs

sd/4
ds‖Af‖L1

k

. t1−d/4eκBt‖f‖L1 . eκt‖f‖L1

for any t ≥ 0 and any κ ∈ (κB, 0). We have established (2).

(3) We obviously have L2
k ⊂ L1, BL2

k
is weakly compact and f 7→ ‖f‖L1 is continuous from X+

into R for the weak L2
k topology. �

2.3. The Krein-Rutman theorem for the Fokker-Planck equation.

Proposition 2.14. The operator L satisfies “Kato’s inequality” and the “strong maximum prin-
ciple” in H = L2

k, k > d/2.

Proof of Proposition 2.14. Step 1. Kato’s inequality. For a convex function β : R→ R such that
β(s) = sβ′(s), we clearly have

Lβ(f) = β′′(f)|∇f |2 + β′(f)Lf ≥ β′(f)Lf.

Step 2. Strong maximum principle. Consider f ∈ H\{0} such that Lf = 0. By a bootstrap

regularization argument, we classically have f ∈ W 2,d
loc (Rd) ⊂ C(Rd). By assumption there exist

then x0 ∈ Rd, c, r > 0, such that |f(x)| ≥ c on B(x0, r). From Lemma 1.3, we also have that L− a
is −1-dissipative for a ≥ 0 large enough, in the sense that

(2.25) ∀h ∈ D(L) ((L − a)h, h)H ≤ −‖h‖2H .

We next observe that for σ > 0 large enough, the function g(x) := c exp(σrγ − σ|x− x0|γ) satisfies
g = c on ∂B(x0, r) and

(−L+ a)g =
[
−σ2γ2|x− x0|2(γ−1) + σγ(d+ γ − 2)|x− x0|γ−2

−divE + E · (x− x0)γσ|x− x0|γ−2 − a
]
g ≤ 0 on B(x0, r)

c.

We define h := (g − |f |)+ and Ω := Rd\B(x0, r). We have h ∈ H1
0 (Ω,mdx) and

(L − a)h ≥ θ′(g − |f |)L(g − |f |)− a h
= θ′(g − |f |) [(L − a)g + a|f |] ≥ 0,
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where we have used the notation θ(s) = s+. Thanks to a straightforward generalization of (2.25)
to H1

0 (Ω,m), we deduce

0 ≤ ((L − a)h, h)L2(Ω,m) ≤ −‖h‖2L2(Ω,m),

and then h = 0. That implies |f | ≥ g on Ω, next |f | > 0 on Rd and then f > 0 or f < 0 because
f ∈ C(Rd). �

Theorem 2.15. Under the same conditions on E and c, there exists a solution 0 ≤ φ1 ∈ H1
−k,

∀ k > d/2, to the dual eigenvalue problem L∗φ1 = λ1φ1. Furthermore, f1 > 0, φ1 > 0 and they are
the unique (up to normalization) solutions to the eigenvalue problem with positive eigenvectors.

Proof of Theorem 2.15. Step 1. Positivity of f1. Since (L − λ1)f1 = 0, f1 ≥ 0 and f1 6≡ 0, the
strong maximum principle implies that f1 > 0 on Rd.
Step 2. Dual problem. We observe that

L∗φ = ∆φ− E · ∇φ+ cφ,

so that for m = 〈x〉−k, we have∫
(L∗φ)mdx =

∫
φ(∆m+ div(Em) + cm)dx

≤
∫
φ[O(〈x〉−k−2)− k〈x〉−k]dx

and similarly∫
(L∗φ)φm2dx = −

∫
|∇φ|2m2dx+

∫
φ2(

1

2
∆m2 +

1

2
div(Em2) + cm2)dx

≤
∫
φ2[O(〈x〉−2k−2) + (d/2− k)〈x〉−2k]dx.

We may also write

SL = SB + ...+ SL ∗ (ASB)(∗N),

so that

SL∗ = SB∗ + ...+ (SB∗A)(∗N) ∗ SL∗
and by duality we have

SB∗ : Lp−k → Lp−k, O(eκBt), ∀ k > d/p′;

SB∗ : L1
−k → L2

−k, O(t−d/4eκBt), ∀ k > d/2.

On the other hand, we have

d

dt

∫
φtf1 =

∫
(L∗ − λ1)φtf1 =

∫
φt(L∗ − λ1)f1 = 0

for any solution φt to the dual evolution equation ∂tφt = (L∗ − λ1)φt, and thus∫
φtf1 =

∫
φ0f1, ∀ t ≥ 0.

