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CHAPTER 0 - ON THE GRONWALL LEMMA

I write in blue color what has been taught during the classes.

There are many variants of the Gronwall lemma which simplest formulation tells
us that any given function u : [0, T ) → R, T ∈ (0,∞], of class C1 satisfying the
differential inequality

(0.1) u′ ≤ au on (0, T ),

for a ∈ R, also satisfies the pointwise estimate

(0.2) u(t) ≤ eatu(0) on [0, T ).

We indeed establish (0.2) by a mere time integration of the differential inequality
(u e−at)′ ≤ 0 that we deduce from (0.1).

The aim of these notes is to give several generalizations and variants in differential,
integral and discrete form of that first version which make possible to establish

- local in time estimates;

- large time (decay) estimates;

- uniform in time estimates (trap trick);

- uniqueness type result.

1. Local in time estimates (from differential inequality)

We give in this section some locally in time estimates for solutions to differential
inequalities and we start with a first version.

Lemma 1.1 (classical differential version of Gronwall lemma). We assume that
u ∈ C([0, T );R), T ∈ (0,∞), satisfies the differential inequality

(1.1) u′ ≤ a(t)u+ b(t) on (0, T ),

for some a, b ∈ L1(0, T ). Then, u satisfies the pointwise estimate

(1.2) u(t) ≤ eA(t)u(0) +

∫ t

0

b(s)eA(t)−A(s) ds, ∀ t ∈ [0, T ),

where we have defined the primitive function

A(t) :=

∫ t

0

a(s) ds.

1
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Some examples and important special cases of the Gronwall lemma are

u′ ≤ a(t)u =⇒ u(t) ≤ u(0)eA(t),(1.3)

u′ ≤ au+ b =⇒ u(t) ≤ u(0)eat +
b

a
(eat − 1),(1.4)

u′ ≤ au+ b(t) =⇒ u(t) ≤ u(0)eat +

∫ t

0

ea(t−s) b(s) ds,(1.5)

u′ + b(t) ≤ a(t)u, a, b ≥ 0 =⇒ u(t) +

∫ t

0

b(s) ds ≤ u(0)eA(t).(1.6)

Proof of Lemma 1.1. The differential inequality (1.1) means

−⟨u, φ′⟩ ≤ ⟨au+ b, φ⟩

for any 0 ≤ φ ∈ D(0, T ). We set

v(t) = u(t) e−A(t) −
∫ t

0

b(s)e−A(s) ds,

and we observe that

v′ ≤ 0 D′(0, T ), v ∈ C([0, T ]).

• When furthermore v ∈ C1 (or even v ∈W 1,1), we immediately conclude to

v(t) = v(0) +

∫ t

0

v′(s) ds ≤ v(0) = u(0),

from what (1.2) follows.

• In the general case when v ∈ C([0, T ]), we proceed as follows. We fix ε > 0 and
ϱ ∈ C1

c (0, ε) such that ϱ ≥ 0,
∫
ϱ = 1. For any function 0 ≤ w ∈ C1

c (ε, T ), the

function ψ := −w + (
∫ T

0
w) ϱ belongs to Cc(0, T ) and

∫ T

0
ψ = 0. As a consequence

ψ has a primitive φ such that φ(0) = φ(T ) = 0. The function φ thus enjoys the
following properties φ ∈ C1

c (0, T ), φ ≥ 0 and φ′ = ψ. We deduce

0 ≥ ⟨v′, φ⟩ =

∫ T

0

v

{
w −

(∫ T

0

w

)
ϱ

}
dt

=

∫ T

0

w

{
v −

∫ T

0

v ϱ

}
dt.

Because the above inequality is true for any w ∈ C1
c (ε, T ), w ≥ 0, it comes

v ≤
∫ T

0

v ϱ on (ε, T ).

Taking ϱ = ϱα for a mollifier sequence (ϱα) (i.e. ϱα ⇀ δ0 as α → 0) and letting
α→ 0, we deduce again v ≤ v(0) on (0, T ). □
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2. Local in time estimates (from integral inequality)

In many situations, it is not easy to deal with differential inequalities and it is much
more natural to start from the associated integral inequality. The conclusion can
be however the same.

Lemma 2.1 (integral version of Gronwall lemma). We assume that u ∈ C([0, T );R),
T ∈ (0,∞), satisfies the integral inequality

(2.1) u(t) ≤ u0 +

∫ t

0

a(s)u(s) ds+

∫ t

0

b(s) ds on [0, T ),

for some 0 ≤ a ∈ L1(0, T ) and b ∈ L1(0, T ). Then, u satisfies the same pointwise
estimate

u(t) ≤ u0 e
A(t) +

∫ t

0

b(s)eA(t)−A(s) ds, ∀ t ∈ (0, T ).

