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1. Introduction

Kinetic equations are a class of equations which aims to describe the evolution of gases in out of
equilibrium statistical physics. In the classical theory the state of each particle of the gas is a
couple (x, v) of the position of particle x ∈ Ω ⊂ Rd and the the velocity of the particle v ∈ Rd,
and then the gas is described by the density f = f(t, x, v) ≥ 0 of particles. The most famous of
the kinetic equations are the Boltzmann equation which describe a gas which particules interact
through binary collisions and the Vlasov equation which describe a gas of charged particules which
move in a electromagnetic field environment. The Boltzmann equation writes

∂tf + v · ∇xf = Q(f, f),

where Q is the Boltzmann quadratic collision operator which only acts on the velocity variable.
On the other hand, the Vlasov equation writes

(1.1) ∂tf + v · ∇xf + E · ∇vf = 0,

where E is a force field which can be a given exterior electric or magnetic field, a self-induced
electric field (given through the Poisson equation) or a self-induced pair electromagnetic field
(given through the Maxwell system).

The aim of the notes is to present three distinct aspects about the kinetic theory:

- remarkable properties of velocity averages of the solution to the simplest kinetic equation: the
free transport equation;
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- an existence of solution result for the space homogeneous Landau equation (this one being a kind
of approximation of the Boltzmann equation);

- a result about hypocoercivity (quantitative and constructive rate of convergence to the equilib-
rium) for one of the simplest linear kinetic equation: the relaxation equation.

2. Dispersion, moments and averaging lemmas for the free transport equation

In this section we consider the free transport equation

(2.1) ∂tf + v · ∇xf = 0, f|t=0 = f0,

and the denoted by S(t) the associated semigroup defined through the characteristics formula

(2.2) [S(t)f0](x, v] := f(t, x, v) = f0(x− vt, v).

The free transport equation is norm preserving, namely

(2.3) ‖f(t, ·)‖Lp
xv

= ‖f0‖Lp
xv
, ∀ t ≥ 0,

for any 1 ≤ p ≤ ∞, what is an immediate consequence of the characteristics formula (2.2): there is
no gain of integrability nor regularity for the the solutions to the free transport equation. Despite of
the above hyperbolic nature of free transport equation, we may establish some kind of regularization
properties on velocity averages. More precisely, for a given weight function ϕ : Rd → R, we define
and consider the velocity average

(2.4) ρϕ = Ah = Aϕh :=

∫
Rd

h(v)ϕ(v) dv, ∀h,

when this quantity makes sense, and in particular when ϕ = 1, we write

ρ = ρh :=

∫
Rd

h(v) dv, ∀h.

From (2.3) for any ϕ ∈ Cc(Rd), we already have that the averaging

ρϕ(t, x) :=

∫
Rd

f(t, x, v)ϕ(v) dv = [AϕS(t)f0](x)

of the solution f to the free transport equation satisfies

(2.5) ‖ρ(t, ·)‖Lp
x
. ‖f0‖Lp

xv
, ∀ t ≥ 0,

for any 1 ≤ p ≤ ∞ and any f0 ∈ Lpxv. In the following sections, we establish several smoothing
properties on ρ(t), or equivalently, several regularity properties on the time indexed family of
operators AS(t).

2.1. Dispersion lemmas and decay properties. We present two versions of the so-called dis-
persion property of the free transport equation which are related of the fact that particles move
away from any bounded region or also to the fact that two particules with different velocities go
far away one to the other when they start from the same point. The first result is very based on
two nice conservations and a standard interpolation argument.

Lemma 2.1. There exists C = C(d) such that for any solution to the transport equation with nice
initial datum, we have

‖ρ(t, ·)‖L(d+2)/d(Rd) ≤ C t−2d/(d+2) ‖f0‖2/(d+2)
L∞ ‖|x|2f0‖d/(d+2)

L1 , ∀ t > 0.