It is worth observing that ∫
|φf1| ≤ ‖φ‖L2

−k
‖f1‖L2

k
,

so that the previous integral is well defined. The two pieces of information together imply

‖S̄∗(t)φ‖L2
−k

≤ Cve
κt‖φ‖L2

−k
+

∫ t

0

Cwe
κ(t−s)[S̄∗(s)φ]f1ds

≤ Cve
κtR+

Cw
κ
‖f1‖L2

−k
[φ]f1 ≤ R,

for t ≥ T0 large enough and φ ∈ Z, with

Z := {ψ ∈ L2
−k; ψ ≥ 0, [ψ]f1 = 1, ‖ψ‖L2

−k
≤ R},
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with R > 0 fixed and large enough. We may apply Theorem 1.2 or argue in the following way. We
define

UT :=
1

T

∫ T

0

S̄∗(t)φdt.

Because of the previous analysis, we have UT ∈ Z for any T ≥ T1 > 0 if we choose φ ∈ Z. We
deduce that there exists (Tk) such that Tk → ∞ and φ1 ∈ Z such that UTk ⇀ φ1 weakly in L2

−k.
We compute

S̄∗(s)φ1 − φ1 = lim
k→∞

{ 1

Tk

∫ Tk+s

s

S̄∗(t)φdt− 1

Tk

∫ Tk

0

S̄∗(t)φdt
}

= lim
k→∞

{ 1

Tk

∫ Tk+s

Tk

S̄∗(t)φdt− 1

Tk

∫ s

0

S̄∗(t)φdt
}

= 0,

for any s ≥ 0. That implies that (L∗ − λ1)φ1 = 0.
Step 3. Positivity of φ1. For the same reason as in step 1, we have φ1 > 0 on Rd. �

3. Relative entropy for linear and positive PDE and longtime behavior

3.1. General relative entropy. We briefly discuss the long-time asymptotic for the linear and
nonlinear Fokker-Planck equations (1.1).

We consider the general evolution PDE

(3.1) ∂tf = ∆f − a · ∇f + cf +

∫
b f∗,

∫
b f∗ :=

∫
b(x, x∗)f(x∗) dx∗, b ≥ 0.

If g > 0 is a solution

∂tg = ∆g − a · ∇g + cg +

∫
b g∗

and if φ ≥ 0 is a solution to the dual evolution problem

−∂tφ = ∆φ+ div(aφ) + c φ+

∫
b∗ φ∗,

∫
b∗ φ∗ :=

∫
b(x∗, x)φ(x∗) dx∗,

we can exhibit a family of entropies associated to the evolution PDE (3.1). More precisely, we
establish the following result (and in fact a bit more accurate formulation of it).

Theorem 3.1. For any real values convex function H, the generalized entropy functional

(3.2) f 7→ H(f) :=

∫
Rd
H(f/g) g φ,

is an Lyapunov function for the evolution PDE (3.1) (meaning that is is decaying function of time
along the flows of the evolution PDE).

Step 1. First order PDE. We assume that

∂tf = −a · ∇f + cf

∂tg = −a · ∇g + cg

−∂tφ = div(aφ) + c φ,

and we show that
∂t(H(X)gφ) + div(aH(X)gφ) = 0, X = f/g.

We compute

∂t(H(X)gφ) + div(aH(X)gφ)

= H ′(X)gφ [∂tX + a∇X] +H(x) [∂t(gφ) + div(agφ)]

The first term vanishes because

∂tX + a∇X =
1

g
(∂tf + a∇f)− f

g2
(∂tg + a∇g) =

1

g
(cf)− f

g2
(cg) = 0.

The second term also vanishes because

∂t(gφ) + div(agφ) = φ [∂tg + a∇g] + g [∂tφ+ div(aφ)] = φ [−cg] + g [+cφ] = 0.
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Step 2. Second order PDE. We assume that

∂tf = ∆f + cf

∂tg = ∆g + cg

−∂tφ = ∆φ+ c φ,

and we show

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) = −H ′′(X)gφ|∇X|2.

We first observe that

∆X = div
(∇f
g
− f 1

g2
∇g
)

=
∆f

g
− 2∇f ∇g

g2
+ 2 f

|∇g|2

g3
− f

g2
∆g

=
∆f

g
− f ∆g

g2
− 2
∇g
g
· ∇X,

which in turn implies

∂tX −∆X = 2
∇g
g
· ∇X.