Remark 2.2. Lemma 2.1 can be seen as an integral (and thus weak) version of
Lemma 1.1, but we emphasize that we additionally need to assume a ≥ 0 here.

Some examples and important special cases of the Gronwall lemma are

u(t) ≤
∫ t

0

a(s)u(s) ds =⇒ u(t) ≡ 0,(2.2)

u(t) ≤ u0 +

∫ t

0

a(s)u(s) ds =⇒ u(t) ≤ u0 e
A(t),(2.3)

u(t) +

∫ t

0

|b(s)|ds ≤ u0 +

∫ t

0

a(s)u(s) ds =⇒ u(t) +

∫ t

0

|b(s)|ds ≤ u(0)eA(t).(2.4)

Proof of Lemma 2.1. Step 1. We first assume that b ≡ 0. We set v(t) = u(t) −
u0 e

A(t) and we compute

v(t) ≤
∫ t

0

a(s)u(s) ds+ u0 (1− eA(t))

=

∫ t

0

a(s) (v(s) + u0 e
A(s)) ds+ u0 (1− eA(t))

=

∫ t

0

a(s) v(s) ds.

Because a is not negative, it yields

(2.5) v+(t) ≤
∫ t

0

a(s) v+(s) ds =: w(t).

The function w ∈W 1,1(0, T ) satisfies

w′(t) = a(t) v+(t) ≤ a(t)w(t) on (0, T ),

and we may use Lemma 1.1 in order to deduce w(t) ≤ w(0) = 0, next v(t) ≤
v+(t) ≤ w(t) ≤ 0 and the conclusion.

Step 2. We do not assume b ≡ 0 anymore. We define

v(t) := u(t)− u0e
A(t) −

∫ t

0

b(s)eA(t)−A(s) ds.
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We observe that we have again

v(t) ≤
∫ t

0

a(s) v(s) ds,

and we conclude as in the first step. □

Remark 2.3. Starting from (2.5), we may conclude directly and without using Lemma 1.1. We

observe that

sup
t∈[0,T∗]

v+(t) ≤ sup
s∈[0,T∗]

v+(s)

∫ T∗

0
a(s) ds, ∀T ∗ ∈ (0, T ].

Taking T ∗ > 0 small enough such that

∫ T∗

0
a(s) ds < 1, we deduce

sup
t∈[0,T ]

v+(t) ≤ 0.

We conclude that v ≤ 0 on [0, T ∗], and next v ≤ 0 on [0, T ] by just iterating the argument.

We also have the following slightly more general version of Gronwall lemma.

Lemma 2.4 (integral version of Gronwall lemma). We assume that u ∈ C([0, T );R), T ∈ (0,∞),

satisfies the integral inequality

(2.6) u(t) ≤ B(t) +

∫ t

0
a(s)u(s) ds on [0, T ),

for some B ∈ C([0, T )) and 0 ≤ a ∈ L1(0, T ). Then, u satisfies the pointwise estimate

u(t) ≤ B(t) +

∫ t

0
a(s)B(s)eA(t)−A(s) ds, ∀ t ∈ (0, T ).

Proof of Lemma 2.4. We define

v(t) :=

∫ t

0
a(s)u(s) ds,

which belongs to W 1,1(0, T ), and we compute

v′ = a(t)u(t) ≤ a(t)B(t) + a(t)v(t),

because of (2.6) and a ≥ 0. We conclude thanks to Lemma 1.1 applied with v, a and b := aB. □

Exercise 2.5 (a variant of the proof of Lemma 2.4). Show that, under the hypotheses of Lemma 2.4,

the function

v(t) :=

∫ t

0
a(s)u(s) ds e−A(t) −

∫ t

0
a(s)B(s)e−A(s) ds

satisfies v′ ≤ 0, and recover the conclusion of Lemma 2.4.

Remark 2.6. 1) We may prove (2.3) (and thus (2.2)) as a corollary of Lemma 2.4. Indeed, we

apply Lemma 2.4 with B = u0 which implies

u(t) ≤ u0 + u0e
A(t)

∫ t

0
a(s)e−A(s) ds

= u0 + u0e
A(t)[1− e−A(t)],

what is nothing but the desired estimate.

