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CHAPTER 1

VARIATIONAL SOLUTION FOR PARABOLIC EQUATION

We present the theory of variational solutions for uniformly elliptic parabolic equa-
tions as well as for abstract evolution equations associated to an operator satisfying
G̊arding’s inequality.
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1. Introduction

In this chapter we will focus on the existence (and uniqueness) issue of a solution
f = f(t, x) to the (linear) evolution PDE of “parabolic type”

(1.1) ∂tf = L f on (0,∞)× Rd,

where L is typically the elliptic operator

(1.2) (Lf)(x) = ∆f(x) + b(x) · ∇f(x) + c(x) f(x),

that we complement with an initial condition

(1.3) f(0, x) = f0(x) in Rd.

Here t ≥ 0 stands for the “time” variable, x ∈ Rd stands (for instance) for the
“position” variable, d ∈ N∗.

In order to develop the variational approach for the equation (1.1)-(1.2), we assume
that

f0 ∈ L2(Rd) =: H, which is an Hilbert space,

and that the coefficients satisfy

(1.4) b, c ∈ L∞(Rd).

The main result we will present in this chapter is the existence and uniqueness of
a weak (variational) global solution (which sense will be specified below)

(1.5) f ∈ XT := C([0, T );H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

to the evolution equation (1.1)-(1.2)-(1.3) and to similar evolution equations, where
here T ∈ (0,∞), V := H1(Rd) and thus V ′ := H−1(Rd). We mean variational
solution because the space of “test functions” is the same as the space in which
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the solution lives. It also refers to the associated stationary problem which is of
“variational type”.

The existence of solutions issue is tackled by following a scheme of proof that we
will repeat for all the other evolution equations that we will consider in the next
chapters.

(1) We look for a priori estimates by performing (formal) differential and integral
calculus.

(2) We deduce a possible natural functional space in which lives a solution and
we propose a definition of a solution, that is a (weak) sense in which we may
understand the evolution equation.

(3) We state and prove the associated existence and uniqueness theorem. For
the existence proof we typically argue as follows: we introduce a “regularized prob-
lem” for which we are able to construct a solution and we are allowed to rigorously
perform the calculus leading to the “a priori estimates”, and then we pass to the
limit in the sequence of regularized solutions. The proof of the uniqueness is often
more subtil: most of the time we need a regularization trick in order to justify the
computations.

2. A priori estimates and weak solution

We explain first how we may obtain “a priori estimates” for solutions to the para-
bolic equation (1.1)-(1.2)-(1.3) with coefficients satisfying (1.4). We mean “a priori
estimates” because we do not try in this first step to establish the estimates with
full mathematical rigor but we rather try to perform formally some reasonable
and usual computations (typically: derivation, integration, summation, . . . ) or,
equivalently, we a priori assume that the functions or solutions considered are nice
(smooth, rapidly decaying, . . . ) so that the performed manipulations are licit. This
step is fundamental in order to bring out what kind of information is reasonable to
hope for. Of course, in some next steps, these bounds will have to be justified.

We denote by | · | = | · |H the Hilbert norm in H = L2(Rd) and (·, ·) = (·, ·)H its
scalar product. We also define

(2.1) V := H1(Rd) ⊂ H ⊂ V ′ := H−1(Rd),

the first space being endowed with its usualH1 Hilbert norm denoted by ∥·∥ = ∥·∥V
and we denote by ⟨·, ·⟩ = ⟨·, ·⟩V ′,V the associated duality product. In particular,
⟨u, v⟩ = (u, v) for any u ∈ H and v ∈ V . We recall the definition (1.2) of the
operator L and we first observe that for any nice function f = f(x) and any
α ∈ (0, 1), we have

⟨Lf, f⟩ :=

∫
Rd

(∆f + b · ∇f + c f)f

= −
∫

|∇f |2 +
∫
bf · ∇xf +

∫
c f2

≤ −α∥f∥2V + ess sup
(
α+

1

4α
∥b∥2L∞ + c

)
|f |2H ,

where we have used the Green-Ostrogradski divergence formula for the first term in
the second line, and next in the third line, the Cauchy-Schwarz inequality in L2(Rd)
and the Young inequality uv ≤ αu2/2+v2/(2α), ∀u, v ≥ 0. In other words, because
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of the hypothesis (1.4) on the coefficients, the operator L satisfies the following
“coercive+dissipative” estimate1 (or −L satisfies a “G̊arding’s inequality”)

(2.2) ⟨Lf, f⟩ ≤ −α∥f∥2V + κ |f |2H , ∀ f ∈ V,

for some α > 0 and κ ∈ R. Now, for a (nice) solution f = f(t, x) to the parabolic
equation (1.1)-(1.2)-(1.3)-(1.4), we compute

1

2

d

dt
|f(t)|2H =

∫
(∂tf)f = ⟨Lf, f⟩ ≤ −α∥f(t)∥2V + κ |f(t)|2H ,

and, thanks to the Gronwall lemma, we deduce

(2.3) |f(T )|2H + 2α

∫ T

0

∥f(s)∥2V ds ≤ e2κT |f0|2H , ∀T.

In order to reformulate this information obtained on f , we introduce the two fol-
lowing functional spaces. On the one hand, we note f ∈ L∞(0, T ;H) if f ∈ L2(U),
U := (0, T )× Rd, is such that there exists C ∈ [0,∞) satisfying

(2.4) ∥f(t, ·)∥L2(Rd) ≤ C, for a.e. t ∈ (0, T ),

and we define

∥f∥L∞(0,T ;H) := inf{C ∈ [0,∞) such that (2.4) holds}.

On the other hand, we define

H = HT := L2(0, T ;V ) := {f ∈ L2(U); ∇xf ∈ L2(U)}

that we endowed with the Hilbert norm defined by

∥f∥2H = ∥f∥2L2(0,T ;V ) :=

∫ T

0

∥f(s)∥2V ds, ∀ f ∈ H .

From (2.3), we have thus established

(2.5) f ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).

It is worth emphasizing here that we sometimes switch our viewpoint by considering
either the function f = f(t, x) as a function of both variables (t, x) ∈ U or as a
functional mapping f : [0, T ] → H or V defined by [f(t)](x) = f(t, x). Rather
than developing the arguments in the more abstract functional mapping (what we
will do in Section ?? below), we adopt here an in-between viewpoint. We will
always keep in mind the two variables setting (what make possible to use the usual
Lebesgue, distributional and Sobolev theories when necessary) and frequently adopt
the functional mapping notation. In this framework, we may move from one point
of view to the other thanks to the Fubini theorem.