We then compute

∂t(H(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) =

= (∂tH(X)) gφ+H(X) ∂t(gφ)− φ div[gH ′(X)∇X +H(X)∇g] + gH(X)∆φ

= H ′(X)gφ
{
∂tX −∆X − 2

∇g
g
· ∇X

}
− gφH ′′(X) |∇X|2 +H(X) [∂t(gφ)− φ∆g + g∆φ]

= −gφH ′′(X) |∇X|2,

since the first term and the last term independently vanish.

Step 3. Integral equation. We assume that

∂tf = cf +

∫
bf∗

∂tg = cg +

∫
bg∗

−∂tφ = c φ+

∫
b∗φ∗,

with the notations∫
bψ∗ :=

∫
b(x, x∗)ψ(x∗) dx∗,

∫
b∗ψ∗ :=

∫
b(x∗, x)ψ(x∗) dx∗,

and we show

∂t(H(X)gφ) +

∫
H(X)gb∗φ∗ −

∫
bH(X∗)g∗φ = −

∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
We compute indeed

∂t(gφH(X)) = H(X)g∂tφ+H(X)φ∂tg +H ′(X)φ(∂tf −X∂tg)

= −
∫
H(X)gb∗φ∗ +

∫
bH(X∗)g∗φ

+

∫
bg∗φ

{
−H(X∗) +H(X) +H ′(X)X∗ −H ′(X)X

}
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Step 4. Conclusion. For any solutions (f, g, φ) to the system of (full) equations, we have summing
up the three computations

∂t(gφH(X)) +

+div(aH(X)gφ)− div(φ∇(H(X)g)) + div(gH(X)∇φ) +

∫
bH(X∗)g∗φ−

∫
H(X)gb∗φ∗

= −gφH ′′(X) |∇X|2 −
∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
.

Since when we integrate in the x variable the term on the second line vanishes, we find out

d

dt
H(f) = −DH(f),

with

DH(f) :=

∫
gφH ′′(X) |∇X|2 +

∫ ∫
bg∗φ

{
H(X∗)−H(X)−H ′(X)(X∗ −X)

}
≥ 0,

so that (3.2) is proved. �

Exercise 3.2. We consider a semigroup St = etL of linear and bounded operators on L1 and we
assume that
(i) St ≥ 0;
(ii) ∃ g > 0 such that Lg = 0, or equivalently Stg = g for any t ≥ 0;
(iii) ∃φ ≥ 0 such that L∗φ = 0, or equivalently 〈Sth, φ〉 = 〈h, φ〉 for any h ∈ L1 and t ≥ 0.

Our aim is to generalize to that a bit more general (and abstract) framework the general relative
entropy principle we have presented for the evolution PDE (3.1).

(a) Prove that for any real affine function `, there holds `[(Stf)/g]g = St[`(f/g)g].

(b) Prove that for any convex function H and any f , there holds H[(Stf)/g]g ≤ St[H(f/g)g].
(Hint. Use the fact that H = sup`≤H `).

(c) Deduce that ∫
H[(Stf)/g]gφ ≤

∫
H[f/g]gφ, ∀ t ≥ 0.

3.2. Dissipation of entropy method. We briefly present some general result about the longtime
asymptotic of dynamical system that we will take over in the next section on a concrete example
of application.

Consider a dynamical system (St)t≥0 on a metric space (Z, d). We say that a functional H : Z → R
is an entropy if there exists a dissipation of entropy functional D : Z → R+ such that for any z ∈ Z
there holds

d

dt
H(Stz) = −D(Stz) ≤ 0 ∀ t > 0,

or equivalently

(3.3) H(Stz) +

∫ t

0

D(Ssz) ds = H(z).

As a consequence t 7→ H(Stz) is a decreasing function, and more importantly here, under the
additional lower bound assumption

(3.4) Hz > −∞, Hz := inf
y∈ω0(z)

H(y),

there holds

(3.5)

∫ ∞
0

D(Ssz) ds ≤ H(z)−Hz <∞.

