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1. Introduction

Let us consider the parabolic equation

(1.1)
∂f

∂t
= div(A∇f) in (0,∞)× Rd, f(0, ·) = f0 in Rd,

with a measurable, bounded and strictly elliptic matrix A, namely A satisfies (in
the sense of quadratic forms) νI ≤ A(x) ≤ ν−1I for any x ∈ Rd and for some
ν > 0. The heat equation corresponds to the case A = νI > 0. In this case and
when ν = 1/2, we know that

(1.2) γt(x) :=
1

(2πt)d/2
exp(−|x|2

2t
)

is the associated fundamental solution (that it is the unique solution f such that
f(t, ·) ⇀ δ0 as t → 0) and for any f0 ∈ L1(Rd) the solution f to (1.1) satisfies
f ∈ C∞((0,∞) × Rd). The main aim of this chapter is to recover part of these
results using some techniques which are valid for a general matrix A. However, for
the sake of simplicity, we will mainly consider the case A = νI, with ν = 1 or 1/2.

1.1. A first glance over the heat equation: a priori estimates. The section
is devoted to the heat equation

(1.3)
∂f

∂t
= ∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd.

We start with formally observing several qualitative properties of the solutions to
the heat equation. On the one hand, we have

d

dt

∫
Rd

f(t, x) dx =

∫
Rd

∆f dx = 0,

so that the mass is conserved (by the flow of the heat equation)

⟨f(t, ·)⟩ :=
∫
Rd

f(t, x) dx =

∫
Rd

f0 dx = ⟨f0⟩, ∀ t ≥ 0.
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The dispersion/diffusion effect of the heat equation can be revealed through the
decay of Lp norms. For instance, we have

(1.4)
d

dt

∫
Rd

f2 dx = 2

∫
Rd

f∆f dx = −2

∫
|∇f |2 ≤ 0,

for any t ≥ 0. The same computation gives

d

dt

∫
Rd

f2
+ dx = 2

∫
Rd

f+∆f dx = −2

∫
|∇f+|2 ≤ 0,

so that ∫
Rd

(f+(t, ·))2 dx = 0, ∀ t ≥ 0, if

∫
Rd

(f0+)
2 dx = 0.

Equivalently, we have

f(t, ·) ≥ 0, ∀ t ≥ 0, if f0 ≥ 0.

That means that the equation preservers the positivity, or in other words, the
equation (or the associated operator) satisfies a weak maximum principle. Coming
back to the dispersion/diffusion effect, and more generally than (1.4), for any convex
function β, we similarly have

d

dt

∫
Rd

β(f) dx =

∫
Rd

β′(f)∆f dx = −
∫
Rd

β′′(f)|∇f |2 dx ≤ 0, ∀ t ≥ 0,

and we thus obtain a large family of Lyapunov functional. In particular, the Lp-
norm, for any p ∈ [1,∞], falls in this family, and thus

(1.5) ∥f(t, ·)∥Lp ≤ ∥f0∥Lp , ∀ t ≥ 0.

Finally, for a positive solution, the dispersion/diffusion effect of the heat equation
can also be brought out through the increasing of moments: we have indeed

d

dt

∫
Rd

f(t, x)⟨x⟩k dx =
1

2

∫
Rd

f∆⟨x⟩k dx ≥ 0, ∀ t ≥ 0,

for k+d−2 ≥ 0 and ⟨x⟩2 := 1+|x|2 (since ∆⟨x⟩k = k⟨x⟩k−4[(k+d−2)|x|2+d] ≥ 0).

By differentiating the heat equation, we can easily establish some estimates on its
smoothing effect. For example, for f0 ∈ H1(Rd), the associated solution to the heat
equation satisfies

∂tf = ∆f and ∂t∇f = ∆∇f

from what we deduce

d

dt
∥f∥2L2 = −2∥∇f∥2L2 and

d

dt
∥∇f∥2L2 = −2∥D2f∥2L2

and then
1

2

d

dt

{
∥f∥2L2 + t∥∇f∥2L2

}
= −t∥D2f∥2L2 ≤ 0, ∀ t > 0.

Integrating in time this differential inequality, we readily obtain that the solution
to the heat equation satisfies

(1.6) ∥∇f(t)∥L2 ≤ 1

t1/2
∥f0∥L2 , ∀ t > 0.

It is worth emphasizing that a similar result as this last estimate (1.6) is available
for solutions to the general parabolic equation (1.1) when A is a smooth function,
but certainly not in the case when A is only measurable.
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1.2. Heat semigroup representation and Lp estimates. We consider now the
heat equation

(1.7)
∂f

∂t
=

1

2
∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd.

