An introduction to evolution PDEs November 22, 2023

CHAPTER 2: DE GIORGI-NASH-MOSER THEORY AND
BEYOND FOR PARABOLIC EQUATIONS

CONTENTS

—_

1. Introduction
2. De Giorgi-Nash-Moser and ultracontractivity 4

I write in blue color what has been taught during the classes.

1. INTRODUCTION

Let us consider the parabolic equation

of
(1.1) 2
with a measurable, bounded and strictly elliptic matrix A, namely A satisfies (in
the sense of quadratic forms) vI < A(z) < v~ for any z € R? and for some
v > 0. The heat equation corresponds to the case A = vI > 0. In this case and
when v = 1/2, we know that

div(AVf) in (0,00) x R?, f(0,)=fo inR%

1.2 S P
(1.2) Ve(z) = Wexp( Tt)

is the associated fundamental solution (that it is the unique solution f such that
f(t,-) = 6y as t — 0) and for any fo € L'(R?) the solution f to (1.1) satisfies
f € C=((0,00) x RY). The main aim of this chapter is to recover part of these
results using some techniques which are valid for a general matrix A. However, for
the sake of simplicity, we will mainly consider the case A = vI, with v =1 or 1/2.

1.1. A first glance over the heat equation: a priori estimates. The section
is devoted to the heat equation
0
(1.3) a—{ =Af in (0,00) x RY, f(0,)=fo inR<
We start with formally observing several qualitative properties of the solutions to

the heat equation. On the one hand, we have
d
— flt,z)dex = Afdx =0,
dt Rd Rd

so that the mass is conserved (by the flow of the heat equation)

(f(t,") = f(tmc)dac:/ fodx = (fo), Vt>0.
R4 Rd
1
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The dispersion/diffusion effect of the heat equation can be revealed through the
decay of LP norms. For instance, we have

d

(1.4) — | fPdz=2 fAfdx:72/|Vf|2§0,
dt Rd Rd

for any t > 0. The same computation gives

i/ fidxzz/ f+Afdx:—2/|Vf+|2§0,
dt Jpa R

(Fr(t )P do =0, vez0, it [ (fo)Pds=o.
R4 R4

Equivalently, we have

so that

f(t,)>0, Vt>0, if fo>0.

That means that the equation preservers the positivity, or in other words, the
equation (or the associated operator) satisfies a weak mazimum principle. Coming
back to the dispersion/diffusion effect, and more generally than (1.4), for any convex
function 3, we similarly have

d , o "
G| awie= [ gnara == [ gpwita <o vezo

and we thus obtain a large family of Lyapunov functional. In particular, the LP-
norm, for any p € [1, 00], falls in this family, and thus

(1.5) 1t )lee < W folle, VE20.

Finally, for a positive solution, the dispersion/diffusion effect of the heat equation
can also be brought out through the increasing of moments: we have indeed

d 1
— ft,z) () de = = fA@) dx >0, Vt>0,

dt Rd 2 Rd
for k+d—2 > 0 and (x)? := 1+|z|? (since Alx)* = k(z)*4[(k+d—2)|z|*+d] > 0).
By differentiating the heat equation, we can easily establish some estimates on its
smoothing effect. For example, for f; € H'(R?), the associated solution to the heat
equation satisfies

of =Af and O, Vf=AVf

from what we deduce
d d
@llflliz = —2||Vf[|7- and @Ilvflliz = —2||D*f|7.
and then Ld
ia{llf\liz +t|V ST} = —tID?*fl|7. <0, Vit>0.

Integrating in time this differential inequality, we readily obtain that the solution
to the heat equation satisfies

1
(1.6) IVFDllze < 575 I follze,  VE>0.