2) More generally, we may see Lemma 2.1 (and thus (2.4)) as a corollary of Lemma 2.4. Indeed,
we apply Lemma 2.4 with

B(t) = u0 +

∫ t

0
b(s) ds,

and arguing similarly as above, we have

u(t) ≤ u0 +

∫ t

0
b(s) ds+ eA(t)

∫ t

0
a(s)

[
u0 +

∫ s

0
b(τ) dτ

]
e−A(s) ds

= u0 +

∫ t

0
b(s) ds− eA(t)

[(
u0 +

∫ s

0
b(τ) dτ

)
e−A(s)

]t
0

+eA(t)

∫ t

0
b(s)e−A(s) ds.
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That last inequality easily simplifies into the desired estimate. □

3. Decay estimates

In this section, we establish some pointwise decay estimates which are relevant
as time goes to infinity. We recall that for a positive and continuous function
u : R+ → R+ which satisfies the ordinary differential inequality

(3.1) u′ ≤ −λu,
for some λ > 0, the Gronwall Lemma (in its most classical form (0.1) ⇒ (0.2)) tells
us that u enjoys a decay estimate with exponential rate

(3.2) u(t) ≤ u(0)e−λt, ∀ t ≥ 0.

On the other hand, by integrating in time the differential inequality (3.1) and using
that u(t) → 0 as t→ ∞ from (3.2), we get

λ

∫ ∞

t

u(s) ds ≤ −
∫ ∞

t

u′(s) ds = u(t).

As a matter of fact, the decay estimate (3.2) can be established starting from that
last integral inequality.

Lemma 3.1. Assume that u : R+ → R+ is decreasing and satisfies

(3.3) λ

∫ ∞

t

u(s) ds ≤ u(t), ∀t ≥ 0,

for some constant λ > 0. Then, there exists C = C(λ, u(0)) > 0, such that

(3.4) u(t) ≤ C e−λt, ∀t ≥ 0.

Proof of Lemma 3.1. We define

v(t) :=

∫ ∞

t

u(s) ds ∈W 1,∞(0,∞).

From (3.3), we deduce that v satisfies

v′(t) = −u(t) ≤ −λv(t),
and thus from the Gronwall lemma (in its classical form (0.1) ⇒ (0.2))

(3.5) v(t) ≤ v(0)e−λt ≤ u(0)

λ
e−λt.

Since u is decreasing, we get u(t) ≤ u(0) for t ∈ [0, 1] and

(3.6) u(t) ≤
∫ t

t−1

u(s) ds ≤ v(t− 1), ∀ t ≥ 1,

and we conclude by gathering (3.5) and (3.6). □

We now consider a positive solution u to the ordinary differential inequality

(3.7) u′ ≤ −K u1+α, α > 0.

From (3.7), we classically compute

du

u1+α
≤ −Kdt,
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and next by time integration

− 1

uα
+

1

uα0
≤ −αKt.

Rewriting that last inequality, we get

u−α(t) ≥ αK t+ u−α
0 ≥ αK t,

from which we conclude to the decay estimate with polynomial rate

(3.8) u(t) ≤ C

t1/α
, C := (αK)−1/α.

On the other hand again, integrating in time the differential inequality (3.7) and
using that u(t) → 0 as t→ ∞ from (3.8), we get

K

∫ ∞

t

u(s)1+α ds ≤ −
∫ ∞

t

u′(s) ds = u(t).

Here again, we can recover the decay estimate (3.8) starting from that last integral
inequality.

Lemma 3.2. Assume that u : R+ → R+is continuous, decreasing and satisfies the
integral inequality

(3.9) K

∫ ∞

t

u(s)1+α ds ≤ u(t), ∀t ≥ 0,

for some constants K,α > 0. Then, u satisfies the pointwise estimate

(3.10) u(t) ≤ C t−1/α, ∀t > 0,

for some constant C = C(K,α, ||u||L1) > 0.

Proof of Lemma 3.2. We set

v(t) :=

∫ ∞

t

u(s)1+α ds ∈ C1(0,∞).

We deduce from (3.9) that v satisfies the differential inequality

v′ = −u1+α ≤ − (Kv)
1+α

,

and thus from (3.8) that v satisfies the pointwise estimate

(3.11) v(t) ≤ 1

(αK1+α)1/αt1/α

Since u is decreasing, we obtain

(3.12)
t

2
u(t)1+α ≤

∫ t

t/2

u(s)1+α ds ≤ v(t/2),

and we conclude by gathering (3.11) and (3.12). □

We end this section presenting several related decay estimates issues.

