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1. Introduction

We mainly consider the parabolic equation

(1.1)
∂f

∂t
= div(A∇f) in (0,∞)× Rd, f(0, ·) = f0 in Rd,

with a measurable, bounded and strictly elliptic matrix A, namely A satisfies (in
the sense of quadratic forms) νI ≤ A(x) ≤ ν−1I for any x ∈ Rd and for some ν > 0.
The establish the ultracontractivity estimate

(1.2) ∥f(t, .)∥Lp ≤ Cr,d

t
d
2 (

1
q−

1
p )

∥f0∥Lq ,

for any t > 0 and p, q ∈ [1,∞], p ≥ q, where r ∈ [1,∞] is defined by the relation
1/p = 1/q + 1/r − 1.

2. De Giorgi-Nash-Moser and ultracontractivity

We recall the interpolation inequality

(2.1) ∥g∥LqθLrθ ≤ ∥g∥θLq0Lr0 ∥g∥1−θLq1Lr1 ,

where
1

qθ
=

θ

q0
+

1− θ

q1
,

1

rθ
=

θ

r0
+

1− θ

r1
, θ ∈ [0, 1].

We observe the general and fundamental fact: if β : R → R is a function and f is
a solution to the heat equation, there holds

∂tβ(f)−∆β(f) = −β′′(f)|∇f |2.
In particular, if β is convex, g := β(f) is a subsolution to the heat equation in the
sense that it satisfies

(2.2) ∂tg −∆g ≤ 0.
1
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3. De Giorgi Holder continuity argument

We give another proof of (a localized variant of) (1.2) by mainly modifying the
second step in the proof presented in Section 2. For c ∈ R fixed, chosing β(s) :=
(s − c)+, the function g := β(f) is a subsolution of the heat equation in the sense
of (2.2). Multiplying the equation (2.2) by gϕ2 for 0 ≤ ϕ ∈ D(U), U := (0, T )×Rd,
and integrating in the space and time variables, we obtain

1

2
∥(f(t)− c)+ϕ∥2L2 −

1

2
∥(f(s)− c)+ϕ∥2L2

≤ −
∫ t

s

∫
∇(f − c)+ · ∇((f − c)+ϕ

2) dxdτ

= −
∫ t

s

∥∇(f − c)+ϕ∥2L2 dτ +

∫ t

s

∫
ϕ∇(f − c)+ · (f − c)+∇ϕdxdτ,

for any 0 ≤ s < t ≤ T .

Choising now 0 < r < R, ϕ(x) = ϕ0(|x|), ϕ0(0) = 1 and ϕ′0 = −(R − r)−11[r,R] on
R+, we deduce∫

Br

(f(t)− c)2+dx+

∫ t

s

∫
Br

|∇(f − c)+|2 dxdτ

≤
∫
BR

(f(s)− c)2+dx+
1

(R− r)2

∫ t

s

∫
BR

|(f − c)+|2 dxdτ.

Taking the mean value in s ∈ (t0, t1) with t0 < t1 < t, we have

(t1 − t0)

∫
Br

(f(t)− c)2+dx+ (t1 − t0)

∫ t

t1

∫
Br

|∇(f − c)+|2 dxds

≤
(
1 +

t− t0
(R− r)2

)∫ t

t0

∫
BR

|(f − c)+|2 dxds.

Using the Sobolev inequality and the interpolation inequality (2.1), we finally get

(3.3) ∥(f − c)+∥2Lp((t1,T )×Br)
≤ C

( 1

t1 − t0
+

1

(R− r)2

)
∥(f − c)+∥2L2((t0,T )×BR),

with p := 2(1 + 2/d)

We shall use the following elementary result.

Lemma 3.1. If (vj)j≥0 satisfies 0 ≤ vj ≤ Cjvαj−1 for any j ≥ 1 and v0 < C
− α

(α−1)2

for some C > 0 and α > 1, then vj → 0 as j → ∞.