We define

ωD(z) := {y ∈ ω0(z); D(Sty) = 0 ∀ t ≥ 0},
and we observe that Ez ⊂ ωD(z) at least when (3.3) holds. (not clear ?)
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Theorem 3.3. (Dissipation of entropy method - weak version). Consider a dynamical
system (St)t≥0 on a metric space (Z, d) and z ∈ Z. We assume

(S4′) (Stz)t≥0 is “locally uniformly compact” in the sense that (Sz,Tt )t≥0 is relatively compact in

C([0, T ];Z) for any fixed time T ∈ R+, where we have defined s 7→ Sz,Tt (s) := St+sz;

(H1) there exists a lsc dissipation of entropy functional D on Z such that t 7→ D(Stz) ∈ L1.

Then, we have ω(z) ⊂ ωD(z), and therefore d(Stz, ωD(z))→ 0 as t→∞.

Proof of Theorem 3.3. We define zt := Sz,Tt ∈ C([0, T ];Z), T > 0, and we observe that∫ T

0

D(zt(s)) ds =

∫ t+T

t

D(Ssz) ds ≤
∫ ∞
t

D(Ssz) ds.

Consider y ∈ ω(z) and a sequence tn →∞ such that Stnz → y as n→∞. From the compactness
assumption (S4′) and a diagonal Cantor procedure, there exist a subsequence (tn′) and a function
z∗ ∈ C([0,∞);Z) such that ztn′ → z∗ in C([0, T ];Z) for any T > 0 and obviously z∗(s) = Ssy
for any s ≥ 0. From the assumptions (H1) made on the dissipation of entropy and the above
inequality, we then deduce∫ T

0

D(z∗(s)) ds ≤ lim inf
n′→∞

∫ ∞
tn′

D(Ssz) ds = 0.

As a consequence D(z∗(s)) = 0 for any s ≥ 0 and then y ∈ ωD(z). We conclude thanks to the
general result Theorem 6.6.-(iii) about the ω-limit set which have been presented during the Review
course on differential calculus for ODEs and PDEs. �

Theorem 3.4. (Dissipation of entropy method - strong version). We assume furthermore
that

(3.6) ωD(z) is discrete.

Then, ω(z) is a singleton and ω(z) ⊂ Ez. More explicitly, we have ω(z) = {z∗} ⊂ Ez ∩ ωD(z) for
some z∗ ∈ Z or equivalently Stz → z∗ as t→∞.

Proof of Theorem 3.4. From Theorem 3.3 we have ω(z) ⊂ ωD(z) which is assumed to be discrete.
We conclude thanks to (iv) in Theorem 6.6 (in Review course on differential calculus for ODEs and
PDEs). We conclude thanks to the general result Theorem 6.6.-(iv) about the ω-limit set which
have been presented during the Review course on differential calculus for ODEs and PDEs. �

3.3. Long-time behaviour. We consider the Fokker-Planck equation

∂tf = ∆f + div(xf) + cf =: Lf,
c ∈ L∞, for which we have yet established the existence of a solution (λ1, f1, φ1) to the eigentriplet
problem

λ1 ∈ R, Lf1 = λ1f1, f1 > 0, L∗φ1 = λ1φ1, φ1 > 0.

We also have established that any solution f to the rescaled Fokker-Planck equation

(3.7) ∂tf = L̄f := Lf − λ1f,

satisfies
d

dt
H(f) = −D(f) ≤ 0

with

H(f) :=

∫
Rd
H(f/f1)f1φ1dx, H : R→ R+ convex.

In particular and more precisely, we have

d

dt
H1(f) ≤ 0, with H1(f) :=

∫
|f − cf1|φ1

for the choice H1(s) := |s− c|, c ∈ R, and

(3.8)
d

dt
H2(f) = −D2(f),
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with

H2(f) :=

∫
|f − cf1|2f−1

1 φ1, D2(f) :=

∫
f1φ1|∇(f/f1)|2,

for the choice H2(s) := (s− c)2, c ∈ R.

Theorem 3.5. For any f0 ∈ L1
φ1

(∩L1
q), the associated solution to the rescaled Fokker-Planck

equation (3.7) satisfies
f(t)→ f1〈f0, φ1〉 as t→∞.

Proof of Theorem 3.5. Step 1. If f2
0 f
−1
1 φ1 ∈ L1 then H2(f0) < ∞ (whatever is c ∈ R) and

integrating (3.8), we get

sup
t≥0
H2(f(t))t ≤ H2(f0),

∫ ∞
0

D2(f(t)) dt ≤ H2(f0).