Lemma 3.3. Assume u : R+ → R+ is decreasing and satisfies

(3.13)

∫ ∞

0

φ′(s)u(s) ds ≤ C1,
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for a constant C1 > 0 and a nonnegative increasing function φ. Then, there exists
C2 ≥ 0 such that

(3.14) u(t) ≤ C2

φ(t)
, ∀t > 0.

Proof of Lemma 3.3. • A non optimal proof is as follow. We make the additional
(but not very restricting) assumption that there exist T > 0 and γ ∈ (0, 1) such
that φ(t/2) ≤ γφ(t) for any t ≥ T . As a consequence, we have

(1− γ)φ(t) ≤ φ(t)− φ(t/2) =: Φ(t) ≤ φ(t)

for any t ≥ T . We then compute

Φ(t)u(t) =

∫ t

t/2

φ′(s) ds u(t) ≤
∫ t

t/2

φ′(s)u(s) ds ≤ C,

just using that u is a decreasing function. We conclude thanks to Φ(t) ≃ φ(t).
• A simpler and optimal proof can be handle in the following way. Using again
that u′ ≤ 0, we have

φ(t)u(t) ≤ φ(t)u(t)−
∫ t

0

φ(s)u′(s) ds

= φ(0)u(0) +

∫ t

0

φ′(s)u(s) ds ≤ φ(0)u(0) + C1,

and we get the conclusion with C2 := φ(0)u(0) + C1. □

Alternative proof of Lemma 3.2. We want now to show that we can deduce the
polynomial decay directly from a linear analysis. More precisely, we assume that
u : R+ → R+ is a continuous function satisfying the differential inequality

u′ ≤ −Ku1+α, K, α > 0,

and we want to prove (3.10). Observing that

(3.15) u ≤ ℓ+ ℓ−αu1+α, ∀ ℓ > 0,

we deduce that u satisfies the family of differential inequalities

u′ ≤ −λu+K−1/αλ1+1/α,

for any positive function λ = λ(t). From the classical Gronwall Lemma 1.1, u
satisfies the pointwise estimate

u(t) ≤ e−Λ(t)u(0) +K−1/α

∫ t

0

λ(s)1+1/αeΛ(s)−Λ(t) ds, ∀ t > 0,

where we have defined the primitive function

Λ(t) :=

∫ t

0

λ(s) ds.

The choice λ(t) := C/(1 + t) gives eΛ(t) = (1 + t)C . We then find

u(t) ≲
1

(1 + t)C
+

∫ t

0

1

(1 + s)1+1/α

(1 + s)C

(1 + t)C
ds ≲

1

(1 + t)1/α
,

with the choice C := 1 + 1/α, which is nothing but (3.10). □
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Exercise 3.4. Assume that u : R+ → R+ is continuous and satisfies

u′ ≤ −φ(u)

for some continuous function φ : R+ → R+ such that

H(0) = −∞, H(u) :=

∫ u

1

dw

φ(w)
.

Prove that u satisfies the pointwise estimate

u(t) ≤ H−1(H(u(0))− t).

Prove a similar result when u : R+ → R+ is continuous, decreasing and satisfies∫ ∞

t

φ(u(s)) ds ≤ u(t), ∀ t > 0.

4. Nonlinear differential inequality, trap trick and decay

We next present a generalization of the Gronwall lemma to a nonlinear differential
inequality framework.

Lemma 4.1 (nonlinear version of Gronwall lemma). Let f ∈ C1((0, T ) × R) and
consider u, v ∈ C([0, T ];R) such that

(4.1) u′ ≤ f(t, u), v′ ≥ f(t, u), u(0) ≤ v(0),

(in a distributional sense). Then u ≤ v on [0, T ].

Proof of Lemma 4.1. We set w(t) := u(t)− v(t) ∈ C([0, T ]) and

a(t) := ∂uf(t, u(t)) if v(t) = u(t); a(t) :=
f(t, u(t))− f(t, v(t))

u(t)− v(t)
otherwise,

and we observe that a ∈ C([0, T ]). We compute

w′ = u′ − v′ ≤ f(t, u)− f(t, v) = aw, w(0) ≤ 0.