In this very particular case, the solutions to the heat equation are given through
the representation formula

(1.8) f(t, .) = γt ∗ f0,

where the gaussian kernel (γt) is defined in (1.2) and ∗ = ∗x stands for the con-
volution operator. The 1/2 in (1.7) is just put in order to get this usual gaussian
kernel γt (instead of a rescaled version of it). Let us observe that

∥γt∥Lp =
Cp,d

t
d
2 (1−

1
p )
, Cp,d :=

1

p
d
2p (2π)

d
2 (1−

1
p )
,

so that from the Young inequality on convolution products, we get the ultracon-
tractivity estimate

(1.9) ∥f(t, .)∥Lp ≤ Cr,d

t
d
2 (

1
q−

1
p )

∥f0∥Lq ,

for any t > 0 and p, q ∈ [1,∞], p ≥ q, where r ∈ [1,∞] is defined by the relation
1/p = 1/q + 1/r − 1. In particular, choosing p > q, we see that f(t, .) → 0 as
t → ∞, when f0 ∈ Lq, q ∈ [1,∞). Of course, the estimate (1.9) is much more
precise and reveals some kind of smoothing (gain of local integrability) effect of the
heat equation.

Exercise 1.1.
(1) Show that γt provides a fundamental solution to the heat equation (1.7) and
that γt+s = γt ∗ γs for any t, s > 0.
(2) Show that (1.8) provides a solution to the heat equation (1.7) for any initial
datum f0 ∈ Lq, q ∈ [1,∞].
(3) Show that

(1.10) ∥∇xγt∥Lr =
Cd,r

t
d
2 (1−

1
r )+

1
2

and recover estimate (1.6).
(4) We denote U := (0, T ) × Rd. For g : U → R (smooth and rapidly decaying)
show that

(1.11) f := γ ∗t,x g =

∫ t

0

γt−s ∗x g(s, ·)ds

provides a solution to the heat equation with source term

∂tf − 1

2
∆f = g, f(0) = 0.

(5) For g ∈ L1(U) establish that the solution f to the heat equation with source
term given by (1.11) satisfies f ∈ Lp(U) for any 1 < p < 1 + 2/d. More generally
and more precisely, establish that

∥f∥Lp(U) ≲ CT 1−(1+ d
2 )(

1
q−

1
p−1)∥g∥Lq(U), C :=

Cr,d

(1− d
2 (

1
q − 1

p )r)
1/r

,
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under the condition 1 ≤ q < p, (1+ d
2 )(

1
q −

1
p ) < 1 and where Cr,d and r are defined

in (1.9).

Taking advantage of (3) and (4) in Exercise 1.1, we establish a variant of (5) (which
is also a hint for the proof of (5)). We consider the heat equation with source term

∂tf − 1

2
∆f = divxG, f(0) = 0,

with G ∈ Lq(U), 1 ≤ q < ∞. From (1.11), we may write

f = γ ∗t,x divxG = (∇xγ) ∗t,x G.

For q < p < ∞ and r defined by 1
p = 1

q + 1
r − 1, we next compute

∥f∥Lp(U) =
(∫ T

0

∥∥∥∫ t

0

∇xγt−s ∗x Gs ds
∥∥∥p
Lp(Rd)

dt
)1/p

≤
(∫ T

0

(∫ t

0

∥∥∇γt−s ∗x Gs

∥∥
Lp(Rd)

ds
)p

dt
)1/p

≲
∥∥∥∫ t

0

1

(t− s)
d
2 (

1
q−

1
p )+

1
2

∥Gs∥Lq(Rd) ds
∥∥∥
Lp(0,T )

≲
∥∥∥ 1

s
d
2 (

1
q−

1
p )+

1
2

∥∥∥
Lr(0,T )

∥G∥Lq(U)

≲ T
1
2−(1+ d

2 )(
1
q−

1
p )∥G∥Lq(U),

where we have used (1.10) in the third line, the Holder inequality in the fourth line
and the condition 1

2 > (1+ d
2 )(

1
q −

1
p ) in the last line (which is true when p− q > 0

is small enough). In other words, if G ∈ Lq(U), there exists p ∈ (q,∞) such that
f ∈ Lp(U) and the above estimate holds.

2. De Giorgi-Nash-Moser and ultracontractivity

2.1. The Nash approach. We start establishing (1.9) for p = 2 and q = 1. For
that purpose, we first establish the following fundamental functional estimate.

Nash inequality. There exists a constant Cd such that for any f ∈ L1(Rd) ∩
H1(Rd), there holds

(2.1) ∥f∥1+2/d
L2 ≤ Cd ∥f∥2/dL1 ∥∇f∥L2 .