It is worth emphasizing that a similar result as this last estimate (1.6) is available
for solutions to the general parabolic equation (1.1) when A is a smooth function,
but certainly not in the case when A is only measurable.
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1.2. Heat semigroup representation and L? estimates. We consider now the
heat equation

0 1
(1.7) 5§:§Af in (0,00) x R, f(0,)=fo inR%
In this very particular case, the solutions to the heat equation are given through
the representation formula

(1.8) f(t,.) =% fo,

where the gaussian kernel (v;) is defined in (1.2) and * = x, stands for the con-
volution operator. The 1/2 in (1.7) is just put in order to get this usual gaussian
kernel ~,; (instead of a rescaled version of it). Let us observe that

Chp.a . 1

d 1y
2

B0 T o100

1ell e =

so that from the Young inequality on convolution products, we get the ultracon-
tractivity estimate

(1.9) 1£(t lor < —omd

15—
for any ¢ > 0 and p,q € [1,00], p > g, where r € [1,00] is defined by the relation
1/p = 1/g+ 1/r — 1. In particular, choosing p > ¢, we see that f(¢,.) — 0 as
t — oo, when fo € L%, q € [1,00). Of course, the estimate (1.9) is much more
precise and reveals some kind of smoothing (gain of local integrability) effect of the
heat equation.

[ follza,

Exercise 1.1.

(1) Show that v: provides a fundamental solution to the heat equation (1.7) and
that vi1s = v * s for any t,s > 0.

(2) Show that (1.8) provides a solution to the heat equation (1.7) for any initial
datum fo € L1, q € [1,00].

(8) Show that

Cd,'r

(1.10) Vel = m

and recover estimate (1.6).
(4) We denote U := (0,T) x RY. For g : U — R (smooth and rapidly decaying)
show that

t
(1'11) f ::'7*t,xg:/ Vt—s *z g(s,-)ds
0
provides a solution to the heat equation with source term
1
of - 5Af =g, F(0)=0.

(5) For g € L*(U) establish that the solution f to the heat equation with source
term given by (1.11) satisfies f € LP(U) for any 1 < p < 14 2/d. More generally
and more precisely, establish that

_ dyrl_1_
I fllren S CT 0D G2 D gl Lagyy, C =

(1—4(2 - Ly’
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under the condition 1 < ¢ < p, (1+ g)(% — %) < 1 and where C, q and r are defined
n (1.9).

Taking advantage of (3) and (4) in Exercise 1.1, we establish a variant of (5) (which
is also a hint for the proof of (5)). We consider the heat equation with source term

1
of— §Af =div,G, f(0)=
with G € L1(U), 1 < ¢ < co. From (1.11), we may write
f=~ *t,x div,G = (vx')/) *t,x G.
For ¢ < p < 0o and r defined by 1% = % +1 — 1, we next compute

T

(/OTH/; VoYies *2 G dsHip(Rd)dt)l/p

Il 2@

T t P \1/p
< / /HV%,S g GSHLP(Rd) ds) dt)
< Gyl r.a ’
- H/ e L UL P
1
T G
~oll g -p)+s LT(O,T)H e

1_(q{adyl_1
< p2-+3)(G p)HG||Lq(u)7

~

where we have used (1.10) in the third line, the Holder inequality in the fourth line
and the condition 1 > (1+ g)(% - %) in the last line (which is true when p—¢ > 0

is small enough). In other words, if G € L1(U), there exists p € (¢, 00) such that
f € LP(U) and the above estimate holds.

2. DE GIORGI-NASH-MOSER AND ULTRACONTRACTIVITY

2.1. The Nash approach. We start establishing (1.9) for p = 2 and ¢ = 1. For
that purpose, we first establish the following fundamental functional estimate.

Nash inequality. There exists a constant Cy such that for any f € L*(R%) N
H'(R), there holds

(2.1) IG5 < Call FIPAE I £l 2.