It is worth emphasizing at this point that for two (nice) functions f = f(x) and
g = g(x), we may compute

⟨Lf, g⟩ :=
∫
Rd

(∆f + b · ∇f + c f)g,

1We commonly say that (the bilinear form associated to) −L is coercive if (2.2) holds with

α > 0 and κ = 0, and that L − κ is dissipative if (2.2) holds with α = 0 and κ ∈ R. Our
assumption (2.2) is then more general than a coercivity condition (on −L) but less general than

a dissipativity condition (on L).
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so that

(2.6) ⟨Lf, g⟩ = −
∫
Rd

∇f · ∇g +
∫
Rd

(b · ∇xf)g +

∫
Rd

c f g,

thanks to the Green-Ostrogradski divergence formula, and thus clearly

|⟨Lf, g⟩| ≤M∥f∥V ∥g∥V ,
for a constant M > 0, thanks to the Cauchy-Schwarz inequality in L2(Rd) and
because of the hypothesis (1.4) on the coefficients. A possible choice is M :=
1 + ∥b∥L∞ + ∥c∥L∞ . In other words, taking (2.6) as a definition of L, we have

L : V → V ′

is a linear and bounded operator with

(2.7) ∀ f ∈ V, ∥Lf∥V ′ = sup
g∈BV

⟨Lf, g⟩ ≤M∥f∥V .

On the other hand, coming back to a nice solution f = f(t, x) to the parabolic
equation (1.1)-(1.2)-(1.3), we may multiply (1.1) by a test function φ ∈ C1

c ([0, T )×
Rd), and integrating by part, we have

−
∫
Rd

f0φ(0)−
∫
U
f∂tφ =

∫
U
φ∂tf =

∫
U
φLf

= −
∫
U
∇f · ∇φ+

∫
U
(b · ∇f + cf)φ.

That formulation gives a first meaningful (distributional) sense to a solution to the
equation under the sole assumption f ∈ L2(0, T ;V ). Equivalently (by a density
C1

c (Rd) ⊂ H1(Rd) argument), we may write

(2.8) −(f0, φ(0))−
∫ T

0

(f, φ′)dt =

∫ T

0

⟨Lf, φ⟩dt,

for any φ ∈ C1
c ([0, T );V ). We emphasize again that in the last term we use the

definition (2.6) of L. We also define

[φ′(t)](x) =
[ d
dt
φ](x) := (∂tφ)(t, x)

in order to emphasize the functional mapping viewpoint.

Definition 2.1. For any given f0 ∈ H, T > 0, we say that

f = f(t) ∈ L2(0, T ;V )

is a weak solution to the Cauchy problem associated to the parabolic equation
(1.1)-(1.2)-(1.3) on the time interval [0, T ) if it satisfies the weak formulation (2.8)
for any φ ∈ C1

c ([0, T );V ). We say that f is a global weak solution if it is a weak
solution on [0, T ) for any T > 0.

We now want to strengthen the notion of solution by improving the functional
spaces, and more precisely by reducing the space of solutions and enlarging the
space of test functions. We observe that for any f, g ∈ H = L2(0, T ;V ), we have∫ T

0

⟨Lf, g⟩ dt ≤M

∫ T

0

∥f∥V ∥g∥V dt ≤M∥f∥H ∥g∥H ,

where we have first used (2.7) and next the Cauchy-Schwarz inequality in L2(0, T )
(we may also directly use the Cauchy-Schwarz inequality in L2(U) on the very
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definition of the RHS term). For any weak solution f to the parabolic equation
(1.1)-(1.2)-(1.3), we may write

⟨∂tf, φ⟩D′(U),D(U) = −
∫ T

0

(f, φ′) dt =

∫ T

0

⟨Lf, φ⟩ dt,

for any φ ∈ D(U), and we thus have

(2.9) ⟨∂tf, φ⟩D′(U),D(U) ≤ C∥φ∥H ,

for the constant C := M∥f∥H . Adopting the functional mapping viewpoint, we
deduce (and denote)

f ′ = Lf ∈ L2(0, T ;V ′) := H ′ = (L2(0, T ;V ))′.

More concretely, we have

H ′ = {F0 +

d∑
i=1

∂xi
Fi; Fi ∈ L2(U)}.

Inspired from the usual definition of Sobolev spaces (for real valued functions), we
use the shorthand

(2.10) f ∈ H1(0, T ;V ′),

for notifying that f satisfies the estimate (2.9) and for later reference we denote

∥f ′∥L2(0,T ;V ′) := inf{C such that (2.9) holds}.

Definition 2.2. For any given f0 ∈ H, T > 0, we say that

(2.11) f ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′)

is a variational solution to the Cauchy problem associated to the parabolic equa-
tion (1.1)-(1.3) on the time interval [0, T ) if it is a solution in the following weak
sense

(2.12) (f(t), φ(t)) = (f0, φ(0)) +

∫ t

0

{
⟨Lf(s), φ(s)⟩+ ⟨φ′(s), f(s)⟩

}
ds,

for any φ ∈ XT and any 0 ≤ t ≤ T . We say that f is a global solution if it is a
solution on [0, T ] for any T > 0.

We will establish that a weak solution f automatically satisfies f ∈ XT , what is a
consequence of the continuous embedding L2(0, T ;V )∩H1(0, T ;V ′) ⊂ C([0, T ];H)
discussed below (see section 3.2) and the additional estimate (2.10). The first term
in (2.12) is then well-defined because of the condition f, φ ∈ C([0, T ];H). Under
the sole assumption f, φ ∈ XT , a possible definition of the last term is∫ t

0

⟨φ′(s), f(s)⟩ ds := ⟨φ′, f⟩H ′
t ,Ht

,

see also the Section ?? for an alternative point of view.

Theorem 2.3. With the above definition and assumptions, for any f0 ∈ H, there
exists a unique global variational solution to the Cauchy problem (1.1)-(1.2)-(1.3)-
(1.4), and this one satisfies (2.3).
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3. Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3 which is split into four steps.

Step 1. We first establish the existence of a weak solution f ∈ L2(0, T ;V ).

Step 2. We next prove that f ∈ XT .

Steps 3 & 4. We finally establish that f is a variational solution from what we
immediately deduce the uniqueness and the a posteriori estimate (2.3).

3.1. On the existence of a weak solution. Introducing an approximation scheme
and next using a weak compactness argument in the Hilbert space L2(0, T ;V ), we
establish that there exists a function f ∈ L2(0, T ;V ) satisfying the weak formula-
tion (2.8).

Step 1. For a given f0 ∈ H and ε > 0, we seek f1 ∈ V such that

(3.1) f1 − εLf1 = f0.

We introduce the bilinear form a : V × V → R defined by

a(u, v) := (u, v)− ε ⟨Lu, v⟩.