Proof of Lemma 2.1. We consider the multiplicator function

m(x, v) :=
x

|x|
· v
|v|

For nice f0, we have

‖f(t, ·)‖L∞ = ‖f0‖L∞ ,∫
R2d

f(t, x, v)|x− vt|2 dxdv =

∫
R2d

f0(x, v)|x|2 dxdv.
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For any t > 0, x ∈ Rd, δ > 0, we then compute

|ρ(t, x)| =

∫
Rd

f(t, x, v)1|x−vt|≤δ dv +

∫
Rd

f(t, x, v)1|x−vt|≥δ dv

≤ ‖f(t, ·)‖L∞
v

∫
Rd

1|x−vt|≤δ dv +
1

δ2

∫
Rd

f(t, x, v)|x− vt|2 dv

≤ ‖f0‖L∞
xv
C(d)(δ/t)d +

1

δ2

∫
R2d

f0(x, v)|x|2 dv

≤ C ′(d)t−2d/(d+2)‖f0‖2/(d+2)
L∞

xv
‖f0(x, ·)|x|2‖d/(d+2)

L1
v

,

where in the last line we have optimized δ. We deduce

|ρ(t, x)|(d+2)/d ≤ C ′′(d)t−2‖f0‖2/dL∞
xv
‖f0(x, ·)|x|2‖L1

v
,

and we conclude by integrating in the position variable. �

Lemma 2.2. For f0 ∈ Lqx(Lpv), 1 ≤ q ≤ p ≤ ∞, there holds

(2.6) ‖AS(t)f0‖Lp
x
.

1

td/(qp′)
‖f0‖Lq

x(Lp
v), ∀ t > 0.

Proof of Theorem 2.2. When f0 ∈ Lqx(Lqv), we obviously have

‖AS(t)f0‖Lq ≤ ‖ϕ‖L∞ ‖S(t)f0‖Lq = ‖ϕ‖L∞ ‖f0‖Lq , ∀ t ≥ 0.

When f0 ∈ Lqx(L∞v ), we use the representation formula

|f(t, x, v)| = |f0(x− vt, v)| ≤ F0(x− vt), F0(z) := ‖f0(z, ·)‖L∞ ,

to get

‖AS(t)f0‖L∞ ≤
∫
Rd

F0(x− vt)ϕ(v) dv =
1

td

∫
Rd

F0(w)ϕ
(x− w

t

)
dw

≤ 1

td/q
‖ϕ‖Lq′‖F0‖L1 ,

which is nothing but (2.6) with p = ∞. We deduce the general case p ∈ (1,∞) by interpolating
the two previous bound. �

2.2. Transfert of regularity. As in the previous lemma in which some integrability in the v
variable for the initial data has been transferred into a gain of integrability in the x for the for the
averaging of the solution, we show in the following result how regularity on the v variable for the
initial data into may be transferred into a gain of regularity in the x for the for the averaging of
the solution.

Lemma 2.3. For f0 ∈ Lp(Rd × Rd) such that ∇vf0 ∈ Lp(Rd × Rd), 1 ≤ p ≤ ∞, there holds

(2.7) ‖∇AS(t)f0‖Lp
x
.

(
1 +

1

t

)
(‖f0‖Lp

xv
+ ‖∇vf0‖Lp

xv
), ∀ t > 0.

Proof of Lemma 2.3. We introduce the differential operator

(2.8) Dt := t∇x +∇v,
and we observe that Dt commutes with the free transport operator ∂t + v · ∇x. The solution f to
the free transport equation (2.1) then also satisfies

∂t(Dtf) + v · ∇x(Dtf) = 0.

From the Lp-norm preservation (2.3) for the free transport flow on ft and Dtft, we deduce

∀ t ≥ 0, ‖f(t, ·)‖Lp = ‖f0‖Lp , ‖Dtf(t, ·)‖Lp = ‖D0f0‖Lp = ‖∇vf0‖Lp .

Finally, we calculate

∇xρ(t, x) =

∫
Rd

(
Dt

t
−∇v

)
f(t, x, v)ϕ(v)dv

=
1

t

∫
Rd

(Dtf) (t, x, v)ϕ(v)dv +

∫
Rd

f(t, x, v)∇vϕ(v)dv,

and we conclude the proof thanks to the previous estimates. �
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2.3. Higher moment estimate. We start with an interesting moment identity.