We fix T > 0 and we define fn(t) := f(t+ n). We deduce that

sup
[0,T ]

H2(fn) ≤ H2(f0),

so that (fn) is bounded in L∞(0, T ;L2(BR)), ∀R > 0, and∫ T

0

D2(fn(t)) dt ≤
∫ ∞
n

D2(fn(t)) dt→ 0,

so that (∇(fn(t)/f1)) is bounded in L2((0, T )×BR, ∀R > 0. By compactness of the L2 ball (and
a Cantor diagonal process), there exist (fnk) and f̄ ∈ L2

loc such that

fnk ⇀ f̄ and ∇(fnk(t)/f1) ⇀ ∇(f̄/f1) weakly L2((0, T )×BR).

By convexity / lsc of the norm, we get∫ T

0

∫
BR

∣∣∇ f̄

f1

∣∣2f1φ1 dxdt ≤ lim inf

∫ T

0

∫
BR

∣∣∇fnk
f1

∣∣2f1φ1 dxdt ≤ lim inf

∫ T

0

D2(fn)dt = 0.

We may next pass to the limit as R → ∞ (by monotonous convergence) and we deduce that
D2(f̄/f1) = 0, so that ∇(f̄/f1) = 0 and finally f̄ = cf1 for some constant c ∈ R.

On the other hand, by Nash argument (...), we have φ1 ∈ L∞−`, for any ` > d, as well as for some
q > ` > d,

d

dt

∫
|f |〈x〉q ≤ · · · ≤ C

∫
|f |φ1 −

∫
|f |〈x〉q,

so that

sup
t≥0

∫
|f |〈x〉q ≤ C max

(∫
|f0|φ1,

∫
|f0|〈x〉q

)
.

We deduce that∫
f0φ1 =

∫
fnkφ1 =

∫
BR

fnkφ1 +

∫
BcR

fnkφ1 →
∫
BR

f̄φ1 +O(R`−q) =

∫
f̄φ1.

Together with f̄ = cf1 and the normalization 〈f1, φ1〉 = 1, we identify c = c0 := 〈f0, φ1〉.
Step 2. From the very definition of fn, the Aubin-Lions Lemma 1.10 and the L1

q estimate, we have

fnk → c0f1 in L2((0, T )×BR),

next
f(tnk , ·)→ c0f1 in L1

φ1
, tnk ∈ (nk, nn+1).

But since

H1(f) :=

∫
|f − c0f1|φ1 ↘,

we deduce that

sup
t≥nk+1

∫
|f(t)− c0f1|φ1 ≤

∫
|f(tnk)− c0f1|φ1 → 0.

When f0 ∈ L1
q, we use an approximation argument f0n → f0 in L1

q and H2(f0n) < ∞ in order to
get the same conclusion. �
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4. Asymptotic of Stochastic semigroups

4.1. Generalities. From now on, we will be interested in Stochastic semigroups which is a class
of semigroups which enjoy both a positivity and a “conservativity” property. The importance of
Stochastic semigroups comes from its deep relation with Markov processes in stochastic theory
as well as from the fact that a quite satisfactory description of the longtime behaviour of such a
semigroups can be performed.

We start with the notion of positivity. It can be formulated in the abstract framework of Banach
lattices (X, ‖·‖,≥) which are Banach spaces endowed with compatible order relation or equivalently
with an appropriate positive cone X+. To be more concrete, we just observe that the following
three examples are Banach lattices when endowed with their usual order relation:

• X := C0(E), the space of continuous functions which tend to 0 at infinity (when E is not a
compact set) endowed with the uniform norm ‖ · ‖;
• X := Lp(E) = Lp(E, E , µ), the Lebesgue space of functions associated to the Borel σ-algebra E ,
a positive σ-finite measure µ and an exponent p ∈ [1,∞];

• X := M1(E) = (C0(E))′, the space of Radon measures defined as the dual space of C0(E).

Here E denotes a σ-locally compact metric space (typically E ⊂ Rd) and in the last example the
positivity can be defined by duality: µ ≥ 0 if 〈µ, ϕ〉 ≥ 0 for any 0 ≤ ϕ ∈ C0(E).

Lemma 4.1. Consider X a Banach lattice (one of the above examples), a bounded linear operator
A on X and its dual operator A∗ on X ′. The following equivalence holds:
(1) A is positive, namely Af ≥ 0 for any f ∈ X, f ≥ 0;
(2) A∗ is positive, namely A∗ϕ ≥ 0 for any ϕ ∈ X ′, ϕ ≥ 0.