Thanks to the assumptions made on L, we have

|a(u, v)| ≤ |u| |v|+ εM ∥u∥ ∥v∥,

and

(3.2) a(u, u) ≥ |u|2 + ε α ∥u∥2 − ε κ |u|2 ≥ ε α ∥u∥2,

whenever ε κ < 1, what we assume from now on. On the other hand, the mapping
v ∈ V 7→ (f0, v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem which implies

∃! f1 ∈ V, (f1, v)− ε⟨Lf1, v⟩ = (f0, v), ∀ v ∈ V.

Step 2. We fix ε > 0 as in the preceding step and we build by induction the sequence
(fk) in V ⊂ H defined by the family of equations

(3.3)
fk+1 − fk

ε
= L fk+1, ∀ k ≥ 0.

Observe that from the identity

(fk+1, fk+1)− ε ⟨Lfk+1, fk+1⟩ = (fk, fk+1),

we deduce (that is (3.2) again)

|fk+1|2 + ε α ∥fk+1∥2 − ε κ |fk+1|2 ≤ |fk| |fk+1| ≤
1

2
|fk|2 +

1

2
|fk+1|2,

and then

|fk+1|2 + 2εα ∥fk+1∥2 ≤ (1− 2ε κ)−1 |fk|2, ∀ k ≥ 0.

Thanks to the discrete version of the Gronwall lemma, we get

|fn|+ 2α

n∑
k=1

ε∥fk∥2 ≤ (1− 2ε κ)−n|f0| ≤ e2κεn |f0|, ∀n ≥ 1.

We now fix T > 0, n ∈ N∗, and we define

ε := T/n, tk = k ε, fε(t) := fk on [tk, tk+1).
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The last estimate writes then

(3.4) 2α

∫ T

0

∥fε∥2V dt ≤ (e2κT + 2αε) |f0|2.

Step 3. Consider a test function φ ∈ C1
c ([0, T );V ) and define φk := φ(tk), so that

φn = φ(T ) = 0. Multiplying the equation (3.3) by φk and summing up from k = 0
to k = n− 1, we get

−(φ0, f0)−
n∑

k=1

(φk − φk−1, fk) =

n∑
k=0

ε ⟨Lfk+1, φk⟩ =
n∑

k=1

ε ⟨Lfk, φk−1⟩.

Introducing the two functions φε, φε : [0, T ) → V defined by

φε(t) := φk−1 and φε(t) :=
tk+1 − t

ε
φk−1 +

t− tk
ε

φk for t ∈ [tk, tk+1),

in such a way that

φ′
ε(t) =

φk − φk−1

ε
for t ∈ (tk, tk+1),

the above equation also writes

(3.5) −⟨φ(0), f0⟩ −
∫ T

ε

(φ′
ε, f

ε) dt =

∫ T

0

⟨Lfε, φε⟩ dt.

On the one hand, from (3.4) and the fact that L2(0, T ;V ) is a Hilbert space, we
know that up to the extraction of a subsequence, there exists f ∈ L2(0, T ;V ) such
that fε ⇀ f weakly in L2(0, T ;V ). On the other hand, from the above construction,
we have φ′

ε → φ′ and φε → φ both uniformly in L∞(0, T ;V ) (using that φ and φ′

belong to C([0, T ];V ) and thus are uniformly continuous). We may then pass to
the limit as ε→ 0 in (3.5) and we get (2.8).

3.2. About the functional space. As a consequence of the general argument
leading to (2.10) and of the following result, any weak solution belongs in fact to
the space XT .

Lemma 3.1. The following inclusion

(3.6) L2(0, T ;V ) ∩H1(0, T ;V ′) ⊂ C([0, T ];H)

holds true. Moreover, for any g ∈ XT and t1, t2 ∈ [0, T ], there holds

(3.7) |g(t2)|2 = |g(t1)|2 + 2

∫ t2

t1

⟨g′, g⟩ ds.

Proof of Lemma 3.1. We first establish (3.6) thanks to a regularization trick and
using in a fundamental way that C([0, T ];H) is a Banach space. A similar regular-
ization argument allows us to establish (3.7) as well.

Step 1. Let us consider g ∈ L2(0, T ;V ) ∩ H1(0, T ;V ′) ⊂ L2(U). We define the
function ḡ = g on [0, T ], ḡ = 0 on R\[0, T ], next for a mollifier ρ : R → R with com-
pact support included in (−1,−1/2), we define the approximation to the identity
sequence (ρε) by setting ρε(t) := ε−1ρ(ε−1t) and finally the sequence gε(t) := ḡ∗tρε
where ∗ stands for the usual convolution operator on R. We fix τ ∈ (0, T ) and we
assume 0 < ε < T − τ . For any t ∈ (0, τ), because of the support condition

supp ρε(t− ·) ⊂ [t+ ε/2, t+ ε] ⊂ [ε/2, τ + ε] ⊂ (0, T ),
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we have s 7→ ρε(t− s) ∈ D(0, T ) and

gε(t, ·) =
∫
R
ρε(t− s) ḡ(s, ·) ds =

∫ T

0

ρε(t− s) g(s, ·) ds.

We observe that gε ∈ C1(R;H), gε → g strongly in V a.e. on [0, T ] and in
L2(0, T ;V ) from standard convolution results for real values measurable functions.
We similarly observe that

∂tgε =

∫
R
∂tρε(t− s) ḡ(s) ds

= −
∫ T

0

(∂sρε(t− s)) g(s) ds

=

∫ T

0

ρε(t− s) (∂tg)(s) ds = ρε ∗t (∂tg).

By assumption, we have ∂tg = F + divxG with F,G ∈ L2(U), so that

∂tgε = ρε ∗t F̄ + divx(ρε ∗t Ḡ) → F + divxG = ∂tg

in the sense of L2(0, T ;H−1(Rd)).

Step 2. We observe that for t 7→ u(t) ∈ C1((0, T );H) and because h 7→ |h|2H is
C1(H;R), we have t 7→ |u(t)|2H is C1((0, T );R) and

d

dt
|u(t)|2H = 2(u′(t), u(t))H = 2⟨u′(t), u(t)⟩V ′,V .

We fix τ ∈ (0, T ) and ε, ε′ ∈ (0, T − τ), and the above computation gives

d

dt
|gε(t)− gε′(t)|2 = 2 ⟨g′ε − g′ε′ , gε − gε′⟩,

so that for any t1, t2 ∈ [0, τ ], we have

(3.8) |gε(t2)− gε′(t2)|2 = |gε(t1)− gε′(t1)|2 + 2

∫ t2

t1

⟨g′ε − g′ε′ , gε − gε′⟩ds.

Since gε → g a.e. on [0, τ ] in V ⊂ H, we may fix t1 ∈ [0, τ ] such that

(3.9) gε(t1) → g(t1) in H.