Lemma 2.4. For β ≤ 1 and for any solution to the transport equation with nice initial datum, we
have ∫ t

0

∫
fs
|v|
|x|β

(
1− β(x̂ · v̂)2

)
dxdvds

=

∫
f0

x

|x|β
· v̂ dxdv −

∫
ft

x

|x|β
· v̂ dxdv,

with û := u/|u|.

Proof of Lemma 2.4. We consider the multiplicator function

m :=
x

|x|β
· v
|v|
, β ≤ 1,

and we observe that

v · ∇xm =
|v|
|x|β

(
1− β(x̂ · v̂)2

)
.

Integrating the free transport equation, we have∫
ftmdxdv +

∫ t

0

∫
fsv · ∇xmdxdvds =

∫
f0mdxdv,

and we immediately conclude. �

We deduce some (small) gain of moment estimate in the v variable which can be seen again as a
transfer of information from one to the other variable. This time the transfer is reverse: we transfer
some moment estimate in the x variable as a a gain of moment in the v variable.

Corollary 2.5. For 0 ≤ f0 ∈ L1 such that f0(|x|α + |v|α) ∈ L1, α > 0, we have∫ T

0

∫
BR

∫
R3

f(t, x, v)|v|α+1 dxdvdt ≤ C.

Proof of Lemma 2.4. We only consider the case α ∈ (0, 1]. We compute∫
R2d

f(t, x, v)|v|α dxdv =

∫
R2d

f0(x, v)|v|α dxdv∫
R2d

f(t, x, v)|x− vt|α dxdv =

∫
R2d

f0(x, v)|x|α dxdv.

so that ∫
R2d

f(t, x, v)|x|α dxdv ≤ Cα

∫
R2d

f(t, x, v)(|x− vt|α + |v|α) dxdv

≤ C ′α(1 + tα).

Using the previous lemma with β := 1− α < 1, we get

α

∫ T

0

∫
R2d

ft
|v|
|x|1−α

dvdxdt ≤
∫
f0|x|α +

∫
fT |x|α,

and we conclude thanks to the previous estimate. �

2.4. Regularity (averaging lemma). We conclude this section with a version of probably the
most famous of the averaging lemma: this one makes possible to truly gain some regularity in the
x variable for the averaging (it is not a transfert of regularity from one variable to another).

Theorem 2.6. For any f0 ∈ L2(R2d) and ϕ ∈ Cc(Rd), we have∫ ∞
0

‖AS(t)f0‖Ḣ1/2
x

dt . ‖f0‖L2
x,v
,

where we use the notations introduced in (2.2) and (2.4).

During the proof, we will use the following classical trace result.
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Lemma 2.7. There exists a constant Cd ∈ (0,∞) such that for any φ ∈ Hd/2(Rd) and any u ∈ Rd,
|u| = 1, the function φu(s) := φ(su) satisfies

‖φu‖L2(R) ≤ Cd‖φ‖Hd/2(R) = Cd

(∫
Rd

|F̌φ|2(w) 〈w〉d dw
)1/2

,

where F̌ stands for the (inverse) Fourier transform operator.

Proof of Theorem 2.6. For a given function h which depends on the x variable or on the (x, v)

variable, we denote by ĥ its Fourier transform on the x variable and by Fh its Fourier transform
on both variables x and v.

We fix f0 ∈ L2(R2d) and ϕ ∈ Cc(Rd). We denote by f be the solution to the free transport equation
(2.1) and by ρ the average function

ρ(t, x) :=

∫
Rd

f(t, x, v)ϕ(v) dv = [AϕS(t)f0](x).

In Fourier variables, the free transport equation (2.1) writes

∂tf̂ + iv · ξf̂ = 0, f̂|t=0 = f̂0,

so that

f̂(t, ξ, v) = eiv·ξ tf̂0(ξ, v)

and

ρ̂(t, ξ) =

∫
Rd

eiv·ξ tf̂0(ξ, v)ϕ(v) dv = F(f0 ϕ)(ξ, tξ).