Proof of Nash inequality. We write for any R > 0

∥f∥2L2 = ∥f̂∥2L2 =

∫
|ξ|≤R

|f̂ |2 +
∫
|ξ|≥R

|f̂ |2

≤ cd R
d ∥f̂∥2L∞ +

1

R2

∫
|ξ|≥R

|ξ|2 |f̂ |2

≤ cd R
d ∥f∥2L1 +

1

R2
∥∇f∥2L2 ,

and we take the optimal choice for R by setting R := (∥∇f∥2L2/cd∥f∥2L1)
1

d+2 so that
the two terms at the RHS pf the last line are equal. □

Alternative proofs of the Nash inequality (2.1) are presented in Exercise ?? and
Exercise ??.
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The cornerstone L1 − L2 estimate. We consider now a solution f to the heat
equation (1.3) and we recall that

(2.2)
d

dt

∫
Rd

f(t, x)2 dx = −2

∫
Rd

|∇f |2 dx, ∀ t ≥ 0,

and

∥f(t, ·)∥L1 ≤ ∥f0∥L1 , ∀ t ≥ 0,

from (1.4) and (1.5) with p = 1. Putting together that two last equations and the
Nash inequality, we obtain the following ordinary differential inequality

d

dt

∫
Rd

f(t, x)2 dx ≤ −K
(∫

Rd

f(t, x)2 dx
) d+2

d

, K = Cd ∥f0∥−4/d
L1 .

We finally observe that for any solution u of the ordinary differential inequality

u′ ≤ −K u1+α, α = 2/d > 0,

some elementary computations (as already performed in the first chapter about
Gronwall lemma) lead to the inequality

u−α(t) ≥ αK t+ uα
0 ≥ αK t,

from which we conclude that

(2.3)

∫
Rd

f2(t, x) dx ≤ C

(
∥f0∥4/dL1

)d/2

td/2
= C

∥f0∥2L1

td/2
.

That is nothing but the announced estimate (1.9) for p = 2 and q = 1.

Extension to Lq − Lp estimates. In order to prove the estimate for the full
range of exponents, we use a duality and an interpolation argument as follow. We
introduce the heat semigroup S(f)f0 = f(t) associated to the heat equation as
well as the dual semigroup S∗(t). We clearly have S∗ = S because the Laplacian
opeartor is symetric in L2(Rd). As a consequence, thanks to (2.3) and for any
f0 ∈ L2(Rd), there holds

∥S(t)f0∥L∞ = sup
ϕ∈BL1

⟨S(t)f0, ϕ⟩ = supϕ∈BL1 ⟨f0, S(t)ϕ⟩

≤ sup
ϕ∈BL1

∥f0∥L2 ∥S(t)ϕ∥L2 ≤ ∥f0∥L2

C

td/4
,

which exacly means that S(t) : L2 → L∞ for positive times with norm bounded by
C t−d/4. We deduce

∥S(t)∥L1→L∞ ≤ ∥S(t/2)∥L2→L∞ ∥S(t/2)∥L1→L2 ≤ C

td/2
,

which establishes (1.9) for p = ∞ and q = 1. Finally, for any p ∈ (1,∞) and using
the interpolation inequality

∥S(t)f0∥Lp ≤ ∥S(t)f0∥θL1 ∥S(t)f0∥1−θ
L∞ ≤ ∥S(t)∥1−θ

L1→L∞ ∥f0∥L1 ∀ t > 0,

with θ = 1/p, and that is nothing but (1.9) in the general case.
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2.2. An alternative De Giorgi-Nash proof. Anticipating with the most classi-
cal De Giorgi-Moser approach that we will develop in the next sections, we present
here an alternative proof which mixes some arguments coming from Nash argu-
ment (the contraction estimate in any Lr spaces) and others coming from the De
Giorgi-Moser approach (the use of the Sobolev inequality). We assume here d ≥ 3
(in order to be able to use the Sobolev inequality).

Multiplying the equation (2.2) by φ2, with 0 ≤ φ ∈ C1([0, T ]), φ(0) = φ(T ) = 0,
and integration in time, we find

2

∫ T

0

φ2

∫
|∇f |2 =

∫ T

0

(φ2)′
∫

f2.