As a consequence of (3.8), (3.9) and the convergences gε → g in L2(0, τ ;V ) and
g′ε → g′ in L2(0, τ ;V ′), so that (∥g′ε∥H ′

τ
) is a bounded sequence, we have

lim sup
ε,ε′→0

sup
[0,τ ]

|gε(t)− gε′(t)|2H ≤ lim
ε,ε′→0

∥g′ε − g′ε′∥H ′
τ
∥g′ε − g′ε′∥Hτ

= 0.

We thus deduce that (gε) is a Cauchy sequence in C([0, τ ];H), and then gε converges
in C([0, τ ];H) to a limit g̃ ∈ C([0, τ ];H). That proves g = g̃ a.e. and thus
g ∈ C([0, τ ];H) (up to modifying g on a set of zero Lebesgue measure). We prove
similarly that g ∈ C([τ, T ];H) for any τ ∈ (0, T ) and thus g ∈ C([0, T ];H).

Step 3. Similarly as for (3.8), we have

|gε(t2)|2H = |gε(t1)|2H + 2

∫ t2

t1

⟨g′ε, gε⟩ds,

and passing to the limit ε→ 0, we get (3.7). □
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3.3. Weak solutions are variational solutions. We establish the equivalence
between several formulations of solutions to the parabolic equation (1.1)-(1.2)-(1.3).

Lemma 3.2. Consider the operator L defined by (1.2), an initial datum f0 ∈ H
and a function f ∈ L2(0, T ;V ). There is equivalence between :

(1) f is a variational solution in the sense of Definition 2.2;

(2) f is a weak solution in the sense of Definition 2.1;

(3) f satisfies
f ′ = Lf in V ′, f(0) = f0 in H,

in the sense

(3.10) 0 = f0ψ(0) +

∫ T

0

(gψ′ + Lgψ)dt in V ′,

for any ψ ∈ C1
c ([0, T );R);

(4) f satisfies

d

dt
⟨f, h⟩ = ⟨Lf, h⟩ in D′(0, T ), ⟨f(0), h⟩ = (f0, h),

for any h ∈ V .

Proof of Lemma 3.2. Step 1. Condition (1) clearly implies condition (2). If f satis-
fies (2) then we obtain (3) by particularizing φ = ψ(t)h, h ∈ V , ψ ∈ C1

c ([0, T );R),
in the formulation (2.8) in order to get

0 = (f0ψ(0), h) +

∫ T

0

(fψ′, h)dt =

∫ T

0

⟨Lfψ, h, ⟩dt,

=
〈
f0ψ(0) +

∫ T

0

fψ′dt+

∫ T

0

Lfψdt, h
〉
,

by linearity, what is nothing but (3.10). Condition (4) is nothing but the distri-
butional formulation of the first above identity so that it is equivalent to (3). We
prove now that (3) implies (2) and next (1) in several steps.

Step 2. We observe first that f satisfies (2.8) with φ = ψ(t)h, h ∈ V , ψ ∈
C1

c ([0, T );R). Take φ ∈ C1
c ([0, T );V ) and define the piecewise affine function

χk(t) :=

k∑
j=1

1[tj−1,tj)
k

T
{φ′(tj−1)(tj − t) + φ′(tj)(t− tj−1)},

with tj := jT/k. Next, choosing χ ∈ C1
c ([0, T ), χ ≡ 1 on suppφ, let us define

φk(t) :=
(
φ(0) +

∫ t

0

χk(s) ds
)
χ(t) =

k∑
j=0

ψj(t)hj ,

with hj := φ′(tj) and ψj ∈ C1
c ([0, T ). Because the weak formulation (2.8) is linear

in the test functions, f satisfies (2.8) with the choice of test function φk, that is

(3.11) −(f0, φk(0))−
∫ T

0

(f, φ′
k)dt =

∫ T

0

⟨Lf, φk⟩dt.

Because φ′ ∈ C([0, T ];V ), we have χk → φ′ uniformly as k → ∞, and thus φk → φ
and φ′

k → φ′ also in C([0, T ];V ). We may thus pass to the limit (3.11) as k → ∞
and we obtain that f also satisfies (2.8) with the test function φ, so that (2) holds.
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Step 3. Because of the discussion leading to (2.10), we have f ∈ H1(0, T ;V ′), and
thus f ∈ XT thanks to Lemma 3.1. Assume now φ ∈ Cc([0, T );H) ∩ L2(0, T ;V ) ∩
H1(0, T ;V ′). We define φε(t) := φ∗tρε for a mollifier (ρε) associated to ρ with com-
pact support included in (−1,−1/2) so that from Step 1 in the proof of Lemma 3.1,
φε ∈ C1

c ([0, T );V ) for any ε > 0 small enough and

φε → φ in C([0, T ];H) ∩ L2(0, T ;V )

and weakly in H1(0, T ;V ′). Writing the weak formulation (2.8) for φε and passing
to the limit ε→ 0, we get that the same weak formulation (2.8) holds true for φ.

Step 4. Assume finally that φ ∈ XT . We fix χ ∈ C1(R) such that suppχ ⊂ (−∞, 0),

χ′ ≤ 0, χ′ ∈ Cc(] − 1, 0[) and
∫ 0

−1
χ′ = −1, and we define χε(t) := χ((t − T )/ε) so

that φε := φχε ∈ Cc([0, T );H) and χε → 1[0,T ] a.e., χ
′
ε → −δT in D′(R) as ε→ 0.

Equation (2.8) for the test function φε writes

−(f0, φ(0))−
∫ T

0

χ′
ε(φ, f) ds =

∫ T

0

χε

{
⟨Lf, φ⟩+ ⟨φ′, f⟩

}
ds,

and we obtain the variational formulation (2.12) for t1 = 0 and t2 = T by passing
to the limit ε→ 0 in the above equation. □

3.4. A posteriori estimate and uniqueness of the variational solution.
Taking φ = f ∈ XT as a test function in the variational formulation (2.12). From
Lemma 3.1, we deduce

1

2
|f(t)|2H − 1

2
|f0|2H = |f(t)|2H − |f0|2H −

∫ t

0

⟨f ′(s), f(s)⟩ ds

=

∫ t

0

⟨Lf, f⟩ ds

≤
∫ t

0

(−α ∥f∥2V + κ |f |2H) ds,

where we have used (3.7) at the first line, the variational formulation (2.12) at the
second line and the “coercive+dissipative” estimate (2.2) on L at the last line. We
then obtain (2.3) as an a posteriori estimate thanks to the Gronwall.

Let us prove now the uniqueness of the variational solution f associated to a
given initial datum f0 ∈ H. In order to do so, we consider two variational solutions
g and f associated to the same initial datum. Since the parabolic equation (1.1)-
(1.3) is linear, or more precisely, the variational formulation (2.12) is linear in the
solution, the function g − f satisfies the same variational formulation (2.12) but
associated to the initial datum g0 − f0 = 0. The a posteriori estimate (2.3) then
holds for g − f thanks to the previous step and implies that g − f = 0.