The (elementary) proof is left as an exercise. We emphasize that 〈f, ϕ〉 ≥ 0 for any ϕ ∈ X ′+ (resp.
for any f ∈ X+) implies f ∈ X+ (resp. ϕ ∈ X ′+).

There are two “equivalent” (or “dual”) ways to formulate the notion of Stochastic and Markov
semigroup.

Definition 4.2. On a Banach lattice Y ⊃ C0(E) we say that (Pt) is a Markov semigroup if
(1) (Pt) is a continuous semigroup in Y ;
(2) (Pt) is positive, namely Pt ≥ 0 for any t ≥ 0;
(3) (Pt) is conservative, namely 1 ∈ Y and Pt1 = 1 for any t ≥ 0.

Definition 4.3. On a Banach lattice X ⊂M1(E) we say that (St) is a stochastic semigroup if
(1) (St) is a (strongly or weakly ∗ continuous) continuous semigroup in X;
(2) (St) is positive, namely St ≥ 0 for any t ≥ 0;
(3) (St) is conservative, namely 〈Stf〉 = 〈f〉, ∀ t ≥ 0, ∀ f ∈ X, where 〈g〉 := 〈g,1〉.

The two notions are dual. In particular, if (Pt) is a Markov semigroup on Y ⊃ C0(E), the dual
semigroup (St) defined by St := P ∗t on X := Y ′ is a stochastic semigroup. In the sequel we will
only consider stochastic semigroups defined on X ⊂ L1(E).

Stochastic semigroup and semigroup of contractions for the L1 are closely linked.

Proposition 4.4. A Stochastic semigroup is a semigroup of contractions for the L1 norm. In the
other way round, a mass conservative semigroup of contractions for the L1 norm is positive, and
thus it is a Stochastic semigroup.

Proof of Proposition 4.4. We fix f ∈ X and t ≥ 0. We write

|Stf | = |Stf+ − Stf−|
≤ |Stf+|+ |Stf−|
= Stf+ + Stf−

= St|f |,

where we have used the positivity property in the third line. We deduce∫
|Stf | ≤

∫
St|f | =

∫
|f |,
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because of the mass conservation. For the reciprocal part, we consider f ≥ 0. From both the
contraction property and the mass conservation, we have

‖Stf‖1 ≤ ‖f‖1 =

∫
f =

∫
Stf.

As a consequence,

‖(Stf)−‖L1 =
1

2

∫
(|Stf | − Stf) ≤ 0

so that (Stf)− = 0 and thus Stf ≥ 0. That proves the positivity property.

We may also characterize a Stochastic semigroup in terms of its generator.

Theorem 4.5. Let S = SL be a strongly continuous semigroup on a Banach space X ⊂ L1. There
is equivalence between
(a) SL is a Stochastic semigroup;
(b) L∗1 = 0 and L satisfies Kato’s inequality

(sign f)Lf ≤ L|f |, ∀ f ∈ D(L).

Partial proof of Theorem 4.5. Step 1. We prove (a) ⇒ (b). On the one hand, for any f ∈ D(L)
and any 0 ≤ ψ ∈ D(L∗), we have

〈ψ, (signf)Lf〉 = lim
t→0

1

t
〈ψ, (signf)(S(t)f − f)〉

≤ lim
t→0

1

t
〈ψ, |S(t)f | − |f |〉

≤ lim
t→0

1

t
〈ψ, S(t)|f | − |f |〉

= lim
t→0

1

t
〈S∗(t)ψ − ψ, |f |〉

= 〈L∗ψ, |f |〉,

where we have used the inequality (signf)g ≤ |g| in the second line and the positivity assumption
in the third line. That inequality is the weak formulation of Kato’s inequality. On the other hand
and similarly, for any f ∈ D(L), we have

〈L∗1, f〉 = 〈1,Lf〉

= lim
t→0

1

t
〈1, S(t)f − f〉 = 0,

by just using the mass conservation property.

Step 2. We prove (b) ⇒ (a). On the one hand, for any f ∈ D(L) and t ≥ 0, we denote ft := Stf
and we write

〈Stf − f〉 =
〈∫ t

0

Lfs ds,1
〉

=

∫ t

0

〈fs,L∗1〉 ds = 0.