Proof of Lemma 3.1. We write recursively

vj ≤ Cψ(j)vα
j

0 , ψ(j) := j + α(j − 1) + · · ·+ αj−1.

We next observe that

ψ(j) = αj−1

j∑
i=1

iα−(i−1) ≤ αj−1Ψ(α−1),

with

Ψ(x) :=

∞∑
i=0

ixi−1 =
1

(1− x)2
, ∀x ∈ (0, 1).
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That last identity comes from the fact that Ψ = Φ′ with

Φ(x) :=

∞∑
i=0

xi =
1

1− x
.

We have thus

vj ≤ (C̃v0)
αj

, C̃ := C
α

(α−1)2 ,

from what we immeditaly conclude. □

We establish now some local gain of regularity for a solution f to the parabolic
equation (1.1) in a region (t0, t1)×Ω ⊂ R×Rd. For the sake of simplicity, we will
rather consider the equation set in the region

Qr := (−r, 0)×Br

and during the proof we will only consider a solution to the heat equation (??).
The generalisation to general domain and general parabolic equation is not difficult
by scaling/change of variables/mere translation and by repeating the arguments, it
is left to the reader.

Lemma 3.2 (first De Giorgi lemma). Let f be a solution to the parabolic equation
(1.1) in Q1. There holds

∥f+∥L∞(Q1/2) ≤ 1/2 if ∥f+∥L2(Q1) ≤ δ,

for some constant δ > 0 which only depends on the dimension d ≥ 3.

Remark 3.3. (1) An alternative formulation is that there exists a constant C > 0
such that any solution satisfies

∥f+∥L∞(Q1/2) ≤ C ∥f+∥L2(Q1).

(2) In particular, we recover the same global ultracontractivity estimate L2 → L∞ as
yet established in the previous sections. It is however worth emphasizing that in the
present argument we only use L2 → Lp bound and we do not use an interpolation
with a global growth estimate in another Lebesgue space Lq.

Proof of Lemma 3.2. We define the sequence of (increasing) time and (decreasing)
radius

Tk := − 1
2 (1 + 2−k), rk := 1

2 (1 + 2−k),

the sequence of (decreasing) cylinder and (increasing) truncation barrier

Qk := (Tk, 0)×B(0, rk), ck := 1
2 (1− 2−k),

and the sequence of energy

Ek :=

∫
Qrk

f2k dxdt, fk := (f − ck)+.

Using the estimate (2.1) with c = ck, T = 0, t0 = Tk, t1 = Tk+1, r = rk and
R = rk+1, we get

(3.4) ∥fk∥2Lp(Qk+1)
≤ C

(
2k+2 + 22(k+2)

)
∥fk∥2L2(Qk)

.

We next observe that

{fk+1 > 0} = {f − ck+1 > 0} = {f − ck >
1

2k+2
} = {fk >

1

2k+2
},
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so that from Tchebychev inequality

(3.5) |{fk+1 > 0} ∩ Qk+1| ≤ 22(k+2)

∫
Qk+1

f2kdxdt ≤ 22(k+2)∥fk∥2L2(Qk)
.

Using the Holder inequality and the two estimates (3.4) and (3.5), we obtain

Ek+1 ≤ ∥fk+1∥2Lp(Qk+1)
|{fk+1 > 0} ∩ Qk+1|2/p

′

≤ C22k+5∥fk∥2L2(Qk)

(
22(k+2)∥fk∥2L2(Qk)

)2/p′
.

Recalling that p′ = 1 + d/2, we thus conclude with

Ek+1 ≤MkE
1+

2
d+2

k , ∀ k ≥ 1,

for some constantM > 1. Choosing δ > 0 small enough, we deduce from Lemma 3.1
that Ek → ∞ as k → ∞ and in particular

E∞ :=

∫
Q∞

(f − c∞)2+dxdt = 0,

with Q∞ = Q1/2 and c∞ = 1/2. That precisely means that f ≤ 1/2 on Q1/2. □

We now drastically improve the above L∞ estimate by establishing a Holder con-
tinuity result.