4. Parabolic equations with time dependent coefficients

In this section, we present a variant of the Lax-Milgram theorem that we use
for getting an alternative proof Theorem 2.3 and then extending Theorem 2.3 to
a parabolic equation with time dependent coefficients. We finally deal with the
(nonlinear) McKean-Vlasov equation.
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4.1. A variant of the Lax-Milgram theorem. We consider a Hilbert space H
endowed with a scalar product (·, ·) and the associated norm | · |. We consider next
a subspace Φ ⊂ H endowed with a pre-Hilbertian scalar product ((·, ·)) and the
associated norm ∥ · ∥ such that

(4.1) |φ| ≤ C∥φ∥, ∀φ ∈ Φ.

We finally consider a bilinear form E : H × Φ → R such that

∀φ ∈ Φ, ∃Cφ ≥ 0, |E(f, φ)| ≤ Cφ|f |, ∀ f ∈ H ,(4.2)

∃α > 0, ∀φ ∈ Φ, E(φ,φ) ≥ α∥φ∥2.(4.3)

Theorem 4.1. For any linear and continuous form ℓ : Φ → R, meaning that

(4.4) |ℓ(φ)| ≤ C∥φ∥, ∀φ ∈ Φ,

there exists at least one f ∈ H such that

(4.5) E(f, φ) = ℓ(φ), ∀φ ∈ Φ.

Proof of Theorem 4.1. For a fixed φ ∈ Φ, the mapping f 7→ E(f, φ) is a linear and
continuous form on H , so that there exists Aφ ∈ H such that

(4.6) E(f, φ) = (f,Aφ), ∀ f ∈ H , φ ∈ Φ,

and A : Φ → H is a linear mapping. Because of (4.3), A is one-to-one (injection).
On the linear subspace G := AΦ ⊂ H , we may then define the inverse linear
mapping B := A−1 : G → Φ. Using (4.6), (4.3) and (4.1), for any g ∈ G , we have

α∥Bg∥2 ≤ E(Bg,Bg) = (Bg, g) ≤ |Bg||g| ≤ C∥Bg∥|g|,
from what we immediately deduce that B is bounded with norm ∥B∥ ≤ C/α.

Defining G the closure of G in H (for the norm | · |) and Φ̂ the completion of Φ

for the norm ∥ · ∥, we may uniquely extend B as B̄ : Ḡ → Φ̂, B̄|G = B. We may

also uniquely extend ℓ as a linear and continuous form ℓ̄ on Φ̂. The equation (4.5)
becomes

(f,Aφ) = ℓ̄(φ), ∀φ ∈ Φ,

or equivalently

(4.7) (f, ψ) = ℓ̄(B̄ψ), ∀ψ ∈ Ḡ .

From the Riesz-Frechet representation Theorem in Ḡ and because ℓ̄ ◦ B̄ is a linear
and continuous mapping on Ḡ , there exists a unique f ∈ Ḡ solution to (4.7), and
this one provides a solution to (4.5). When Ḡ ̸= H , the problem (4.5) has a family
of solutions given by {f}+ Ḡ ⊥. □

4.2. An alternative proof of Theorem 2.3. We consider the parabolic equation
(1.1)-(1.2)-(1.3)-(1.4) with same notations and we additionally assume

(4.8) sup c ≤ −1

2
− 1

2
∥b∥2L∞ .

This additional assumption will be removed in the next section. We define the
Hilbert space H := L2(0, T ;H1(Rd)) endowed with its usual norm and the pre-
Hilbert space Φ := C2

c ([0, T )× Rd) endowed with the norm ∥ · ∥ defined by

∥φ∥2 :=

∫ T

0

∥φ(t, ·)∥2H1(Rd)dt+ ∥φ(0, ·)∥2L2(Rd).
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We also define the bilinear form

E(f, φ) :=
∫
U
(∇f · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt,

with always U := (0, T )× Rd, and the linear form

ℓ(φ) :=

∫
Rd

φ(0, ·)f0 dx.

We observe that

E(φ,φ) =

∫
U
(|∇φ|2 −∇φ · b φ− cφ2)dxdt+

1

2

∫
Rd

φ(0, x)2dx ≥ 1

2
∥φ∥2,

where we have used the Young inequality and the condition (4.8) in order to get
the last inequality, that E also satisfies (4.2) and that ℓ satisfies (4.4). From Theo-
rem 4.1, we know that there exists f ∈ H satisfying (4.5), or un other words∫

U
(∇f · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt =

∫
Rd

φ(0, ·)f0 dx

for any φ ∈ C2
c ([0, T ) × Rd). Because C2

c ([0, T ) × Rd) ⊂ C1
c ([0, T );H

1(Rd)) with
dense embedding, we deduce that f is in fact a weak-solution in the sense of Def-
inition 2.1. We have recovered the conclusions established in Section 3.1 and we
conclude the proof of Theorem 2.3 by using the next steps presented in Section 3.

4.3. A time dependent variant of Theorem 2.3. We consider the parabolic
equation

(4.9) ∂tf = Lf := div(A∇f) + div(af) + b · ∇f + cf + F,

where Aij , ai, bi and c are times dependent coefficients and where Aij is uniformly
elliptic in the sense that

(4.10) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd Aij(t, x) ξiξj ≥ ν |ξ|2, ν > 0.

Theorem 4.2 (J.-L. Lions). Assume that

(4.11) A, a, b, c ∈ L∞((0, T )× Rd)

and that A satisfies the uniformly elliptic condition (4.10). For any f0 ∈ L2(Rd)
and F ∈ L2(U), there exists a unique variational solution to the Cauchy problem
associated to (4.9) in the sense that

f ∈ XT := C([0, T );L2) ∩ L2(0, T ;H1) ∩H1(0, T ;H−1),

such that for any φ ∈ XT and any t ∈ (0, T ) there holds∫
Rd

f(t)φ(t) dx =

∫
Rd

f0φ(0) dx+

∫ t

0

∫
Rd

(Fφ+ f∂tφ) dxds(4.12)

+

∫ t

0

∫
Rd

{(b · ∇f + cf)φ− (A∇f + af) · ∇φ} dxds.

Proof of Theorem 4.2. Step 1. We proceed similarly as in the alternative proof of
Theorem 2.3 in Section 4.2 and in particular we define H and Φ in the same way.
We now define the bilinear form on H × Φ by

E(f, φ) :=
∫
U
((A∇f + af) · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt
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and the linear form on Φ by

ℓ(φ) := ℓ(φ) :=

∫
U
Fφdxdt+

∫
Rd

φ(0, ·)f0 dx.

We additionally first assume that

(4.13) sup c ≤ −min(
1

2
,
ν

2
)− 1

2ν
∥a− b∥2L∞ .