On the other hand, in order to conclude it is enough to prove that (St) is a semigroup of contrac-
tions. We consider f ∈ D(L2), t ≥ 0, n ∈ N∗, we introduce the notation ft := Stf , tk := kt/n, and
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we write

|Stf | − |f | =

n−1∑
k=0

(|ftk+1
| − |ftk |)

≤
n−1∑
k=0

signftk+1
(ftk+1

− ftk)

=

n−1∑
k=0

signftk+1

∫ tk+1

tk

Lfs ds

=

n−1∑
k=0

signftk+1

{ 1

n
Lftk+1

+

∫ tk+1

tk

L(fs − ftk+1
) ds
}

≤
n−1∑
k=0

{ 1

n
L|ftk+1

|+ signftk+1

∫ tk+1

tk

∫ s

tk+1

(SuL2f) duds
}
,

where we have used the inequality (signf)g ≤ |g| in the second line and Kato’s inequality in the
last line. Taking the mean and using the mass conservation, we have

‖Stf‖ − ‖f‖ ≤
n−1∑
k=0

∫ tk+1

tk

∫ tk+1

s

‖SuL2f‖ duds

≤ 1

n

∫ t

0

‖SuL2f‖ du→ 0,

as n→∞. �

Exercise 4.6. Consider SL∗ a (constant preserving) Markov semigroup and Φ : R→ R a concave
function. Prove that L∗Φ(m) ≤ Φ′(m)L∗m. (Hint. Use that Φ(a) = inf{`(a); ` affine such that ` ≥
Φ} in order to prove S∗t (Φ(m)) ≤ Φ(S∗tm) and Φ(b)− Φ(a) ≥ Φ′(a)(b− a)).

4.2. Strong positivity condition and Doblin Theorem. We consider the case of a strong
positivity condition.

Theorem 4.7 (Doeblin). Consider a Stochastic semigroup St such that

ST f ≥ αν 〈f〉, ∀ f ∈ X+,

for some constants T > 0 and α ∈ (0, 1) and some probability measure ν. There holds

‖Stf‖L1 ≤ C eat‖f‖L1 , ∀ t ≥ 0, ∀ f ∈ X, 〈f〉 = 0,

for some constants C ≥ 1 and a < 0.

Proof of Theorem 4.7. We fix f ∈ X such that 〈f〉 = 0 and we define η := αν〈f+〉 = αν〈f−〉. We
write

|ST f | = |ST f+ − η − ST f− + η|
≤ |ST f+ − η|+ |ST f− − η|
= ST f+ − η + ST f− − η,

where in the last equality we have used the Doeblin condition. Integrating, we deduce∫
|ST f | ≤

∫
ST f+ − α〈ν〉〈f+〉+

∫
ST f− − α〈ν〉〈f−〉

≤
∫
f+ − α 〈f+〉+

∫
f− − α 〈f−〉

≤ (1− α)

∫
|f |.

By induction, we obtain a := [log(1− α)]/T and C := exp[|a|T ]. �
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4.3. Geometric stability under Harris and Lyapunov conditions. We consider now a semi-
group S with generator L and we assume that

(H1) there exists some weight function m : Rd → [1,∞) satisfying m(x)→∞ as x→∞ and there
exist some constants α > 0, b > 0 such that

L∗m ≤ −αm+ b;

(H2) for any R > 0, there exists a constant T ≥ T0 > 0 and a positive and not zero measure ν = νR
such that

ST f ≥ ν
∫
BR

f, ∀ f ∈ X+.

Theorem 4.8 (Doeblin). Consider a Stochastic semigroup S on X := L1(m) which satisfies (H1)
and (H2). There holds

‖Stf‖L1(m) ≤ C eat‖f‖L1(m), ∀ t ≥ 0, ∀ f ∈ X, 〈f〉 = 0,

for some constants C ≥ 1 and a < 0.

We start with a variant of the key argument in the above Doeblin’s Theorem.

Lemma 4.9 (Doeblin’s variant). Under assumption (H2), if f ∈ L1(m), with m(x) → ∞ as
|x| → ∞, satisfies

(4.1) ‖f‖L1 ≥ 4

m(R)
‖f‖L1(m) and 〈f〉 = 0,

we then have

‖ST f‖L1 ≤
(
1− 〈ν〉

2

)
‖f‖L1 .