Using the Sobolev inequality, we deduce

(2.4) ∥φf∥2L2(0,T ;L2∗ ) ≲
∫ T

0

φ(φ′)
+
∥f∥2L2dt

Directly from (2.4), choosing φ(t) := φ0(t/T ) and using the decay estimate on the
Lp norms (1.5) with p = 2 and p = 2∗, we get

T∥φ0∥2L2(0,1)∥fT ∥
2
L2∗ =

∫ T

0

φ0(t/T )
2dt∥fT ∥2L2∗

≤
∫ T

0

φ(t)2∥ft∥2L2∗dt

≲
∫ T

0

φ(φ′)
+
∥ft∥2L2dt

≲
∫ T

0

φ(φ′)
+
dt∥f0∥2L2 .

Observing that∫ T

0

φ(φ′)
+
dt =

∫ T

0

φ0(t/T )(φ
′
0(t/T )/T )+dt =

∫ 1

0

φ0(s)(φ
′
0)+(s)ds,

we deduce

T∥fT ∥2L2∗ ≤ Cφ0
∥f0∥2L2 ,

what is exactly the decay estimate (1.9) with p = 2∗ and q = 2. We cannot deduce
from that last estimate together with duality and interpolation arguments the whole
range of estimates (1.9) with 1 ≤ q < p ≤ ∞. For that reason, we sligthly modify
the above proof in the following way.

For the RHS term in (2.4), we write∫ T

0

∥f∥2L2φφ′
+
dt ≤

∫ T

0

∥f∥2(1−θ)
L1 φ′

+
φ1−2θ∥f∥2θL2∗φ

2θdt

≤
(∫ T

0

∥f∥2L1(φ′
+
φ1−2θ)

1
1−θ dt

)1−θ(∫ T

0

∥f∥2L2∗φ
2dt

)θ

,

where we have used the interpolation inequality with 1/2 = 1 − θ + θ/2∗ in the
first line and the Holder inequality in the second line. Coming back to (2.4) and
simplifying both sides of the inequality, we obtain

∥φf∥2L2(0,T ;L2∗ ) ≲
∫ T

0

∥f∥2L1(φ′
+
φ1−2θ)

1
1−θ dt.
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Repeating the same argument as for the last pointwise estimate, we get

T∥φ0∥2L2(0,1)∥fT ∥
2
L2∗ ≤ Kφ(T )∥f0∥2L1 ,

with

Kφ(T ) =

∫ T

0

(φ′
+
φ1−2θ)

1
1−θ dt.

We compute θ = d/(d+ 2) and then

Kφ(T ) =

∫ T

0

(φ′
+
φ1−2θ)

1
1−θ dt.

=

∫ T

0

(φ′
+
)

d+2
2 φ

2−d
d dt.

= T−d/2

∫ 1

0

(φ′
0)

d+2
2

+
φ

2−d
d

0 dt.

The last term is finite when φ0(s) = sa(1 − s)a, with s(a−1) d+2
2 +a 2−d

d ∈ L1(0, 1)
what is the case when a > (2/d)/(d/2 + 2/d). All together, we have established

T∥fT ∥2L2∗ ≲ T−d/2∥f0∥2L1 .

That is again the decay estimate (1.9), but now with p = 2∗ and q = 1. Taking
advantage of that last estimate, we are able to obtain (1.9) for the the full range of
exponents 1 ≤ q < p ≤ ∞ by proceeding exactly as in Section 2.1.

2.3. The De Giorgi fundamental functional estimate. Let us consider again
a solution f to the heat equation (1.3). We integrate in time equation (1.4) in order
to get

1

2

∫
f2
t +

∫ t

s

∫
|∇f |2 =

1

2

∫
f2
s ,

for any 0 < s < t. We fix 0 < t0 < t1 < t < T and we integrate in s ∈ (t0, t1) the
above equation. We obtain

(t1 − t0)

∫
f2
t + 2(t1 − t0)

∫ t

t1

∫
|∇f |2 ≤

∫ T

t0

∫
f2.

Taking the supremum in t ∈ (t1, T ) of both terms at the RHS, we deduce

sup
[t1,T ]

∫
f2
t + 2

∫ T

t1

∫
|∇f |2 ≤ 2

t1 − t0

∫ T

t0

∫
f2,

for any 0 ≤ t0 < t1 ≤ T . Using the Sobolev inequality

∥f∥L2∗ ≤ CS∥∇f∥L2 ,
1

2∗
=

1

2
− 1

d
,

we have (in fact) proved

∥f∥2L∞(I1;L2) ≤
1

t1 − t0
∥f∥2L2(I0;L2),

∥f∥2L2(I1;L2∗ ) ≤
C2

S

2

1

t1 − t0
∥f∥2L2(I0;L2),

where Ii := [ti, T ]. We now recall the interpolation inequality

∥Λ∥X;LqθLrθ ≤ ∥Λ∥θX;Lq0Lr0 ∥Λ∥1−θ
X;Lq1Lr1 ,
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for a linear and bounded operator Λ : X → LqiLri , i = 0, 1, where

1

qθ
=

θ

q0
+

1− θ

q1
,

1

rθ
=

θ

r0
+

1− θ

r1
, θ ∈ [0, 1].