Proof of Nash inequality. We write for any R > 0

2 f2 £12 P12
112 = 1|2 = /ESRU T /mﬂ

. 1 "

< Cdef||2Lw+R2/§>R €17 1 f1?
! >

< R |f1E + 35 IV 13

and we take the optimal choice for R by setting R := (|[V f||3- /cd||f||%l)%+2 so that
the two terms at the RHS pf the last line are equal. ([

Alternative proofs of the Nash inequality (2.1) are presented in Exercise 7?7 and
Exercise 77.
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The cornerstone L' — L? estimate. We consider now a solution f to the heat
equation (1.3) and we recall that

(2.2) A p )2 de = —2/ VfPde, Vi o0,
dt Rd Rd
and
£t ) e < [l follzr, V>0,

from (1.4) and (1.5) with p = 1. Putting together that two last equations and the
Nash inequality, we obtain the following ordinary differential inequality

d+2
d

it | f(t,x)*dx < —K( Rdf(t,a:)Q da:)

—4/d
5 K:CdHfOHLI/ .
We finally observe that for any solution u of the ordinary differential inequality
o < —Ku't a=2/d>0,

some elementary computations (as already performed in the first chapter about
Gronwall lemma) lead to the inequality

u *(t) > aKt+uj > aKt,

from which we conclude that

a/a\ %2
(IBI) ™ sl

2
(2.3) g fetz)de <C Iz = 12

That is nothing but the announced estimate (1.9) for p = 2 and ¢ = 1.

Extension to LY — LP estimates. In order to prove the estimate for the full
range of exponents, we use a duality and an interpolation argument as follow. We
introduce the heat semigroup S(f)fo = f(t) associated to the heat equation as
well as the dual semigroup S*(¢). We clearly have S* = S because the Laplacian
opeartor is symetric in L?(R9). As a consequence, thanks to (2.3) and for any
fo € L*(R%), there holds

1S®)foll= = Sup (S(t)fo, ¢) = supgen,, (fo,5(t)9)
C
< g;rzl Ifollz2 1S®)ellz2 < llfollz2 357

which exacly means that S(t) : L? — L* for positive times with norm bounded by
Ct=%* We deduce

C
1SN L2z < NSE/2)l| 2oL 1S(E/2) L1522 < 75,

which establishes (1.9) for p = co and ¢ = 1. Finally, for any p € (1,00) and using
the interpolation inequality

1S follze < I1S@) follzr IS® foll = < USONL, e 1follzr ¥ >0,

with 6 = 1/p, and that is nothing but (1.9) in the general case.
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2.2. An alternative De Giorgi-Nash proof. Anticipating with the most classi-
cal De Giorgi-Moser approach that we will develop in the next sections, we present
here an alternative proof which mixes some arguments coming from Nash argu-
ment (the contraction estimate in any L” spaces) and others coming from the De
Giorgi-Moser approach (the use of the Sobolev inequality). We assume here d > 3
(in order to be able to use the Sobolev inequality).

Multiplying the equation (2.2) by ¢?, with 0 < ¢ € C1([0,T]), »(0) = ¢(T) = 0,
and integration in time, we find

2/0Ts02/vf|2 —/OT(@Q)’/F-

Using the Sobolev inequality, we deduce

T
(2.4) I oo ruper) S / o), | 22t

Directly from (2.4), choosing ¢(t) := ¢o(t/T') and using the decay estimate on the
L? norms (1.5) with p = 2 and p = 2*, we get

T
Tllpo 2oy Ifrll2 = / o(t/T)2dt] fr 2

T

< / (21212 dt
0

< T / 2 d

S RN

< T / d 2

s ) ("), dt|| foll72-

Observing that

T T 1
/ (), dt = / o(t/T)(gh(t)T)/T), dt = / o(3)(¢h), (5)ds,
0 0 0
we deduce

Tlfrll72r < Ceollfollze,

what is exactly the decay estimate (1.9) with p = 2* and ¢ = 2. We cannot deduce
from that last estimate together with duality and interpolation arguments the whole
range of estimates (1.9) with 1 < ¢ < p < co. For that reason, we sligthly modify
the above proof in the following way.