Proof of Lemma 4.9. From the hypothesis (4.1), we have∫
BR

f± =

∫
f± −

∫
BcR

f±

≥ 1

2

∫
|f | − 1

m(R)

∫
|f |m ≥ 1

4

∫
|f |.

Together with (H2), we get

ST f± ≥
ν

4

∫
|f | =: η.

We deduce

|ST f | ≤ |ST f+ − η|+ |ST f− − η| = ST f+ − η + ST f− − η = ST |f | − 2η,

and next ∫
|ST f | ≤

∫
ST |f | − 2

∫
η =

∫
|f | − 〈ν〉1

2

∫
|f |,

which is nothing but the announced estimate. �

Proof of Theorem 4.8. We split the proof in several steps. We fix f0 ∈ L1(m), 〈f0〉 = 0 and we
denote ft := Stf0.

Step 1. From (H1), we have

d

dt
‖ft‖L1(m) ≤ −α‖ft‖L1(m) + b‖ft‖L1 ,

from what we deduce

‖ft‖L1(m) ≤ e−αt‖f0‖L1(m) +
(
1− e−αt

) b
α
‖f0‖L1 ∀ t ≥ 0.

In other words, for any T ≥ T0 > 0, we have

(4.2) ‖ST f0‖L1(m) ≤ γL‖f0‖L1(m) +K‖f0‖L1 ,

with γL ∈ (0, 1) and K > 0, both constants depending only of T0. We fix R > 0 large enough such
that K/A < 1− γL with A := m(R)/4.

On the other hand, we recall that

(4.3) ‖ST f0‖L1 ≤ ‖f0‖L1 , ∀T ≥ 0,
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and because of Lemma 4.9, there exists γH ∈ (0, 1) and T ≥ T0 only depending on R defined above
such that

(4.4) ‖ST f0‖L1 ≤ γH‖f0‖L1 when A ‖f0‖L1 ≥ ‖f0‖L1(m).

Step 2. We introduce the modified norm

|||g||| := ‖g‖L1 + β‖g‖L1(m)

and we observe that we have the alternative

A ‖f0‖L1 ≥ ‖f0‖L1(m) or A ‖f0‖L1 < ‖f0‖L1(m).

In the first case of the alternative, using the Lyapunov estimate (4.2) and the coupling estimate
(4.4), we have

|||ST f0||| = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ (γH + βK)‖f0‖L1 + βγL‖f0‖L1(m)

≤ γ1|||f0|||,
with γ1 := max(γH + βK, γL) < 1, by fixing from now on β > 0 small enough. In the second case
of the alternative, using the Lyapunov estimate (4.2) and the non expansion estimate (4.4), we
have

|||ST f0||| = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ (1 + βK − βδ)‖f0‖L1 + β(γL + δ/A)‖ST f0‖L1(m)

≤ γ2|||f0|||,
with γ2 := max(1 + βK − βδ, γL + δ/A) for any 0 < βδ < 1 + βK. We take δ := K + ε, ε > 0, so
that we get

γ2 = max(1− βε, (γL +K/A) + ε/A) < 1,

by choosing ε > 0 small enough and by recalling from the very definition of A that γL +K/A < 1.
In any cases, we have thus established that

|||ST f0||| ≤ γ|||f0|||, with γ := max(γ1, γ2) < 1.

We then conclude as in the proof of Theorem 4.7.

Step 3 (Alternative argument). Alternatively, the two estimates (4.3) and (4.4) together give

(4.5) ‖Sf0‖L1 ≤ γH‖f0‖L1 +
1− γH
A
‖f0‖L1(m).

Together with step 1, we deduce that

Un+1 = MUn

with

Un :=

(
‖SnT f0‖L1(m)

‖SnT f0‖L1

)
and M :=

(
γL K

1−γH
A γH

)
.

The eigenvalues of M are

µ± :=
1

2

(
T ±

√
T 2 − 4D

)
,

with

T := trM = γL + γH , D := detM = γLγH − (1− γH)
K

A
.

We observe that
γLγH > D > γLγH − (1− γH)(1− γL) = T − 1,

so that
(γH − γL)2 = T 2 − 4γLγH < T 2 − 4D < T 2 − 4(T − 1) = (T − 2)2

and finally
θ := max(|µ+|, |µ−|) < max(γH , γL, |T − 1|, 1) = 1.

We have established that ‖Mn‖ ≤ C θn → 0 for some constant C ≥ 1, and we then conclude as in
the proof of Theorem 4.7. �
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