Using this interpolation inequality with θ such that

1

p
:=

1− θ

2
=

θ

2
+

1− θ

2∗
,

we deduce

(2.5) ∥f∥2Lp(I1;Lp) ≤
C

t1 − t0
∥f∥2L2(I0;L2), p := 2(1 + 2/d).

In order to avoid the use of the above interpolation inequalities we may argue in
a slightly different manner. We present the argument in the following exercise on
a more general parabolic equation in such a way that it will be clear that we use
more than just the arguments of Section 1.2.

Exercise 2.1. Let us consider a solution f to the parabolic equation (1.1).

(1) Repeating the first above argument, establish that

ν

∫ T

0

φ2

∫
|∇f |2 ≤

∫ T

0

φ′
+
φ

∫
f2,

for any 0 ≤ φ ∈ D(0, T ). (Hint. See also Section 2.5)

(2) Establish that fφ satisfies

∂t(fφ)−∆(fφ) = div((A− I)∇fφ) + fφ′.

Using Exercice 1.1 and the estimate which follows, prove that

∥fφ∥Lp ≤ C∥(A− I)∇fφ∥L2 + C∥fφ′∥L2 ,

for some exponent p = p(d) > 2 and a constant C = C(d) > 0.

(3) Recover (2.5) by combining (1) and (2).

2.4. Moser iterative argument. We first observe the general and fundamental
fact: if β : R → R is a function and f is a solution to the heat equation, there holds

∂tβ(f)−∆β(f) = −β′′(f)|∇f |2.

In particular, if β is convex, g := β(f) is a subsolution to the heat equation in the
sense that it satisfies

(2.6) ∂tg −∆g ≤ 0.

For a subsolution g ≥ 0, we may repeat the arguments of Section 2.3, and we we
get in the same manner

(2.7) ∥g∥2Lp(Uk+1)
≤ C

1

tk+1 − tk
∥g∥2L2(Uk)

,

with Uk := Ik × Rd, Ik := (tk, T ] and 0 ≤ tk < tk+1 < T .

We consider a solution f ≥ 0 to the heat equation and we define

tk :=
T

2
− T

2k
, k ≥ 1, pk+1 := (1 + 2/d)pk, k ≥ 1, p1 := 2.
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Applying (2.7) to the subsolution g := fpk/2, we obtain

∥f∥Lpk+1 (Uk+1) = ∥fpk/2∥2/pk

Lp(Uk+1)

≤
(
C
2k

T
∥fpk/2∥2L2(Uk)

)1/pk =
(
C
2k

T

)1/pk∥f∥Lpk (Uk).

Observing that
∞∑
k=1

1

pk
=

1

2

∞∑
j=0

1

(1 + 2/d)j
=

1

2
+

d

4
,

we deduce that
∞∏
k=1

(
C
2k

T

)1/pk ≲ T−1/2−d/4,

and thus

∥f∥L∞(U∞) ≤ lim inf
k→∞

∥f∥Lpk (Uk)

≤ lim inf
k→∞

k∏
j=1

(
C
2j

T

)1/pj∥f∥Lp1 (U1)

≲ T−1/2−d/4∥f∥L2(U1).

Finally, together with the decay of the L2 norm (1.4) which implies

∥f∥L2(U1) ≤ T 1/2∥f0∥L2 ,

we have thus established

(2.8) ∥fT ∥L∞ ≲
1

T d/4
∥f0∥L2 .

Estimate (2.8) is the dual estimate of (2.3). We may thus end the proof of the
full range estimate (1.9) by arguing by duality and interpolation exactly as in
Section 2.1.

2.5. De Giorgi argument. We give another proof of (2.8) by mainly modifying
the second step in the proof presented in Section 2.4. For c ∈ R fixed, chosing
β(s) := (s − c)+, the function g := β(f) is a subsolution of the heat equation
in the sense of (2.6). Multiplying the equation (2.6) by gφ2 for 0 ≤ φ ∈ D(U),
U := (0, T )× Rd, and integrating in the space and time variables, we obtain

1

2
∥(f(t)− c)+φ∥2L2 −

1

2
∥(f(s)− c)+φ∥2L2

≤ −
∫ t

s

∫
∇(f − c)+ · ∇((f − c)+φ

2) dxdτ

= −
∫ t

s

∥∇(f − c)+φ∥2L2 dτ +

∫ t

s

φ∇(f − c)+ · (f − c)+∇φdxdτ,

for any 0 ≤ s < t ≤ T .
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Choising now 0 < r < R, φ(x) = ϕ(|x|), ϕ(0) = 1 and ϕ′ = −(R − r)−11[r,R] on
R+, we deduce∫

Br

(f(t)− c)2+dx+

∫ t

s

∫
Br

|∇(f − c)+|2 dxdτ

≤
∫
BR

(f(s)− c)2+dx+
1

(R− r)2

∫ t

s

∫
BR

|(f − c)+|2 dxdτ.