Theorem 3.4. Let

f ∈ L∞(t0, T ;L
2(Ω)) ∩ L2(t0, T ;H

1(Ω))

be a variational solution to the parabolic equation (1.1) in (t0, T )×Ω. There exists
α ∈ (0, 1) such that for any O ⊂⊂ Ω and any t1 ∈ (t0, T ) there holds

f ∈ Cα((t1, T )×O).

The proof is split into several intermediate results. The first step is the already
established first De Giorgi Lemma. The second argument is an intermediate value
result. We start with stating the De Giorgi isoperimetric inequality which is a kind
of quantitative version of the fact that a function in H1 has no jump discontinuity.

Lemma 3.5 (De Giorgi isoperimetric inequality). Consider a function g on B1

such that ∥∇g+∥2L2(B1)
≤ C0 and denote

A := {g ≤ 0} ∩B1, C := {g ≥ 1
2} ∩B1, D := {0 < g < 1

2} ∩B1.

Then the following inequality holds true

C0|D| ≥ Cd(|C||A|1−
1
d )2,

for a constant Cd which only depends on d.

Proof of Lemma 3.5. We set h := (g ∧ 1/2)+ and observe that ∇h = ∇g+10<g<1/2.
For x ∈ A and y ∈ C, we write

1/2 = h(y)− h(x) =

∫ ∞

0

∇h(x+ t(y − x)) · (y − x)dt

≤
∫ |y−x|

0

|∇h|(x+ sσ)ds, σy := (y − x)/|y − x|.
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Integrating this inequality all over y ∈ C, we get

|C|/2 ≤
∫
C

∫ |y−x|

0

|∇h|(x+ sωy)dsdy

≤
∫
B1

∫ ∞

0

|∇h|(x+ sσy)dsdy

=

∫ 1

0

rd−1

∫
Sd−1

∫ ∞

0

|∇h|(x+ sσ)dsdσdr

= cd

∫
Sd−1

∫ ∞

0

sd−1|∇h|(x+ sσ)
1

sd−1
dsdσ,

= cd

∫
B1

|∇h|(y) 1

|x− y|d−1
dy,

where we have extended the integration along the whole ray coming from x in the
direction σy in the second line and we have used that in the last integration the
function does not depend on r in the last line. Integrating in x ∈ A, we find

|A||C|/2 ≤ cd

∫
B1

|∇h|(y)
(∫

A

dx

|x− y|d−1

)
dy.

Among all A with same measure |A| the integral in x is maximized by the ball of
radius |A|1/d centered in y so that∫

A

dx

|x− y|d−1
≤ |A|1/d.

Using that bound and the Cauchy-Schwarz inequality, we deduce

|A||C|/2 ≲ ∥∇h∥L2 |{0 < h < 1/2} ∩B1|1/2|A|1/d

≲ ∥∇g+∥L2 |D|1/2|A|1/d,
from what we immediately conclude. □

An analogous version of Lemma 3.5 for a solution to a parabolic equation can be
formulated as follows. We denote

Q̃ := (−3/2,−1)×B1.

Lemma 3.6 (Parabolic intermediate value). Consider a solution f to the parabolic
equation (1.1) in Q2 such that f ≤ 1 on Q2 and denote

A := {f ≥ 1/2} ∩Q1, C := {f ≤ 0} ∩ Q̃, D := {0 < f < 1/2} ∩ (Q1 ∪ Q̃).

If |A| ≥ δ∗ > 0 and |C| ≥ |Q̃|/2, there holds

|D| ≥ η∗,

for some constant η∗ = η∗(d, δ∗) > 0 non constructive but independent of f .