For the RHS term in (2.4), we write

T T
2(1—0 _
/0 1120t / LA o120 725 2t

T Cp 1 N\1=0, (T 0
([ 1ot nmma) ™ ([ 11 )

where we have used the interpolation inequality with 1/2 = 1 — 6 + 6/2* in the
first line and the Holder inequality in the second line. Coming back to (2.4) and
simplifying both sides of the inequality, we obtain

T
_ _1
I oo ruper) S / 112, (¢, 20 T .

IN

IA
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Repeating the same argument as for the last pointwise estimate, we get

Tllwollz0) I frl72+ < Ko(T)l foll 21,
with

T
_ _1
Kga(T):A (¢ ') dt.

We compute § = d/(d + 2) and then

T
_ _1
K, (T) = /0(<p’+<ﬁ1 20)=adt.

dio  2-d

1
T’d/z/o (00).7 o dt.

The last term is finite when @g(s) = s*(1 — )%, with sla-D 2 agt ¢ L(0,1)
what is the case when a > (2/d)/(d/2+ 2/d). All together, we have established

Tl frll3 s ST Y2 foll3r

That is again the decay estimate (1.9), but now with p = 2* and ¢ = 1. Taking
advantage of that last estimate, we are able to obtain (1.9) for the the full range of
exponents 1 < ¢ < p < 0o by proceeding exactly as in Section 2.1.

2.3. The De Giorgi fundamental functional estimate. Let us consider again
a solution f to the heat equation (1.3). We integrate in time equation (1.4) in order

to get ,
g [+ ] [iome=5 [

for any 0 < s <t. We fix 0 < tg < t; < t < T and we integrate in s € (tg,t1) the
above equation. We obtain

(tl—to)/ft2+2(t1—to)/t/|vf2S/T/f2~

Taking the supremum in ¢ € (¢1,7T) of both terms at the RHS, we deduce

o [ e [ frost <

for any 0 < tg < t; <T. Using the Sobolev 1nequahty

1 1 1

- < Cq|lV — —-_=z

||f||L2 = SH fHL27 o ) d’

we have (in fact) proved
1
£ 1052y < 0 ||f||L2(10 L2))
02 1

||f||L2 (I1;L2* ) = 2S t ||f||L2(Io,L2)7

where I; := [t;, T]. We now recall the mterpolatlon inequality

1Al ;2o 2o < AN Lao oo AN Lo o
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for a linear and bounded operator A : X — L% L™, i = 0,1, where

1 0 1-6 1 0 1-6
—=—++ , —=—+= 5 06[071]
q6 qo q1 7o To 1

Using this interpolation inequality with 6 such that
1 1-0 6 1-0

p T2 T2t

we deduce
2 c 2 .
(2.5) 1A Te (1y0my < mllfﬂm(zo;m), p=2(1+2/d).

In order to avoid the use of the above interpolation inequalities we may argue in
a slightly different manner. We present the argument in the following exercise on
a more general parabolic equation in such a way that it will be clear that we use
more than just the arguments of Section 1.2.

Exercise 2.1. Let us consider a solution f to the parabolic equation (1.1).

(1) Repeating the first above argument, establish that

v TcPQ IVf? < Tsogcp 12
0 0

for any 0 < v € D(0,T). (Hint. See also Section 2.5)
(2) Establish that fo satisfies

(fe) = A(fe) =div((A =)V fe) + f¢.

Using Exercice 1.1 and the estimate which follows, prove that

Ifellr < CIIA =DV follzz + Cllf¢ |22,
for some exponent p = p(d) > 2 and a constant C' = C(d) > 0.
(3) Recover (2.5) by combining (1) and (2).

2.4. Moser iterative argument. We first observe the general and fundamental
fact: if 8 : R — R is a function and f is a solution to the heat equation, there holds

0B(f) = AB(f) = =B"(NIVfI.

In particular, if 3 is convex, g := S(f) is a subsolution to the heat equation in the
sense that it satisfies

(2.6) Og — Ag < 0.