We define the parabolic cylinder Qr := (T − r2, T ) × Br for r > 0 small enough.
We use the above inequality with R = rj :=

1
2 (1 + 2−k) and r := rk+1, so that∫

Brj+1

(f(t)− c)2+dx+

∫ t

s

∫
Brj+1

|∇(f − c)+|2 dxdτ

≤
∫
Brj

(f(s)− c)2+dx+ 22(j+2)

∫ t

s

∫
Brj

|(f − c)+|2 dxdτ.

We define the parabolic cylinder Qr := (0 − r2, 0) × Br for any r > 0 such that
Qr ⊂ (T0, T1) × Ω. We shall use the above inequality with R = rj := 1

2 (1 + 2−k)
and r := rk+1, so that

Lemma 2.2. If (vj)j≥0 satisfies 0 ≤ vj ≤ Cjvαj−1 for any j ≥ 1 and v0 < C
− α2

(α−1)2

for some C > 0 and α > 1, then vj → 0 as j → ∞.

Lemma 2.3. There exists a constant C = C(d) such that

∥u+∥L∞(Q1/2) ≤ C (1 + ∥u+∥L2(Q1)).

Proof. We define

Vk :=

∫
Qrk

(u− ck)
2dxdt,

with rk := 1
2 (1 + 2−k) and ck := 1

2 (1 − 2−k). We set p := 2∗/2. Thanks to the
Holder inequality, we have

Vk ≤
∫ 0

−r2k

(∫
Brk

(ut − ck)
p
+dx

)2/p∣∣{ut − ck ≥ 0} ∩Brk

∣∣1−2/p
dt

On the one hand, we observe that {ut − ck ≥ 0} = {ut − ck−1 ≥ 2−k−1}, so that∣∣{ut − ck ≥ 0} ∩Brk

∣∣1−2/p ≤
(
22k+2

∫
Brk

(ut − ck−1)
2
+dx

)1−2/p

≤ Ck
(

sup
−r2k<s<0

∫
Brk

(us − ck−1)
2
+dx

)1−2/p

2.6. An alternative Moser’s L1 − L2 estimate. We want to prove the same
kind of estimate but starting from less integrability condition. For a given function
β : R → R, we compute

1

2
∂tβ(f)

2 − 1

2
∆β(f)2 −

(
1 +

β(f)β′′(f)

(β′(f))2
)
|∇β(f)|2 = β′(f)β(f)(∂tf −∆f) = 0,

from what, with the choice β(s) = sp/2, p ̸= 0, we deduce

1

2
∂tf

p − 1

2
∆fp − 2

1− p

p
|∇fp/2|2 = 0.
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When p > 1, after multiplication by φ2 for a function φ ∈ D((0, T ]) and integration
in time, we find

4
p− 1

p

∫ T

0

φ2

∫
|∇(fp/2)|2 + φ2

T

∫
fp
T =

∫ T

0

2φφ′
∫

fp

When p < 1, after multiplication by φ2 for a function φ ∈ D([0, T )) and integration,
we find

(2.9) 4
1− p

p

∫ T

0

φ2

∫
|∇fp/2|2 + φ2

0

∫
fp
0 = −

∫ T

0

2φφ′
∫

fp

Starting from f0 ∈ L1(Ω), Ω ⊂ Rd, we choose p ∈ (2/2∗, 1), and we observe that∫
U
fp ≤

(∫
U
f
)p

|U|1−p ≤ ∥f0∥pL1 |U|1−p.

Using the dissipation estimate (2.9) for the Lp (quasi)norm and fixing T0 < T1, we
have ∫

U0

|∇fp/2|2 ≲
∫
U1

fp ≲ ∥f0∥pL1 .

Together with the Sobolev imbedding∫ T0

0

∥fp
t ∥L2∗/2dt =

∫ T0

0

∥fp/2
t ∥2L2∗dt ≲

∫ T0

0

∥∇(f
p/2
t )∥2L2dt,

we obtain

∥fp
t ∥L1L2∗/2 ≲ ∥f0∥pL1 .