Proof of Lemma 3.6. We assume by contradiction that the conclusion of the lemma
is wrong. We can then find a sequence (fk) such that with obvious notations

|Ak| ≥ δ∗, |Ck| ≥ |Q̃|/2, |Dk| ≤ 1/k.

Multiplying the equation by fkϕ
2
1, ϕ1 ∈ D(B2), 1B(0,r1) ≤ ϕ1 ≤ 1, r1 ∈ (1, 2), and

after integrating, we have

1

2

∫
fk(t1)

2ϕ21 +

∫ t1

t0

∫
|∇(fkϕ1)|2 =

1

2

∫
fk(t0)

2ϕ21 +

∫ t1

t0

∫
f2k |∇ϕ1|2,
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for any t0, t1 ∈ I := (−2, 0). For ϕ2 ∈ D(B2), B(0, 1) ⊂ suppϕ2 ⊂ B(0, r1),
observing that ∇(fkϕ2) = ∇(fkϕ1ϕ2) = ∇(fkϕ1)ϕ2 + fk∇ϕ2, we thus have (fkϕ2)
is bounded in L2(I;H1

0 (B2)). Similarly, observing that

(∆fk)ϕ2 = ∆(fkϕ2)− 2∇fk · ∇ϕ2 − fk∆ϕ2

∆(fkϕ2) = (∆(fkϕ1))ϕ2 + 2∇(fkϕ1) · ∇ϕ2 + fkϕ1∆ϕ2

(∇fk)ϕ1 = ∇(fkϕ1)− fk∇ϕ1,

we thus have

∂t(fkϕ2) = (∆(fkϕ1))ϕ2 + 2fk∇ϕ1 · ∇ϕ2
with second term bounded in L2(I;H−1(B2), and we may use the Aubin-Lions
lemma in order to deduce that there exists satisfying −1 ≤ f ≤ 1 and fkϕ2 → fϕ2
(up to a subsequence) in L2(I ×B2) and thus fk → f in L2(Q̃∪Q1). In particular,
using Tchebychev inequality, we have

lim
k→∞

|{|fk − f | ≥ ε} ∩ I ×B1| = 0, ∀ ε > 0.

• Now, we observe that if ε ≤ f ≤ 1/2− ε for some ε > 0, then either 0 < fk < 1/2
or fk ≥ 1/2 and thus |f − fk| ≥ ε, so that

|{ε ≤ f ≤ 1/2− ε} ∩ (Q1 ∪ Q̃)| ≤
≤ |{|f − fk| ≥ ε} ∩ (Q1 ∪ Q̃)|+ |{0 < fk < 1/2} ∩ (Q1 ∪ Q̃)|
≤ |{|f − fk| ≥ ε} ∩ (Q1 ∪ Q̃)|+ 1/k.

That last sequence converges to 0 as k → ∞, and thus

|{ε ≤ f ≤ 1/2− ε} ∩ (Q1 ∪ Q̃)| = 0, ∀ ε > 0,

so that also

|{0 < f < 1/2} ∩ (Q1 ∪ Q̃)| = 0,

by passing to the limit ε → 0. Because f(t, ·) ∈ H1(B1) for a.e. t ∈ (−2, 0), the
isoperimetric Lemma 3.5 tells us that either

(3.6) f(t, ·) ≤ 0 in B1 or f(t, ·) ≥ 1/2 in B1.

• Next, in the same way, if fk ≤ 0, then either f ≤ ε or f > ε and thus |f−fk| > ε.
We deduce

|Q̃|/2 ≤ |{fk ≤ 0} ∩ Q̃| ≤ |{|f − fk| > ε} ∩ Q̃|+ |{f ≤ ε} ∩ Q̃|.

Passing first to the limit k → ∞ and next to the limit ε→ 0, we find

|Q̃|/2 ≤ |{f ≤ 0} ∩ Q̃|.