In that case, we may observe that

E(φ,φ) =

∫
U
(A∇φ · ∇φ+∇φ · (a− b)φ− cφ2)dxdt+

1

2

∫
Rd

φ(0, x)2dx

≥ min(
1

2
,
ν

2
)∥φ∥2,

that E also satisfies (4.2) and that ℓ satisfies (4.4). Exactly as in Section 4.2, we
deduce the existence of a weak solution f ∈ H to the parabolic equation (4.9)
with the help of Theorem 4.1 and we next conclude the proof of Theorem 4.2 by
following the same steps as those presented in Sections 3.2, 3.3 and 3.4.

Step 2. We do not assume anymore (4.13). We define cλ := c − λ with λ > 0
large enough in such a way that cλ satisfies the additional condition (4.13) and
Fλ := e−λtF. We may apply the first step with the choice of functions A, a, b, cλ,
f0, Fλ, and we thus obtain the existence and uniqueness of a variational solution
g ∈ XT to the modified equation

(4.14) ∂tg + λg = div(A∇g) + div(ag) + b · ∇g + cg + e−λtF in U ,

with initial condition g(0, ·) = f0. For any φ ∈ XT , choosing ϕ := eλtφ ∈ XT as a
test function in the variational formulation of (4.14), we immediately deduce that
f := eλtg satisfies (4.12). □

4.4. The weak maximum principle. We establish that the linear parabolic
equation (4.9) satisfies a weak maximum principle.

Theorem 4.3 (Weak maximum principle). When 0 ≤ f0 ∈ L2(Rd), the associated
variational solution f ∈ XT to the parabolic equation (4.9)-(4.10)-(4.11) satisfies
f ≥ 0.

Proof of Theorem 4.3. We split the proof into four steps.

Step 1. We claim that for any g ∈ XT and any function β ∈ C2(R) such that
β(0) = β′(0) = 0, β′′ ∈ L∞, there holds

(4.15)

∫
Rd

β(gt)−
∫
Rd

β(g0) =

∫ t

0

⟨g′s, β′(gs)⟩V ′,V ds,

for any t ∈ (0, T ). For proving that fact, we take up again the arguments (and
the notations) presented in Step 1 of the proof of Lemma 3.1. More precisely,
we consider the regularized sequence gε = g ∗t ρε for which we know that gε ∈
C1([0, T ];H1), gε → g in C([0, T ;L2) and ∂tgε → ∂tg in L2(0, t;H−1). Using the
dominated convergence theorem of Lebesgue, we also observe that

β(gε) → β(g), β′(gε) → β′(g), ∇β′(gε) → ∇β′(g),

the first convergence holding in C([0, T ];L2) and the two last convergences holding
in L2(U). It is worth emphasizing that for proving the last convergence we use the
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classical chain rule ∇β′(g) = β′′(g)∇g for g ∈ H1(Rd). On the other hand, from
the chain rule for smooth functions, we have∫

Rd

β(gεt)−
∫
Rd

β(gε0) =

∫ t

0

∫
Rd

∂sgεβ
′(gs) =

∫ t

0

⟨g′s, β′(gs)⟩V ′,V ds.

We conclude to (4.15) by passing to the limit as ε→ 0 in the above identity.

Step 2. We claim that for any f ∈ XT variational solution to the parabolic equation
(4.9) and any φ ∈ L2(0, T ;V ), there holds

(4.16)

∫ t

0

⟨f ′s, φs⟩V ′,V ds =

∫ t

0

⟨Lfs, φs⟩V ′,V ds.

On the one hand, for f, φ ∈ C1([0, T ], V ), the integration by part formula gives∫
Rd

ftφt −
∫
Rd

f0φ0 −
∫ t

0

∫
Rd

fsφ
′
s =

∫ t

0

∫
Rd

f ′sφs.

By the density C1([0, T ], V ) ⊂ XT , we deduce that∫
Rd

ftφt −
∫
Rd

f0φ0 −
∫ t

0

⟨φ′
s, fs⟩ds =

∫ t

0

⟨f ′s, φs⟩ds

holds for any f, φ ∈ XT . Using the variational formulation of equation (4.9), we
deduce that (4.16) holds for any φ ∈ XT . We conclude that (4.16) holds for any
φ ∈ L2(0, T ;V ) by the density XT ⊂ L2(0, T ;V ).

Step 3. We consider f ∈ XT a variational solution to the parabolic equation (4.9)
and a function β as defined in step 1. Observing that β′(f) ∈ L2(0, T ;V ), we may
use (4.15) and (4.16) together with g = f and φ = β′(f), and we obtain∫

Rd

β(ft)−
∫
Rd

β(f0) =

∫ t

0

⟨Lfs, β′(fs)⟩V ′,V ds,

or in other words, for any t ∈ (0, T ), we have∫
Rd

β(ft)−
∫
Rd

β(f0) =

∫ t

0

∫
Rd

(
−(A∇f + af) · ∇β′(f) + (b · ∇f + cf)β′(f)

)
.

Step 4. We now rather prove that f0 ≤ 0 implies f ≤ 0 on U what is another
formulation of the maximum principle because of the linearity of the equation. We
make the fundamental observation

(4.17)

∫
Rd

g2+ = 0 iff g ≤ 0,

for g ∈ L2(Rd). By a classical density argument, we may in fact take β(s) = s2+ in
the last formula established in Step 3, what gives∫

Rd

(ft)
2
+ −

∫
Rd

(f0)
2
+ =

∫ t

0

∫
Rd

(
−(A∇f+ + af+) · ∇f+ + (b · ∇f+ + cf+)f+

)
.

≤
∫ t

0

∫
Rd

( 1

2ν
|a|2 + 1

2ν
|b|2 + c

)
f2+,

where we use ff+ = f2+, f∇f+ = f+∇f = f+∇f+ and A∇f · ∇f = A∇f+ · ∇f in
the first line and the Young inequality in the second line. Using that f0 ≤ 0, the
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equivalence (4.17) and the boundedness assumption (4.11), we have∫
Rd

(ft)
2
+ ≤

(1
2
∥a∥2L∞ +

1

2
∥b∥2L∞ + ∥c+∥L∞

) ∫ t

0

∫
Rd

f2+.

Thanks to the Gronwall lemma, we deduce that ∥(ft)+∥L2 = 0 so that ft ≤ 0 for
any t ∈ (0, T ) thanks to equivalence (4.17) again. □

4.5. The McKean-Vlasov equation. In this section, we consider the nonlinear
McKean-Vlasov equation

(4.18) ∂tf = Lff := ∆f + div(aff), f(0) = f0,

with

(4.19) af := a ∗ f, a ∈ L∞(Rd)d,

and we aim to prove the following existence and uniqueness result. We define

H = L2
k :=

{
f ∈ L2(Rd); ∥f∥2L2

k
:=

∫
f2⟨x⟩2k dx <∞

}
,

with ⟨x⟩2 := 1 + |x|2, and

V = H1
k :=

{
f ∈ L2

k(Rd); ∇f ∈ L2
k(Rd)

}
.