We deduce ∫ ∞
0

|ρ̂(t, ξ)|2 dt ≤
∫
R
|F(f0 ϕ)(ξ, tξ)|2 dt.

Performing one change of variable, introducing the notation σξ = ξ/|ξ| and using Lemma 2.7, we
deduce ∫

R
|F(f0 ϕ)(ξ, tξ)|2 dt =

1

|ξ|

∫
R
|F(f0 ϕ)(ξ, s σξ)|2 ds

.
1

|ξ|

∫
Rd

|(f̂0 ϕ)(ξ, w)|2〈w〉d dw.

Thanks to Plancherel identity, we then obtain∫ ∞
0

∫
Rd

|ξ| |ρ̂(t, ξ)|2 dξdt .
∫
Rd

∫
Rd

|(f0 ϕ)(x,w)|2〈w〉d dwdx = ‖ϕ‖2L2
d/2
‖f0‖2L2

xv
,

which ends the proof. �

3. The space homogeneous Landau equation

We aim to establish the existence of solutions to the Landau equation

(3.1) ∂tf(t, v) = Q(f, f)(t, v), f(0, v) = f0(v),

on the density function f = f(t, v) ≥ 0, t ≥ 0, v ∈ Rd, d ≥ 2, where the Landau kernel is defined
by the formula

Q(f, f)(v) :=
∂

∂vi

{∫
Rd

aij(v − v∗)
(
f(v∗)

∂f

∂vj
(v)− f(v)

∂f

∂vj
(v∗)

)
dv∗

}
.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The matrix
a = (aij) is defined by

a(z) = |z|2Π(z), Πij(z) := δij − ẑiẑj , ẑk :=
zk
|z|
,

so that Π is the is the orthogonal projection on the hyperplan z⊥ := {y ∈ Rd; y · z = 0}. We
present the proof as an exercice (pick it up from Exam 2019-2020)
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3.1. Physical properties and a priori estimates.

(1) Observe that a(z)z = 0 for any z ∈ Rd and a(z)ξξ ≥ 0 for any z, ξ ∈ Rd. Here and below,
we use the bilinear form notation auv = tvau = v · au. In particular, the symmetric matrix a is
positive but not strictly positive.

(2) For any nice functions f, ϕ : Rd → R, f ≥ 0, prove that∫
Q(f, f)ϕdv =

1

2

∫ ∫
a(v − v∗)

(
f∇∗f∗ − f∗∇f

)(
∇ϕ−∇∗ϕ∗

)
dvdv∗,

where f∗ = f(v∗), ∇∗ψ∗ = (∇ψ)(v∗). Deduce that∫
Q(f, f)ϕdv = 0, for ϕ = 1, vi, |v|2,

and

−D(f) :=

∫
Q(f, f) log f dv ≤ 0.

Establish then∣∣∣∫ Q(f, f)ϕdv
∣∣∣ ≤ D(f)1/2

(1

2

∫ ∫
ff∗a(v − v∗)(∇ϕ−∇∗ϕ∗

)
(∇ϕ−∇∗ϕ∗

)
dvdv∗

)1/2

.

(3) For H0 ∈ R, we define EH0
the set of functions

EH0
:=

{
f ∈ L1

2(Rd); f ≥ 0,

∫
f dv = 1,

∫
f v dv = 0,∫

f |v|2 dv ≤ d, H(f) :=

∫
f log f dv ≤ H0

}
.

Prove that there exists a constant C0 such that

H−(f) :=

∫
f(log f)−dv ≤ C0, ∀ f ∈ EH0 ,

and define D0 := H0 + C0. Deduce that for any nice positive solution f to the Landau equation
such that f0 ∈ EH0

, there holds

f ∈ FT :=
{
g ∈ C([0, T ];L1

2); g(t) ∈ EH0
, ∀ t ∈ (0, T ),

∫ T

0

D(g(t)) dt ≤ D0

}
.