For a subsolution g > 0, we may repeat the arguments of Section 2.3, and we we
get in the same manner

1
(2.7) 19120 @pra) < lelgllig(uk),

with Uy := I, x Rd7 I, = (tk,T] and 0 <t < 1 < T.
We consider a solution f > 0 to the heat equation and we define

T T
tkzzgizik’ k21, peyr=0+2/d)pr, k=1, pr:=2.
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Applying (2.7) to the subsolution g := fP*/2, we obtain

2 .
L2

1l zor1 @)

ﬁ)l/iﬁk

< CTNP ) = (€)W ame
Observing that
© | 1> 1 d
kzzlp? 5]2 1+2/d 2w
we deduce that
ﬁ l/pk < po1/2-d/a,
k=1

and thus

Iflleoe @) < likrgicgfllfllmk(uk)

< liminf : cZyup

< liminf | 1( ?) Il o1 i)
j:

S T_l/Q_d/4||fHL2(u1)-

Finally, together with the decay of the L? norm (1.4) which implies

Ifllz2@y < T2 foll e,

we have thus established

(23) ol S mallfollze.

Estimate (2.8) is the dual estimate of (2.3). We may thus end the proof of the
full range estimate (1.9) by arguing by duality and interpolation exactly as in
Section 2.1.

2.5. De Giorgi argument. We give another proof of (2.8) by mainly modifying
the second step in the proof presented in Section 2.4. For ¢ € R fixed, chosing
B(s) := (s — ¢)4, the function g := S(f) is a subsolution of the heat equation
in the sense of (2.6). Multiplying the equation (2.6) by gp? for 0 < ¢ € D(U),
U = (0,T) x R?, and integrating in the space and time variables, we obtain

SN = lits = 57(s) = )l

- / / V(f — s V((f - €)s0?) dudr
- / IV(f — ) ppll2a dr + / oV —)s - (f — )+ Vi dudr,

forany 0 <s<t<T.



10 CHAPTER 2: DE GIORGI-NASH-MOSER THEORY AND BEYOND

Choising now 0 < r < R, ¢(z) = ¢(|z|), ¢(0) = 1 and ¢' = —(R —r)" 1}, 5 on
R, we deduce

/BT(f(t)—c)idx—i—/t/ V(f = o) |2 dedr
g/BR(f(s)—c)f_dx—F / / f—o);?dadr.

We define the parabolic cylinder @, := (T — 7‘2, T) x B, for r > 0 small enough.
We use the above inequality with B =r; := %(1 +27%) and r := rp41, so that

/ (f(t) —¢) dm+// (f —¢)4|? dadr
B B, .,

g/; (f(s) — )% dx + 220+ // f—o)4|? dedr.

We define the parabohc cylinder @, := (0 — 72,0) x B,« for any r > 0 such that
Qr C (To,T1) x Q. We shall use the above inequality with R = r; := (1 +27F)
and r := 741, so that

042

Lemma 2.2. If (vj);>0 satisfies 0 < vj < ijj’_l foranyj >1andvy < C (a=1)?
for some C' >0 and o > 1, then v; = 0 as j — oo.

Lemma 2.3. There exists a constant C' = C(d) such that
[t llzoe(@/0) < C A+ lugllizzQu)-

Proof. We define

Vi = (u — cx)?dxdt,
Qry,

with 7 := $(1+27%) and ¢ := (1 —27%). We set p := 2*/2. Thanks to the

Holder inequality, we have

0 1-2/p
Vks/ (/ (up — cp)id ) [{us — cx > 0} N By, | dt
B

2
Tk Tk

On the one hand, we observe that {u; — ¢, > 0} = {us — cx_1 > 2771}, so that

_ 1-2/p
|{Ut —c, >0}N Brk|1 2/p < (22k+2/ (up — ck_l)idx>
B

Tk

1-2/
< Ck( sup / (us—ck_l)f_da:> g
B

—r2<s<0

2.6. An alternative Moser’s L' — L? estimate. We want to prove the same
kind of estimate but starting from less integrability condition. For a given function