Theorem 4.4. For any 0 ≤ f0 ∈ H := L2
k, k > d/2, there exists a unique global

variational solution f to the McKean-Vlasov equation (4.18), and more precisely
f ∈ XT , for any T > 0, where XT is defined thanks to (2.11) with the choices
H := L2

k and V := H1
k .

Proof of Theorem 4.4. Step 1. A priori estimates. Integrating in the x vari-
able a nice solution f to the McKean-Vlasov equation (4.18) and using the Green-
Ostrogradski divergence formula, we have

d

dt

∫
fdx =

∫
div(. . . ) dx = 0,

so that the mass (the integral) is conserved. On the other hand, multiplying the
equation by f+ and integrating in the x variable, we get

1

2

d

dt

∫
f2+ = −

∫
|∇f+|2 −

∫
∇f+ · aff+

≤ 1

4
∥af∥2L∞

∫
f2+,

by using the Young inequality and assuming af ∈ L∞. Thanks to to the Gronwall
Lemma, we deduce that f(t)+ = 0 if f0+ = 0, what is equivalent to the fact that the
equation is positivity preserving: f(t) ≥ 0 if f0 ≥ 0. The two previous properties
together imply

(4.20) ∥f(t)∥L1 ≤ ∥f0∥L1 ∀ t ≥ 0,

with equality if f0 ≥ 0. We finally multiply the equation by f⟨x⟩2k and we integrate
in the x variable, in order to obtain

1

2

d

dt

∫
f2⟨x⟩2k = −

∫
|∇f |2⟨x⟩2k +

1

2

∫
f2∆⟨x⟩2k

−
∫
f(af · ∇f)⟨x⟩2k −

∫
f2af · ∇⟨x⟩2k,
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by performing several integration by parts. Using the Young inequality in order to
get ride of the third term, we get

d

dt

∫
f2⟨x⟩2k ≤ −

∫
|∇f |2⟨x⟩2k +

∫
f2(∆⟨x⟩2k + |af |2⟨x⟩2k − 2af · ∇⟨x⟩2k).

From (4.19) and (4.20), we have

∥af∥L∞ ≤ ∥a∥L∞∥f0∥L1 ,

and therefore

∆⟨x⟩2k + |af |2⟨x⟩2k − 2af · ∇⟨x⟩2k ≤ C0⟨x⟩2k,
for a constant C0 := C0(k, ∥a∥L∞∥f0∥L1). Together with the Gronwall lemma, we
deduce

(4.21) ∥f(t)∥2L2
k
+

∫ t

0

∥∇f∥2L2
k
ds ≤ eC0t ∥f0∥2L2

k
∀ t ≥ 0.

That last estimate is strong enough for defining variational solutions as in the case
of a linear parabolic equation at least when L2

k ⊂ L1, which means k > d/2.

Step 2. We observe that for g ∈ L2
k and f ∈ V = H1

k , the formula

⟨Lgf, h⟩ := −
∫
Rd

(∇f + agf) · ∇(h⟨x⟩2k) dx, ∀h ∈ V,

defines a linear form on V . Repeating the same computations as for the proof of
(4.21), we have

⟨Lgf, f⟩ ≤ −∥∇f∥2L2
k
+ C0∥f∥2L2

k
, ∀ f ∈ H1

k ,

with C0 := C0(k, ∥a∥L∞∥g∥L1). We consider now

g ∈ C := {h ∈ C([0, T ];L2
k); ∥h(t)∥L1 ≤ ∥f0∥L1}

and the linear time depending problem

∂tf = Lgf := ∆f + div(agf), f(0) = f0.

It is worth emphasizing that af ∈ L∞((0, T ) × Rd). We apply J.-L. Lions Theo-
rem 4.2 which implies that there exists a unique variational solution f ∈ XT , and
more precisely

(f(t), φ(t))H = (f0, φ(0))H +

∫ t

0

{
⟨Lg(s)f(s), φ(s)⟩+ ⟨φ′(s), f(s)⟩

}
ds,

for any φ ∈ XT and any 0 ≤ t ≤ T . Choosing φ := χM ⟨x⟩−2k as a test function in
the above variational formulation, with χM (x) := χ(x/M), χ ∈ D(Rd), 1B(0,1) ≤
χ ≤ 1B(0,2), we deduce∫

f(t)χM =

∫
f0χM −

∫
Rd

(∇f + agf) · ∇χM dx.

Using that f(t), f0 ∈ L2
k ⊂ L1, 0 ≤ χM ↗ 1, f,∇f ∈ L2(0, T ;L2

k) ⊂ L1
tx and

∥∇χM∥L∞ → 0, we may pass to the limit M → ∞, and we (rigorously) obtain
the same mass conservation (4.20) for the solution to this linear equation. Because
f0 ≥ 0, we have f(t) ≥ 0, and thus f ∈ C .
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Step 3. From the previous step, we have built a mapping C → C , g 7→ f . For
g1, g2 ∈ C , we consider the associated solutions f1, f2 ∈ C ∩ XT and we define
f := f2 − f1, g := g2 − g1. We observe that

∂tf = ∆f + div(ag1f) + div(agf2), f(0) = 0.

Adapting the L2
k estimate established in Step 1, we have

1

2

d

dt

∫
f2⟨x⟩2k = −

∫
|∇f |2⟨x⟩2k +

1

2

∫
f2∆⟨x⟩2k −

∫
f(ag1 · ∇f)⟨x⟩2k

−
∫
f2ag1 · ∇⟨x⟩2k −

∫
f2ag · (∇f⟨x⟩2k + f∇⟨x⟩2k)

≤ 1

2

∫
f2∆⟨x⟩2k +

1

2

∫
f2|ag1 |2⟨x⟩2k −

∫
f2ag1 · ∇⟨x⟩2k

+
1

2

∫
f22 |ag|2⟨x⟩2k +

1

2

∫
(f22 |ag|2 + f2|∇⟨x⟩2k|),

where we have used three times the Young inequality. Using (4.21) and the fact
that g1 ∈ C , we deduce

1

2

d

dt

∫
f2⟨x⟩2k ≲ (1 + ∥a∥2L∞∥g1∥2L1)

∫
f2⟨x⟩2k + ∥a∥2L∞∥g∥2L1

∫
f22 ⟨x⟩2k

≲ (1 + ∥a∥2L∞∥f0∥2L1)

∫
f2⟨x⟩2k + ∥a∥2L∞∥g∥2L1eC0t∥f0∥2L2

k

=
C1

2

∫
f2⟨x⟩2k + ∥g∥2L1

C2

2
eC0t,

with Ci := Ci(k, ∥a∥L∞ , ∥f0∥L1). Thanks to the Gronwall lemma, we finally obtain

sup
[0,T ]

∥f∥2L2
k

≤
∫ T

0

∥g∥2L1C2e
C0s+C1(t−s) ds

≤ C2e
(C0+C1)TT sup

[0,T ]

∥g∥2L1 ,

and, because L2
k ⊂ L1,

sup
[0,T ]

∥f∥2L2
k
≤ 1

2
sup
[0,T ]

∥g∥2L2
k
,

for T > 0 small enough. The Banach-Picard contraction mapping theorem tells us
that there exists a unique f ∈ C ∩XT variational solution to the nonlinear McKean-
Vlasov equation. Iterating the above process we get a unique global solution. □
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4.6. Aubin-Lions Lemma and application. We present first a simple but typ-
ical version of Aubin-Lions Lemma.