We say that f ∈ C([0, T );L1) is a weak solution to the Landau equation if f ∈ FT and (3.1) holds
in the distributional sense. Why the definition is meaningful?

(4) Prove that

Q(f, f) = ∂i(āij∂jf − b̄if) = ∂2
ij(āijf)− 2∂i(b̄if) = āij∂

2
ijf − c̄f,

with

(3.2) āij = āfij := aij ∗ f, b̄i = b̄fi := bi ∗ f, c̄ = c̄f := c ∗ f,

and

bi :=

d∑
j=1

∂jaij = −(d− 1)zi, c :=

d∑
i=1

∂ibi = −(d− 1)d.

Prove that there existe C ∈ (0,∞) such that

|āij | ≤ C(1 + |v|2), |b̄i| ≤ C(1 + |v|),
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3.2. On the ellipticity of ā.

We fix H0 ∈ R and f ∈ EH0
.

(5a) Show that there exists a function η ≥ 0 (only depending of D0) such that

∀A ⊂ Rd,
∫
A

f dv ≤ η(|A|)

and η(r)→ 0 when r → 0. Here |A| denotes the Lebesgue measure of A. Deduce that

∀R, ε > 0,

∫
f 1|v|≤R 1|vi|≤ε dv ≤ ηR(ε)

and ηR(r)→ 0 when r → 0.

(5b) Show that ∫
f1|v|≤R ≥ 1− d

R2
.

(5c) Deduce from the two previous questions that

∀ i = 1, . . . , d, Ti :=

∫
fv2

i dv ≥ λ,

for some constant λ > 0 which only depends on D0. Generalize the last estimate into

∀ ξ ∈ Rd, T (ξ) :=

∫
f |v · ξ|2dv ≥ λ|ξ|2.

(6) Deduce that

∀ v, ξ ∈ Rd, ā(v)ξξ :=

d∑
i,j=1

āij(v)ξiξj ≥ (d− 1)λ |ξ|2.

Prove that any weak solution formally satisfies

d

dt
H(f) = −

∫
āij

∂if∂jf

f
−
∫
c̄f,

and thus the following bound on the Fisher information

I(f) :=

∫
|∇f |2

f
∈ L1(0, T )

3.3. The Aubin-Lions lemma.

During the next section, we will have to prove a modified version of the following classical com-
pactness lemma that we present here with full details.

Lemma 3.1 (Aubin-Lions). Consider a sequence (un) which satisfies

(i) (un) is bounded in L2
tx,

(ii) (∂tun) is bounded in L2
t (H

−s
x ), s ∈ R+,

(iii) (∇xun) is bounded in L2
tx.

Then, there exists u ∈ L2
tx and a subsequence (un′) such that un′ → u strongly in L2((0, T )×BR)

as n→∞ for any R > 0.

Idea of the proof. Step 1. We may write ∂tun = Dsgn with (gn) bounded in L2
tx. We introduce a

sequence of mollifiers (ρε), that is ρε(x) := ε−dρ(ε−1x) with 0 ≤ ρ ∈ D(Rd), 〈ρ〉 = 1. We observe
that

∂

∂t

∫
Rd

un(t, y) ρε(x− y) dx =

∫
Rd

gn(t, y)Dsρε(x− y) dy,

where the RHS term is bounded in L2((0, T ) × Rd) uniformly in n for any fixed ε > 0. We also
clearly have

∇x
∫
Rd

un(t, y) ρε(x− y) dx = −
∫
Rd

un∇yρε(x− y) dy,

where again the RHS term is bounded in L2((0, T )×Rd) uniformly in n for any fixed ε > 0. In other
words, un ∗ ρε is bounded in H1((0, T )×Rd). Thanks to the Rellich-Kondrachov Theorem, we get
that (up to the extraction of a subsequence) (un ∗ ρε)n is strongly convergent in L2((0, T )×BR),
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for any R > 0. On the other hand, from (i) and the Banach-Alaoglu weak compacteness theorem,
we know that there exists u ∈ L2

tx and a subsequence (un′) such that un′ ⇀ u weakly in L2
tx. All

together, for any fixed ε > 0, we then get

un ∗ ρε → u ∗ ρε strongly in L2((0, T )×BR) as n→∞.