We may apply Lemma 1.1 (or more precisely (1.3)) which implies w ≤ 0 and that
gives our conclusion. □

Exercise 4.2. Establish a integral version of Lemma 4.1. More precisely, consider f ∈ C1((0, T )×
R) increasing with respect to the second variable and u, v ∈ C([0, T ]) such that

u(t) ≤ u0 +

∫ t

0
f(s, u(s)) ds, v(t) ≥ v0 +

∫ t

0
f(s, v(s)) ds, u0 ≤ v0,

and prove that u ≤ v on [0, T ]. [Hint. Observe that wt := u(t)− v(t) satisfies

wt ≤ L

∫ t

0
ws ds

for some constant L which may depend on u, v and f ].

A consequence of Lemma 4.1 is the following useful result.
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Lemma 4.3. Let 0 ≤ u ∈ C([0,∞)) satisfy (in the sense of distributions)

u′ + k1 u
θ1 ≤ k2 u

θ2 + k3,

with θ1 > 0, θ2 ≥ 0, θ2/θ1 < 1, k1 > 0 and k2, k3 ≥ 0. Then, there exists
C0 = C0(ki, θi) ≥ 0 such that

(4.2) sup
t≥0

u(t) ≤ max(C0, u(0)).

Assume moreover θ1 > 1. For any τ > 0, there exists Cτ = Cτ (ki, θi, τ) ≥ 0 such
that

(4.3) sup
t≥τ

u(t) ≤ Cτ .

Proof of Lemma 4.3. Step 1. We set f(u) := k2 u
θ2 + k3 − k1 u

θ1 for any u ≥ 0 and
we observe that there exists C0 > 0 (large enough) such that f(u) ≤ 0 = f(C0)
for any u ≥ C0. As a consequence, u is a subsolution and v := max(u0, C0) is a
supersolution to the ODE w′ = f(w) both with same initial datum. We conclude
thanks to Lemma 4.1.

Step 2. For (any) C ′
0 > C0 there exists k′1 > 0 such that f(u) ≤ −k′1 uθ1 for any

u ≥ C ′
0. We consider the solution v to the ODE

v′ = −k′1vθ1 , v(0) = u0.

As we have already seen that (3.7) implies (3.8), we immediately deduce that v
satisfies

v(t) ≤ (k′1t)
− 1

θ1−1 , ∀ t > 0.

We conclude that (4.3) holds for any τ > 0 with Cτ := max(C ′
0, (k

′
1τ)

− 1
θ1−1 ). □

We give now an integral inequality variant of the previous result.

Lemma 4.4. Assume 0 ≤ u ∈ C([0, T ]) satisfies

u(t) ≤ u0 + 2

∫ t

0

c(s)
√
u(s) ds

for some u0 ≥ 0 and 0 ≤ c ∈ L2(0, T ). Then

u(t) ≤
(√

u0 +

∫ t

0

c(s) ds
)2
,

and this estimate is sharp.

Proof of Lemma 4.4. For some fixed ε > 0, we define v ∈ C1 by

v(t) := ε+ u0 + 2

∫ t

0

c(s)
√
u(s) ds ≥ u(t),

and we compute

v′ = 2c(t)
√
u(t) ≤ 2c(t)

√
v(t).

Because v ≥ ε, we may integrate the differential inequality

v′

2
√
v
≤ c

and we get √
v(t)−

√
v(0) ≤

∫ t

0

c(s) ds.
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As a consequence, we have

u(t) ≤ v(t) ≤
(√

u0 + ε+

∫ t

0

c(s) ds
)2
,

and we conclude by passing to the limit ε→ 0. □

Consider u ∈ C1([0, T ∗);R+) satisfying the differential inequality

u′ ≤ −λu+ Cu1+α, λ, C, α > 0,

as well as the maximality condition

u(t) → ∞ as t→ T ∗ if T ∗ <∞.

Under the initial condition u(0) < (λ/C)1/θ, the function u is decreasing and thus
trapped below (λ/C)1/θ (see Lemma 4.3), so that T∗ = +∞. Moreover, u(t) → 0
as t → ∞, and more precisely, for any λ′ ∈ (0, λ), we may use the Gronwall
lemma (in its most classical form (0.1) ⇒ (0.2)) which implies that there exists
C2 = C2(λ

′, u(0), C) such that

u ≤ C2 e
−λt, ∀ t ≥ 0.

An integral inequality variant is the following.

Lemma 4.5. Assume that u ∈ C([0,∞);R+) satisfies the integral inequality

u(t) ≤ C1e
at u0 + C2

∫ t

0

ea(t−s)u(s)1+α ds, ∀ t > 0,

for some constants C1 ≥ 1, C2, u0 ≥ 0, α > 0 and a < 0. Under the smallness
assumption

a+ (1 + 1/α)C22
αCα

1 u
α
0 < 0,

there holds

u(t) ≤
(
1 +

C2C
α
1 u

α
0

|αa+ (1 + α)C22αCα
1 u

α
0 |

)
C1 e

at u0, ∀ t ≥ 0.