8 :R — R, we compute

Lo Lo B , Can

R 081 = 5AB()° ~ (14 Tz ) IVBUIP = B (1B @~ Af) =0,
from what, with the choice 3(s) = s?/2, p # 0, we deduce

1 1 1-—
SO — SAfr 2Ly =g,
2 2 p



CHAPTER 2: DE GIORGI-NASH-MOSER THEORY AND BEYOND 11

When p > 1, after multiplication by ¢? for a function ¢ € D((0,7]) and integration
in time, we find

L [rvurne e [ = [ [

When p < 1, after multiplication by ¢? for a function ¢ € D([0,T)) and integration,
we find

(2.9) 41;}7/0T¢2/|Vf”/2|2+¢3/fp/OTQW’/fp

Starting from fo € L'(Q2), Q C R, we choose p € (2/2*,1), and we observe that

/ufp < (/u f)p|u|1_p < Ioll2. i,

Using the dissipation estimate (2.9) for the LP (quasi)norm and fixing Ty < T3, we

have
/ VP < / 7 < oll2.
UO ul

Together with the Sobolev imbedding

To To /2 To /2
/0 177 ovsadlt = / 1 F7/2|2 0 de < / IV (22,

we obtain

1FE M pzere < I follZs-

On the other hand, we have

1PNl Lo e = sup [|fell2 < 11 foll%1-
0,7o]

The two last estimate together and a interpolation inequality yield

||fp||L2Lq S HfOHIila
with

—+

_ 1 p
T 97

SEE

When p > 1 —2/2* so that ¢ < 2, we deduce
1IN pe = 117 ze S NfPNL2re S ILfoll7:
We finally observe that r := pg > 1 when p > 1/(2*2), so that we have established

I1£1

for some r > 1. We may next use the previous step in order to improve the
integrability estimate.

) S oz,
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2.7. Boccardo Gallouét argument. Let us introduce a familly of new estimates
which are the key new argument we use in this section. For a solution f to the heat
equation (1.3), we recall that

aB(f) — AB(f) + B"(FIVFIP =0.

Choosing 3 € W2 the even (and convex) function such that 3(0) = ’(0) = 0
and " := 1ign,a(n+1)], @ > 0 to be fixed later, and integrating in all variables the
previous equation, we deduce

2 _
(2.10) /B(ft)d:c+/f|€[an7a(n+l)] v dxds_/,e(fo)d:cga/|fo|dx,

where we have used that [3'(s)| < a and B(s) < a|s|. Using a variant of this new
estimate and the classical L! non expansive estimate, we will establish the following
result.

Proposition 2.4. Assume d > 3 and define r := 1+ 1/d. For any solution f to
the heat equation (1.3), we (at least formally) have

1
(2.11) I llr(r2ryxrey S T2 || follr may,
for any T > 0, and thus (1.9) holds with p =1 and ¢ = 1.

Remark 2.5. (1) Reciprocally, if [ satisfies (1.9) withp=1+1/d and ¢ =1, or
in other words,

1
I fell prersa S <N follzr, V¥t >0,
d+1

2T

we deduce that

T T
d 1 d d
[ Iaiga s [ Sal e s T
0 0

what is nothing but (2.11).

(2) Repeating the arguments presented in the previous sections, we easily deduce
the ultracontractivity estimate (1.9) for the full range of exponents 1 < g < p < oco.
We thus rather focus to the the proof of (2.11) in the sequel.