On the other hand, we have

∥fp∥L∞L1/p = sup
[0,T0]

∥ft∥pL1 ≤ ∥f0∥pL1 .

The two last estimate together and a interpolation inequality yield

∥fp∥L2Lq ≲ ∥f0∥pL1 ,

with

1

q
=

1

2∗
+

p

2
.

When p > 1− 2/2∗ so that q ≤ 2, we deduce

∥f∥pLpq = ∥fp∥Lq ≲ ∥fp∥L2Lq ≲ ∥f0∥pL1 .

We finally observe that r := pq > 1 when p > 1/(2∗2), so that we have established

∥f∥Lr(U1) ≲ ∥f0∥L1 ,

for some r > 1. We may next use the previous step in order to improve the
integrability estimate.
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2.7. Boccardo Gallouët argument. Let us introduce a familly of new estimates
which are the key new argument we use in this section. For a solution f to the heat
equation (1.3), we recall that

∂tβ(f)−∆β(f) + β′′(f)|∇f |2 = 0.

Choosing β ∈ W 2,∞ the even (and convex) function such that β(0) = β′(0) = 0
and β′′ := 1[an,a(n+1)], a > 0 to be fixed later, and integrating in all variables the
previous equation, we deduce

(2.10)

∫
β(ft)dx+

∫
|f |∈[an,a(n+1)]

|∇f |2dxds =
∫

β(f0)dx ≤ a

∫
|f0|dx,

where we have used that |β′(s)| ≤ a and β(s) ≤ a|s|. Using a variant of this new
estimate and the classical L1 non expansive estimate, we will establish the following
result.

Proposition 2.4. Assume d ≥ 3 and define r := 1 + 1/d. For any solution f to
the heat equation (1.3), we (at least formally) have

(2.11) ∥f∥Lr((T,2T )×Rd) ≲ T
1
2r ∥f0∥L1(Rd),

for any T > 0, and thus (1.9) holds with p = r and q = 1.

Remark 2.5. (1) Reciprocally, if f satisfies (1.9) with p = 1 + 1/d and q = 1, or
in other words,

∥ft∥L1+1/d ≲
1

t
1
2

d
d+1

∥f0∥L1 , ∀t > 0,

we deduce that∫ T

0

∥ft∥1+1/d

L1+1/ddt ≲
∫ T

0

1

t
1
2

dt∥f0∥1+1/d
L1 ≲ T 1/2∥f0∥1+1/d

L1 ,

what is nothing but (2.11).

(2) Repeating the arguments presented in the previous sections, we easily deduce
the ultracontractivity estimate (1.9) for the full range of exponents 1 ≤ q ≤ p ≤ ∞.
We thus rather focus to the the proof of (2.11) in the sequel.

We consider a solution f to the heat equation (1.3) with initial datum f0 ∈ L1(Rd).
We restrict to the case f0 ≥ 0 so that f ≥ 0. For φ ∈ C1

c ((0, 3T )) such that
1(T,2T ) ≤ φ ≤ 1, we introduce the function g := fφ which satisties g ≥ 0 and the
estimate

(2.12) ∥g∥L∞L1 ≤ ∥f∥L∞L1 ≤ ∥f0∥L1 ,

because of the estimate (1.5) on f . It also satisfies

∂tβ(g)−∆β(g) + β′′(g)|∇g|2 = fφ′β′(fφ) in U ,
with β(g) vanishing at times t = 0 and t = 3T . Integrating in all variables, we
obtain ∫

Vn

|∇g|2 =

∫
U
fφ′β′(fφ) ≤ ∥φ′∥L∞a

∫
U
|f |,

where U := (0, 3T )×Rd and Vn := {(t, x) ∈ U ; na ≤ g(t, x) ≤ (n+1)a}. Gathering
that last estimate with (2.12), for any n ≥ 0, we have

(2.13)

∫
Vn

|∇g|2 ≤ ∥φ′∥L∞Ta∥f0∥L1 .
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We assume now ∥φ′∥L∞ ≤ 4/T what is compatible with the support condition. For
n ≥ 1, using the Holder inequality and next the Tchebychev inequality, we then
deduce ∫

Vn

|∇g| ≤
(∫

Vn

|∇g|2
)1/2

|Vn|1/2

≤ 2a1/2∥f0∥1/2L1

1

(an)r/2
∥g1Vn

∥r/2Lr .

Summing up and using the Cauchy-Schwartz inequality, we have∫
g≥a

|∇g| ≤ 2a(1−r)/2∥f0∥1/2L1

∑
n≥1

1

nr/2
∥g1Vn

∥r/2Lr

≤ 2a(1−r)/2∥f0∥1/2L1

(∑
n≥1

1

nr

)1/2(∑
n≥1

∥g1Vn∥rLr

)1/2

,

and we conclude with

(2.14)

∫
g≥a

|∇g| ≲ a(1−r)/2∥f0∥1/2L1 ∥g∥r/2Lr ,

because r > 1.