Lemma 4.5. Consider a sequence (fn) of functions satisfying fn ∈ C([0, T ];L2Rd))
and

∂tfn −∆fn = Fn + div(Gn) in D′((0, T )× Rd),

with

(fn) is bounded in YT := L∞(0, T ;L2
η(Rd)) ∩ L2(0, T ;H1(Rd)), η > 0;

(Fn), (Gn) are bounded in L2((0, T )×BR), ∀R > 0.

Then, there exists f ∈ YT and a subsequence (fnk
) such that

fnk
→ f strongly in L2((0, T )× Rd)) and weakly in YT .

Proof of Lemma 4.5. Step 1. We introduce a sequence of mollifiers (ρε), that is
ρε(x) := ε−dρ(ε−1x) with 0 ≤ ρ ∈ D(R2), ⟨ρ⟩ = 1. We observe that

∂

∂t

∫
Rd

fn(t, y) ρε(x− y) dx =

∫
Rd

(fn ∆ρε + Fnρε −Gn · ∇ρε) dy,

where the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any fixed
ε > 0. We also clearly have

∇x

∫
Rd

fn(t, y) ρε(x− y) dx = −
∫
Rd

fn∇yρε(x− y) dy,

where again the RHS term is bounded in L2((0, T ) × BR) uniformly in n for any
fixed ε > 0. In other words, fn ∗ ρε is bounded in H1((0, T ) × BR). We finally
observe that

sup
[0,T ]

∫
(fnk

∗ ρε)2⟨x⟩ηdx

≤ sup
[0,T ]

∫ ∫
(fnk

(x))2ρε(y)⟨x− y⟩ηdxdy

≤ sup
n

sup
[0,T ]

∫
(fn(x))

2⟨x⟩ηdx
∫
ρ(y)⟨y⟩ηdy <∞.

Thanks to the Rellich-Kondrachov Theorem, we get that (up to the extraction of
a subsequence) (fn ∗ ρε)n is strongly convergent in L2((0, T ) × Rd). Thanks to
boundedness assumption on (fn), we may extract a second subsequence (fnk

) such
that fnk

⇀ f weakly in YT for some f ∈ YT . We then have fnk
∗ρε → f ∗ρε weakly

in YT . Coming back to the previous strong compactness result, we also have

fnk
∗ ρε → f ∗ ρε strongly in L2((0, T )× Rd) as k → ∞.

Step 2. Now, we observe that∫
(0,T )×Rd

|g − g ∗ ρε|2 dxdt =

∫
(0,T )×R2

∣∣∣∫
Rd

(g(t, x)− g(t, x− y))ρε(y) dy
∣∣∣ dxdt

=

∫
(0,T )×Rd

∣∣∣∫
Rd

∫ 1

0

∇xg(t, zs) · yρε(y) dsdy
∣∣∣2 dxdt,
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with zs := x+ sy thanks to a Taylor expansion. As a consequence, we have∫
(0,T )×Rd

|g − g ∗ ρε|2 dxdt ≤
∫
(0,T )×Rd

∫
Rd

∫ 1

0

|∇xg(t, zs)|2|y|2ρε(y) dsdydxdt

≤ ε2
∫
(0,T )×Rd

|∇xg(t, z)|2dtdz
∫
Rd

|ζ|2ρ(ζ) dζ,

where we have used the Jensen inequality and two changes of variables. We conclude
that fnk

→ f in L2((0, T )× Rd) by writing

fnk
− f = (fnk

− fnk
∗ ρε) + (fnk

∗ ρ− f ∗ ρ) + (f ∗ ρε − f)

and using the previous convergence and estimates. □

We give now a typical example of application of the Aubin-Lions lemma that we
illustrate on the McKean-Vlasov equation. It is worth emphasizing that more than
the result in itself, it is the strategy which is interesting because a small variation
around the same ideas allows one to establish the existence of Leray solution to the
Navier-Stokes equation in any dimension d ≥ 2.

Let us then consider an ∈ L∞(Rd) and fn,0 ∈ L2
k(Rd), k > d/2 and the associated

unique solution fn ∈ XT to the McKean-Vlasov equation

(4.22) ∂tfn = ∆fn + div((an ∗ fn)fn), fn(0) = fn,0,

as built in Theorem 4.4.

Proposition 4.6. Assume that fn,0 ⇀ f0 weakly in L2
k and an ⇀ an weakly in

L∞. Then fn → f in L2((0, T ) × Rd) (for instance), where f ∈ XT is the unique
solution to the McKean-Vlasov equation (4.22) associated to the interaction kernel
a and to the initial datum f0.

Proof of Proposition 4.6. Because of Theorem 4.4, we know that

(fn) is bounded in YT := L∞(0, T ;L2
k(Rd)) ∩ L2(0, T ;H1(Rd)),

((an ∗ fn)fn) is bounded in L2((0, T )× Rd).

We may thus apply the Aubin-Lions Lemma 4.5 and we deduce that there exists
f ∈ YT and a subsequence (fnk

) such that

fnk
→ f strongly in L2((0, T )× Rd)) and weakly in YT .

For φ ∈ C1
c ([0, T )× Rd), the weak formulation of (4.22) writes∫ T

0

∫
Rd

fnk
(∂tφ+∆φ)dxdt+

∫
Rd

f0,nk
φ(0, ·)dxdt

=

∫ T

0

∫
Rd

∫
Rd

fnk
(t, x)fnk

(t, x)ank
(x− y) · ∇φ(y)dxdydt.

Using the weak convergence in the LHS term and a standard weak-strong conver-
gence trick in order to deal with the RHS term, we immediately deduce that we
may pass to the limit k → ∞ in the above formulation and thus that f is a weak
solution to the McKean-Vlasov equation (4.22) associated to the interaction kernel
a and to the initial datum f0. Because of Lemma 3.2 and Theorem 4.4, f is in
fact the unique variational solution and by uniqueness of the limit it is the whole
sequence (fn) which converges toward f . □
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