We consider a solution f to the heat equation (1.3) with initial datum f, € L*(R?).
We restrict to the case fo > 0 so that f > 0. For ¢ € CL((0,3T)) such that
1721 < ¢ < 1, we introduce the function g := f¢ which satisties g > 0 and the
estimate

(2.12) gL rr < N fllLerr < llfollLrs

because of the estimate (1.5) on f. It also satisfies

0iB(g) — AB(g) +B"(9)IVyl* = f&'B'(fe) n U,
with 5(g) vanishing at times ¢ = 0 and ¢ = 37". Integrating in all variables, we

obtain
2 !l /
/V V4l —/Mfsoﬂ(fso)ﬁllwllma/ulfl,

where U := (0,3T) x R and V,, := {(t,z) € U; na < g(t,z) < (n+1)a}. Gathering
that last estimate with (2.12), for any n > 0, we have

(2.13) [ 1¥6 < ¢/~ Tal ol

n
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We assume now ||¢’|| L~ < 4/T what is compatible with the support condition. For
n > 1, using the Holder inequality and next the Tchebychev inequality, we then

deduce
1/2
[ oval < ([ vaP) |vn|1/2
Vi \Z

Summing up and using the Cauchy-Schwartz inequality, we have

IN

1/2 r/2
202 fol 4 722

IN

( )T/2 ||g Vn

1 r)/2 1/2 7"/2
JZ Il S —
gza n>1
< 202 () (S owwli)
n>1 n>1

and we conclude with

(2.14) / Vel a2l
g

because r > 1.
On the other hand, the Holder inequalility yields

1 1-6
||g||LT < ||g||L1HgHL1*7 ; - 0 + 1* 5

with 0 € (0,1) because r € (1,1%), and thus

0 1-6 1-6
e < gl / 19517V ds = [|g )17 1 g7 2,

gl

because (1 — 0) = 1. The two conditions on 6 yield
1 1 1 1

0 = — 1 —_ = — =

7 ( 1* ) rd d+1’

and thus together with (2.12), we get

1/d
(2.15) g1l ey < Ifoll 0l 1 e -

We next write g = g Aa+ (g — a)+ and then

lgllzin < lgAallpip +11(g—a)s|lpipre
< a VYT gl + IV (g — @)l
S AT Rl 4 4 TR fo R gl
< aV T foll A + oV fol gl e

where we have used the Sobolev estimate at the second line, the estimates (2.12)
and (2.14) at the third line and the interpolation estimate (2.15) at the fourth line.
Thanks to the Young inequality

1/2

1

2

120152 e < — N follie + ellgllpr e,
call/

1/(2d) 1fo

we deduce

1/1* 1+1/d
lglpipe S @ Tlfoll i + 1/d||foH .
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Choosing a := T~%?||fy|| 1, we conclude with

lgll iz S T2 follzr-
Together with (2.15), we deduce that (2.11) holds. Using the already used trick

2T 1/r 2T 1/
el = ([ Wrlerds) < ([ 1fleeds)

based on (1.5) for p = r together with (2.11), we finally have

Ifrller <
what is nothing but (1.9) for p = r and ¢ = 1.

HLla

Proposition 2.6. Under the same asumptions, we also have

d+2
a1
Proof of Proposition 2.6. We start observing that

/V NG /v n vre) " / 1) "
(/ fr)l_q/znr(ll;zﬂ)

n

VfeLl W), Vqel

A

by using the Holder inequality in the first line and by using the estimate (2.13) and
the Tchebychev inequality in the second line. We deduce

/f|>1|w|q - Z / v e

1-q/2 1
< -
~ Z(/ ‘f ) nr(l q/2)
1 Q/2 1 q/2
< - -
~ z:l/L 1nr(l q/2)2/q>

by using the Holder inequality in the last line. From Proposition 2.4, we can take
r:= 1+ 1/d so that the first sum is bounded by Hf||TL(r17q/2) < oo and that leads
to the condition ¢ < (2d + 2)/(2d + 1) in order that the last sum is finite. For any
ball Bgr, we have

[owar = [ e+ [vamge,

Br Br Br

/B IVf1*151<1 +/|Vf|q1\f|21 < oo
R

from the very first estimate (2.13) and the above discussion. In fact, repeating the
proof of Proposition 2.4, we may establish f € L” for any r € [1,1+ 2/d) which
leads to the condition ¢ < (d +2)/(d + 1). O

A
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