Step 2. We now observe that∫
(0,T )×Rd

|w − w ∗ ρε|2 dxdt =

∫
(0,T )×Rd

∣∣∣∫
Rd

(w(t, x)− w(t, x− y))ρε(y) dy
∣∣∣2 dxdt

=

∫
(0,T )×Rd

∣∣∣∫
Rd

∫ 1

0

∇xw(t, zs) · yρε(y) dsdy
∣∣∣2 dxdt,

with zs := x+ sy. From the Jensen (or Cauchy-Schwarz) inequality, we deduce∫
(0,T )×Rd

|w − w ∗ ρε|2 dxdt ≤ ε2

∫
(0,T )×Rd

∫
Rd

∫ 1

0

|∇xw(t, zs)|2
1

εd
|y|2

ε2
ρ
(y
ε

)
dsdydxdt

≤ ε2

∫
(0,T )×Rd

|∇xw(t, z)|2dtdz
∫
Rd

|z|ρ(z) dy

≤ ε2Cρ‖∇xw‖2L2
tx
.

We conclude that un → u in L2((0, T )×BR) by writing

un − u = (un − un ∗ ρε) + (un ∗ ρ− u ∗ ρ) + (u ∗ ρε − u)

and using the previous convergence and estimates. �

3.4. Weak stability.

We consider here a sequence of weak solutions (fn) to the Landau equation such that fn ∈ FT for
any n ≥ 1.

(7) Prove that ∫ T

0

∫
|∇vfn| dvdt ≤ CT

and that
d

dt

∫
fnϕdv is bounded in L∞(0, T ), ∀ϕ ∈ C2

c (Rd).

Deduce that (fn) belongs to a compact set of L1((0, T )×Rd). Up to the extraction of a subsequence,
we then have

fn → f strongly in L1((0, T )× Rd).
Deduce that

Q(fn, fn) ⇀ Q(f, f) weakly in D((0, T )× Rd)
and that f is a weak solution to the Landau equation.

(8) (Difficult, here d = 3) Take f ∈ EH0 with energy equals to d. Establish that D(f) = 0 if, and
only if,

∇f
f
− ∇f∗

f∗
= λ(v, v∗)(v − v∗), ∀ v, v∗ ∈ Rd,

for some scalar function (v, v∗) 7→ λ(v, v∗). Establish then that the last equation is equivalent to

log f = λ1|v|2/2 + λ2v + λ3, ∀ v ∈ Rd,

for some constants λ1 ∈ R, λ2 ∈ Rd, λ3 ∈ R. Conclude that

D(f) = 0 if, and only if, f = M(v) := (2π)−3/2 exp(−|v|2/2).

(9) (very difficult, because needs many steps) Prove that for any global weak solution f associated
to f0 ∈ L1

3 ∩ EH0
with energy equals d, there holds f(t) ⇀ M when t → ∞. (Hint. Accept that

the energy M2(f(t)) = d and prove that the third moment M3(f(t)) is uniformly bounded).
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3.5. Existence.

(10) We fix k = d+ 4. Show that H := L2
k ⊂ L1

3 and that H0 := H(f0) ∈ R if 0 ≤ f0 ∈ L2
k. In the

sequel, we first assume that f0 ∈ EH0 ∩H.

(11) For f ∈ C([0, T ]; EH0
), we define ā, b̄ and c̄ thanks to (3.2) and then

ãij := āij + ε|v|2δij , b̃i := b̄i − ε
d+ 2

2
vi, ε ∈ (0, λ).

We define V := H1
k+2 and then

∀ g ∈ V, Lg := ∂i
(
ãij∂jg − b̃ig

)
∈ V ′.