Proof of Lemma 4.5. We fix A ∈ (C1u0, 2C1u0) arbitrarily, so that u(t) ≤ A at
least on a small interval, that is for any t ∈ [0, τ ], τ > 0 small enough, and then
the integral inequality implies on the same interval

u(t) ≤ C1e
at u0 + C22

αCα
1 u

α
0

∫ t

0

ea(t−s)u(s) ds.

Corollary 2.6 applied to the function t 7→ u(t)e−at and the smallness assumption
a+ C22

αCα
1 u

α
0 < 0 imply

u(t) ≤ C1 u0 e
(a+C22

αCα
1 uα

0 )t ≤ C1 u0 < A

on that interval. By a continuation argument, the first above inequality holds on
R+ and then with A := C1u0. Next, replacing that first estimate in the integral
inequality we started with, we get

u(t) ≤ C1e
at u0 + C2C

1+α
1 u1+α

0 eat
∫ t

0

e(αa+(1+α)C22
αCα

1 uα
0 )s ds, ∀ t > 0,

from which we immediately conclude. □
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5. Discrete inequalities

We present several discrete versions of the Gronwall lemma.

Lemma 5.1 (discrete version of Gronwall lemma). We consider a real numbers
sequence (un) such that

(5.1) un+1 ≤ an+1un + bn+1, ∀n ≥ 0,

where (an) and (bn) are two given real numbers sequences and (an) is furthermore
positive. Then

(5.2) un ≤ Anu0 +

n∑
k=1

Ak,nbk, ∀n ≥ 0,

where we have defined

An :=

n∏
k=1

ak, Ak,n = An/Ak =

n∏
i=k+1

ai.

Proof of Lemma 5.1. We define

vn := Anu0 +

n∑
k=1

Ak,nbk,

and we observe that

vn+1 = An+1u0 +

n+1∑
k=1

Ak,n+1bk

= an+1Anu0 +

n∑
k=1

an+1Ak,nbk + bn+1

= an+1vn + bn+1.

We then easily check by induction that un ≤ vn for any n ≥ 0. □

Some particularly interesting special cases of that discrete Gronwall lemma are

un+1 ≤ aun + bn+1 =⇒ un ≤ anu0 +

n∑
k=1

an−kbk,(5.3)

un+1 ≤ (1 + α)un + bn+1, α, bn+1 ≥ 0 =⇒ un ≤ enαu0 + enα
n∑

k=1

bk,(5.4)

un+1 + bn+1 ≤ aun, a ≥ 1, bn+1 ≥ 0 =⇒ un +

n∑
k=1

bk ≤ anu0.(5.5)

Lemma 5.2 (first summing version of Gronwall lemma). We consider a positive
real numbers sequence (un) such that

(5.6) un ≤
n−1∑
k=0

αkuk +Bn, ∀n ≥ 0,



12 CHAPTER 0 - ON THE GRONWALL LEMMA

where (αn) and (Bn) are two given real numbers sequences and (αn) is furthermore
positive. Then

(5.7) un ≤ Bn +

n−1∑
k=0

αkBkAk,n−1, ∀n ≥ 0,

with

Ak,n =

n∏
i=k+1

(1 + αi).

Proof of Lemma 5.2. We define

vn :=

n∑
k=0

αkuk

and we observe that from (5.6), we have

vn+1 − vn = αn+1un+1 ≤ αn+1vn + αn+1Bn+1

as well as v0 = α0u0 ≤ α0B0. Applying the first discrete Gronwall Lemma 5.1 to
the sequence (vn), we get

vn ≤
n∑

k=0

Ak,nαkBk, ∀n ≥ 0.

We conclude thanks to (5.6) and the definition of (vn). □

Some particularly interesting formulations of that discrete Gronwall lemma are

un ≤
n−1∑
k=0

αkuk +B =⇒ un ≤ B

n−1∏
i=0

(1 + αi) ≤ B exp
{ n−1∑

i=0

αi

}
,(5.8)

un ≤
n−1∑
k=0

αkuk +Bk =⇒ un ≤ Bn +

n−1∑
k=0

αkBk exp
{ n−1∑

i=k

αi

}
.(5.9)

Indeed, in order to establish (5.8), we may use (5.7) with Bn = B and we compute

un ≤ B +B

n−1∑
k=0

αk

n∏
i=k+1

(1 + αi)

= B +B

n−1∑
k=0

{ n∏
i=k

(1 + αi)−
n∏

i=k+1

(1 + αi)
}

= B +B
{ n∏

i=0

(1 + αi)− 1
}
.