On the other hand, the Holder inequalility yields

∥g∥Lr ≤ ∥g∥θL1∥g∥1−θ
L1∗ ,

1

r
= θ +

1− θ

1∗
,

with θ ∈ (0, 1) because r ∈ (1, 1∗), and thus

∥g∥rLr(U) ≤ ∥g∥rθL∞L1

∫ 3T

0

∥gs∥r(1−θ)

L1∗ ds = ∥g∥rθL∞L1∥g∥r(1−θ)

L1L1∗ ,

because r(1− θ) = 1. The two conditions on θ yield

θ =
1

r

(
1− 1

1∗
)
=

1

rd
=

1

d+ 1
,

and thus together with (2.12), we get

(2.15) ∥g∥rLr(U) ≤ ∥f0∥1/dL1 ∥g∥L1L1∗ .

We next write g = g ∧ a+ (g − a)+ and then

∥g∥L1L1∗ ≤ ∥g ∧ a∥L1L1∗ + ∥(g − a)+∥L1L1∗

≲ a1−1/1∗T∥g∥1/1
∗

L∞L1 + ∥∇(g − a)+∥L1

≲ a1−1/1∗T∥f0∥1/1
∗

L1 + a(1−r)/2∥f0∥1/2L1 ∥g∥r/2Lr

≲ a1/dT∥f0∥1/1
∗

L1 + a−1/(2d)∥f0∥r/2L1 ∥g∥1/2
L1L1∗ ,

where we have used the Sobolev estimate at the second line, the estimates (2.12)
and (2.14) at the third line and the interpolation estimate (2.15) at the fourth line.
Thanks to the Young inequality

1

a1/(2d)
∥f0∥r/2L1 ∥g∥1/2

L1L1∗ ≤ 1

εa1/d
∥f0∥rL1 + ε∥g∥L1L1∗ ,

we deduce

∥g∥L1L1∗ ≲ a1/dT∥f0∥1/1
∗

L1 +
1

a1/d
∥f0∥1+1/d

L1 .
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Choosing a := T−d/2∥f0∥L1 , we conclude with

∥g∥L1L1∗ ≲ T 1/2∥f0∥L1 .

Together with (2.15), we deduce that (2.11) holds. Using the already used trick

T 1/r∥fT ∥Lr =
(∫ 2T

T

∥fT ∥Lrds
)1/r

≤
(∫ 2T

T

∥fs∥Lrds
)1/r

based on (1.5) for p = r together with (2.11), we finally have

∥fT ∥Lr ≲
1

T
1
2r

∥f0∥L1 ,

what is nothing but (1.9) for p = r and q = 1.

Proposition 2.6. Under the same asumptions, we also have

∇f ∈ Lq
loc(U), ∀ q ∈

[
1,

d+ 2

d+ 1

)
.

Proof of Proposition 2.6. We start observing that∫
Vn

|∇f |q ≤
(∫

Vn

|∇f |2
)q/2(∫

1Vn

)1−q/2

≲
(∫

Vn

fr
)1−q/2 1

nr(1−q/2)

by using the Holder inequality in the first line and by using the estimate (2.13) and
the Tchebychev inequality in the second line. We deduce∫

|f |≥1

|∇f |q =

∞∑
n=1

∫
Vn

|∇f |q

≲
∞∑

n=1

(∫
Vn

fr
)1−q/2 1

nr(1−q/2)

≲
( ∞∑
n=1

∫
Vn

fr
)1−q/2 ( ∞∑

n=1

1

nr(1−q/2)2/q

)q/2

by using the Holder inequality in the last line. From Proposition 2.4, we can take

r := 1 + 1/d so that the first sum is bounded by ∥f∥r(1−q/2)
Lr < ∞ and that leads

to the condition q < (2d+ 2)/(2d+ 1) in order that the last sum is finite. For any
ball BR, we have∫

BR

|∇f |q =

∫
BR

|∇f |q1|f |<1 +

∫
BR

|∇f |q1|f |≥1

≲
∫
BR

|∇f |21|f |≤1 +

∫
|∇f |q1|f |≥1 < ∞

from the very first estimate (2.13) and the above discussion. In fact, repeating the
proof of Proposition 2.4, we may establish f ∈ Lr for any r ∈ [1, 1 + 2/d) which
leads to the condition q < (d+ 2)/(d+ 1). □
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