Show that for some constant Ci ∈ (0,∞), there hold

(Lg, g)H ≤ −ε‖g‖2V + C1‖g‖2H, |(Lg, h)H| ≤ C2‖g‖V‖h‖V , ∀ g, h ∈ V.
Deduce that there exists a unique variational solution

g ∈ XT := C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V ′)
to the parabolic equation

∂tg = Lg, g(0) = f0.

Prove furthermore that g ∈ FT .

(12) Prove that there exists a unique fonction

fε ∈ C([0, T ];L2
k) ∩ L2(0, T ;H1

k) ∩ FT
solution to the nonlinear parabolic equation

∂tfε = ∂i(ã
fε
ij ∂jfε + b̃fεi fε), fε(0) = f0,

where ãfεij denotes the

(13) For f0 ∈ EH0 and T > 0, prove that there exists at least one weak solution f ∈ FT to the
Landau equation.

4. Hypocoercivity

We present a L2 hypocoercivity theory for proving spectral gap and thus exponential rate of
convergence to the equilibrium for the relaxation equation

∂tf + v · ∇xf = ρM − f,
where

ρ = ρf (t, x) :=

∫
Rd

f dv, M = M(v) := (2π)−d/2e−|v|
2/2,

for a (variation of density) function f = f(t, x, v), t ≥ 0, x ∈ Td (the torus of Rd) and v ∈ Rd. At
a more general and abstract level, the approach is suitable for operators L which splits as

L = T + S, T := −v · ∇x,
and S is a collisional operator which satisfies the microscopic coercivity estimate

(4.1) (−Sf, f)Hv
≥ κ⊥‖f‖2Hv

, ∀ f ∈ Hv0,

where

(4.2) Hv := L2(M−1), Hv0 :=
{
f ∈ Hv; πf = 0

}
, πf := (f,M)HvM,

and M is the unique positive and normalized steady state. In particular, we have SM = 0 and
Kerπ = vectM . We observe that the relaxation operator writes

Sf := −π⊥f, π⊥ = I − π, πf = M ρf .

Using that π∗ = π in Hv, so that π∗π⊥ = 0, we deduce

(Sf, f)Hv = −(π⊥f, π⊥f + πf)H = −‖π⊥f‖2Hv
,

which is nothing but (4.1). For further references, it is worth emphasizing that the relaxation
operator satisfy

(4.3) |〈ϕvg〉|+ |〈ϕSg〉| . ‖g‖Hv
,
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for any g ∈ Hv and ϕ = 1 or vk. Another example which falls in this class of operators is the
Fokker-Planck operator

Sf := ∆vf + div(vf).

We work in the Hilbert space H0 ⊂ H := L2(M−1dxdv) which is the orthogonal to the line of
equilibria and we introduce a one parameter twisted norm associated to the quadratic form

(4.4) |||f |||2 := ‖f‖2H − α(∇∆−1ρ, j)L2(Td), ∀ f ∈ H,

where ρ = ρf and j = jf are the mass defined in (4.2) and the mean velocity defined by

jf := j[f ] = 〈f v〉 =

∫
Rd

f v dv

and where for ξ : Td → R with zero mean, u := ∆−1ξ denotes the solution to the elliptic problem

∆u = ξ, u ∈ H1(Td).

In that framework, it is worth recalling the classical estimates

(4.5) ‖∆−1η1‖H2 . ‖η1‖L2 and ‖∆−1∂xη2‖H1 . ‖η2‖L2 ,

for any ηi ∈ L2, η1 with zero mean.
The associated Dirichlet form to the operator L and twisted norm (4.4) writes

D[f ] := (−Lf, f) + α(∇∆−1ρ, j[Lf ]) + α(∇∆−1ρ[Lf ], j).

Theorem 4.1. For α > 0 small enough the above Dirichlet form D is positive on H0, namely,
there exist α, λ > 0 such that

D[f ] := ((−Lf, f)) ≥ λ|||f |||2, ∀ f ∈ H0,

with

H0 := {g ∈ H; 〈〈g〉〉 = 0}, 〈〈g〉〉 :=

∫
Ω

〈g〉dx.