Lemma 5.3. Consider a sequence (un) of positive real numbers such that

(5.10) un − un−1 ≤ −Ku1+α
n , ∀n ≥ 1,

with α > 0. There exists a constant C such that

(5.11) un ≤ C n−1/α, ∀n ≥ 1.
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We present two proofs of Lemma 5.3. The first one uses Lemma 3.2, while the
second one follows the alternative proof of Lemma 3.2 presented at the end of
section 3.

Proof 1 of Lemma 5.3. We first observe that (un) is decreasing and un → 0 as
n→ ∞. We may then sum up (5.10) and obtain

K
∑

k≥n+1

u1+α
k ≤ un.

We define the pointwise affine map u by u(t) := (1 − t − n)un + (t − n)uk+1 for
t ∈ [k, k + 1] so that u(t) ≤ uk for any t ≥ k, u(n) = un and then

K

∫ ∞

n+1

u(s)1+α ds = K
∑

k≥n+1

∫ k+1

k

u(t)1+αdt ≤ u(n).

As a consequence, we have

K

∫ ∞

[t]+2

u(s)1+α ds ≤ u([t] + 1) ≤ u(t).

On the other hand, we have

1

2
u(0)−α

∫ [t+2]

t

u(s)1+αds ≤ 1

2

∫ [t+2]

t

u(s)ds ≤ u(t).

Both together, we deduce that

v(t) :=

∫ ∞

t

u(s)1+α ds ≤ Cu(t)

and then

v′(t) = −u(s)1+α ≲ −v1+α.

Integrating that ODE, we get

v(t) ≤ C
1

t1/α
,

from what we deduce

(5.12)
n

2
u1+α
n ≤

∫ n

n/2

u(s)1+α ds ≤ v(n/2),

and that concludes. □

Proof 2 of Lemma 5.3. Starting from (5.10) and using (3.15), we deduce

un+1 − un ≤ −λun+1 +K−1/αλ1+1/α, ∀λ > 0,

and then

un+1 ≤ (1 + λn+1)
−1un + (1 + λn+1)

−1K−1/αλ
1+1/α
n+1 ,

for a sequence (λn) of positive numbers to be fixed later. Thanks to Lemma 5.1,
we have

un ≤
n∏

k=1

(1 + λk)
−1u0 +

n∑
k=1

n∏
i=k

(1 + λi)
−1K−1/αλ

1+1/α
k

= e−
∑n

k=1 ln(1+λk)u0 +K−1/α
n∑

k=1

e−
∑n

i=k ln(1+λi)λ
1+1/α
k .
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We choose λk := 2β/k with β := 1 + 1/α and we use that ln(1 + λ) ≥ λ/2 for any
λ ∈ (0, 1) and thus ln(1 + λk) ≥ λk/2 for any k ≥ k∗ = k∗(α) in order to get

un ≤ e−
∑n

k=k∗ λk/2u0 +K−1/α
n∑

k=1

e−
∑n

i=k∨k∗ λi/2λ
1+1/α
k .

We observe that

n∑
i=k∗

λi/2 =

n∑
i=1

β

i
−

k∗−1∑
i=1

β

i
≥ lnnβ − γ

and

n∑
i=k∨k∗

λi/2 =

n∑
i=k

β

i
−

(k∨k∗)−1∑
i=k

β

i
≥ lnnβ − ln kβ − γ,

for some constant γ := γ(k∗) > 0. All together, we obtain

un ≤ eγ

nβ
u0 +K−1/αeγ

n∑
k=1

kβ

nβ
(2β)1+1/α

k1+1/α
≲

1

n1/α
,

for any n ≥ 1, because of the definition of β. □

6. Uniqueness

We recall that from (2.2), the following version of Gronwall Lemma holds true.

Lemma 6.1. We assume that u ∈ C([0, T );R+), T ∈ (0,∞), satisfies the integral
inequality

(6.1) u(t) ≤
∫ t

0

δ(s)u(s) ds on [0, T ),

for some 0 ≤ δ ∈ L1(0, T ). Then, u ≡ 0.

Two classical corollaries are about the uniqueness of solution to the ODE problem

(6.2) x′ = a(t, x), x(0) = x0.