Proof of Theorem 4.1. We fix f ∈ H0. We compute separately each terms. The first term involved
in the definition of D[f ] is bounded by below as always by

(4.6) D0[f ] := (−Lf, f)H ≥ κ⊥‖f⊥‖2H,

thanks to the skew symmetry of T and the microscopic coercivity estimate (4.1).
One the one hand and before dealing with the second term, we observe that

(4.7) j[Lf ] = j[T πf ] + j[T f⊥] + j[Sf⊥],

with

jk[T πf ] = −
∫
vkv`∂x`

ρfM(v) dv = −∂xk
ρf .

We also observe that 〈ρf 〉 = 0 because f ∈ H0, so that ∆−1ρf ∈ H2(Td) is well defined. As a
consequence, we have

D1[f ] := α(∇∆−1ρ, j[Lf ])

= α(∇∆−1ρ,−∇ρ−Dx〈v ⊗ vf⊥〉+ 〈vSf⊥〉)
= α‖ρ‖2L2 + α(Dx∇∆−1ρ, 〈v ⊗ vf⊥〉) + α(∇∆−1ρ, 〈vSf⊥〉)
≥ α‖ρ‖2L2 − α‖∆−1ρ‖H2‖〈v ⊗ vf⊥〉‖L2 − α‖∆−1ρ‖H1‖〈vSf⊥〉‖L2 ,

where in the third line we have performed one integration by part for each of the two first terms.
We then deduce

(4.8) D1[f ] ≥ α‖ρ‖2L2 − αK‖ρ‖L2‖f⊥‖H
for some constant K ∈ (0,∞), by using estimates (4.5) and (4.3).
On the other hand, we observe that j = j[f⊥] as well as ρ[Lf ] = ρ[Lf⊥] with zero mean, and more
precisely that

ρ[Lf ] =

∫
[v · ∇xρM + v · ∇xf⊥ + Sf⊥] dv = ∇x〈vf⊥〉.
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We deduce

D2[f ] := α(∇∆−1ρ[Lf ], j)

= α(∇∆−1∇x〈vf⊥〉, 〈vf⊥〉) ≥ −α‖∆−1∇x〈vf⊥〉‖H1‖〈vf⊥〉‖L2 ,

and then

(4.9) D2[f ] ≥ −αK‖f⊥‖2H,
for some constant K ∈ (0,∞), by using estimates (4.5) and (4.3). Putting together the three
contributions (4.6), (4.8) and (4.9) and using the Young inequality, we get

D[f ] ≥ κ⊥‖f⊥‖2H + α‖ρ‖2L2 −
1

2
α3/2K‖ρ‖2L2 − (α+

1

2
α1/2)K‖f⊥‖2H.

We kill the two last terms by taking α > 0 small enough and we obtain

D[f ] ≥ 1

2
min(κ⊥, α)

{
‖f⊥‖2H + ‖ρ‖2L2

}
.

We conclude by recalling that ‖f⊥‖2H + ‖ρ‖2L2 = ‖f‖2H. �

5. Notes

Most of the results (if not all) of section 2 may be found in the review paper of Perthame [13].
Lemma 2.1 is due to Perthame [12]. Lemma 2.2 is due to Bardos and Degond [1]. Lemma 2.3 is
due to Gualdani, Mischler and Mouhot [8]. Lemma 2.4 and Corollary 2.5 are due to Perthame
and Lions [10], improving a similar previous result by Perthame [11]. Theorem 2.6 is very similar
to Bouchut-Desvillettes’ version [2, Theorem 2.1] (see also [3] for a related discrete version) of the
classical averaging Lemma initiated in the famous articles of Golse et al. [7].

The mathematical approach for the Landau equation presented in section 3 has mainly been de-
veloped by Villani [14], and by Villani and Desvillettes [4, 5]
In section 4, the hypocoercivity result established in Theorem 4.1 and its proof are probably a
rephrasing of material developed by Hérau [9] and Dolbeault-Mouhot-Schmeiser [6]. We also refer
to [15] for an introduction to this topic.
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