Corollary 6.2 (Cauchy-Lipschitz). Consider a ∈ C1([0, T ) × Rd;Rd). There
exists at most one maximal solution x ∈ C1([0, T ∗);Rd), T ∗ ∈ (0, T ), to the initial
value problem (6.2).

Corollary 6.3 (Osgood). Assume that

(a(t, x)− a(t, y), x− y) ≤ L|x− y|2, ∀x, y ∈ Rd, ∀ t ∈ (0, T ),

for some L ≥ 0. There exists at most one solution x ∈ C1([0, T );Rd) to the initial
value (6.2).

The proofs of corollaries 6.2 and 6.3 are straightforward consequences of Lemma 6.1,
or even of the most classical form (0.1) ⇒ (0.2), and they are left to the reader. It
happens that we are not able to get the assumptions of Lemma 6.1, but that we
may use one of the following two variants/generalizations of Lemma 6.1.
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Lemma 6.4 (Nagumo). Consider u ∈ C1((0, T );R+), T ∈ (0,∞), such that

u′ ≤ δ(t)

t
u, δ(t) → 0, u(0) = 0.

Then u ≡ 0.

Proof of Lemma 6.4. Because u is smooth, we have u(t) ≤ Lt and therefore u′(t) ≤
δ(t)L. As a consequence, we have

u(t) ≤ ∆(t) :=

∫ t

0

δ(s)Lds

and then

v(t) :=
u(t)

t
≤ ∆(t)

t
=
L

t

∫ t

0

δ(s) ds→ 0 as t→ 0.

On the other hand, we have

v′(t) =
u′

t
− u

t2
≤ u

t2
(δ(t)− 1) ≤ 0

for any t ∈ (0, T ), T > 0 small enough. Both together, we deduce

sup
t∈[ε,T ]

v(t) ≤ v(ε) → 0 as ε→ 0,

and then u(t) ≡ 0. □

Lemma 6.5 (Yudovich). Consider u ∈ C1((0, T );R+), T ∈ (0,∞), such that

(6.3) u(t) ≤ u0 +

∫ t

0

η(u(s)) ds,

with η : R+ → R+ a continuous, positive and increasing function such that∫ 1

0

dz

η(z)
= +∞.

Typical examples are η(z) = z or η(z) = z(| log z| + 1). The following alternative
holds true:

- if u0 = 0 then u ≡ 0 ;

- if u0 > 0 then

(6.4) m(u0) ≤ m(u(t)) + t, m(z) :=

∫ 1

z

dy

η(y)
.

Proof of Lemma 6.5. We define

X(t) := u0 +

∫ t

0

η(u(s)) ds,

which is continuous and increasing. We deduce

X ′(t) = η(u(t)) ≤ η(X(t))

because X(t) ≥ u(t) and η is increasing.

- When u0 > 0, the function X is strictly positive (because X(t) ≥ u0) and we may
compute

− d

dt
m(X(t)) = −m′(X(t))X ′(t) =

X ′(t)

η(X(t))
≤ 1.

We deduce
m(X(0)) ≤ t+m(X(t)),
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from which we get (6.4) by using that z 7→ m(z) is decreasing, X(0) = u0 and
X(t) ≥ u(t).

- When u0 = 0, we assume by contradiction that u ̸≡ 0. There exists then τ > 0,
that we fix, such that u(τ) > 0. Because u satisfies (6.3) with u0 = 0, it also
satisfies

u(t) ≤ ε+

∫ t

0

η(u(s)) ds, ∀ ε > 0.

The first step implies
m(ε) ≤ m(u(τ)) + τ <∞,

which is in contradiction with the fact that m(ε) → ∞ when ε→ 0. □

7. Discussion

The various forms of Gronwall lemmas are classical and belong to folklore. Os-
good’s criteria in Corollary 6.3 is due to W. F. Osgood (Beweis der Existenz

einer Lösung der Differentialgleichung dy
dx = f(x, y) ohne Hinzunahme der Cauchy-

Lipschitz’schen Bedingung(German) Monatsh. Math. Phys. 9 (1898), no. 1,
331–345). Lemma 6.4 is due to M. Nagumo (Eine hinreichende Bedingung für die
Unität der Lösung von Differential gleichungenerster Ordnung, Japan. J. Math.
3 (1926), 107–112). Lemma 6.5 is due to V. Yudovich (Non-stationary flows of
an ideal incompressible fluid (Russian) Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963),
1032–1066).
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