That in particular implies that there exists t0 ∈ (−3/2,−1) such that f(t0, ·) ≤ 0 on
some non negligible subset of B1. But, because of (3.6), that means that f(t0, ·) ≤ 0
on B1. We then fix 0 ≤ ϕ1 ∈ D(B1) with L2 norm equal to 1 and we write the
energy estimate

1

2

∫
B1

f2+(t)ϕ
2
1 = −

∫ t

t0

∫
B1

|∇(f+ϕ1)|2 +
1

2

∫
B1

f2+(t0)ϕ
2
1 +

∫ t

t0

∫
B1

f2+|∇ϕ1|2

≤ C(t− t0),
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for t > t0. Because of this estimate, the second alternative in (3.6) is not achieved
for t − t0 small enough. That implies that f+(t) = 0 for t − t0 small enough, and
thus by a continuation argument for any t ∈ (t0, 0). In particular, we have

(3.7) f ≤ 0 in Q1.

• Last, if fk ≥ 1/2, then either f ≥ 1/2 − ε or f < 1/2 − ε and thus |f − fk| > ε.
We deduce

δ∗ ≤ |{fk ≥ 1/2} ∩Q1| ≤ |{|f − fk| > ε} ∩Q1|+ |{f ≥ 1/2− ε} ∩Q1|.

Passing first to the limit k → ∞ and next to the limit ε→ 0, we find

δ∗ ≤ |{f ≥ 1/2} ∩Q1|.

That is in contradiction with (3.7). □

Gathering the first De Giorgi Lemma 3.2 and the intermediate value Lemma 3.6,
we deduce the following oscillation or second De Giorgi Lemma.

Lemma 3.7 (Oscillation). There exists 0 < λ < 1 such that for any solution g to

the parabolic equation (1.1) in Q2 such that −1 ≤ g ≤ 1 on Q2 and |{g ≤ 0}∩ Q̃| ≥
|Q̃|/2, we have

g ≤ 1− λ on Q1/2.

Proof of Lemma 3.7. From the very definition on a variational solution, we have
C0 := ∥∇xg∥L2(Q1∪Q̃) <∞. We define the sequence

gk := 2k[g − (1− 2−k)].

We may observe that for any k, we also have gk ≤ 1, |{gk ≤ 0} ∩ Q̃| ≥ µ := |Q̃|/2
and ∥∇xgk+∥L2(Q7/4) ≤ C0. For that last estimate, for some ϕ ∈ D(B2) such that
ϕ ≥ 1B1 , we may indeed compute

1

2

d

dt

∫
g2k+2ϕ

2 = −
∫

|∇gk+|2ϕ2 +
1

2

∫
g2k+∆ϕ

2

and thus ∫
Q7/4

|∇gk+|2 ≤
∫
Q2

|∇gk+|2ϕ2 ≤ Cϕ sup
[−2,0]

∫
B2

g2k+ ≤ C ′
ϕ.

We assume that for some k0 ≥ 1 and any k ∈ {1, · · · , k0}, we have

(3.8)

∫
Q1

(gk+1)
2
+dxdt ≥ δ2,

where we recall that δ > 0 has been defined in the first De Giorgi Lemma 3.2. From
the very definition of (gk), we have

(3.9) {gk ≤ 1/2} = {gk+1 ≤ 0}.

We deduce that

|{gk ≥ 1/2} ∩Q1| ≥ |{gk+1 ≥ 0} ∩Q1| ≥
∫
Q1

(gk+1)
2
+dxdt ≥ δ2,

where we have used the fact that gk+1 ≤ 1 in the second inequality. Applying
Lemma 3.5, we know that there exists η > 0 independent of k such that

|{0 < gk < 1/2} ∩ (Q1 ∪ Q̃)| ≥ η.
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Using (3.9) again and repeatedly the above lower bound, we have

|Q1 ∪ Q̃| ≥ |{gk+1 ≤ 0} ∩ (Q1 ∪ Q̃)|
≥ |{gk ≤ 0} ∩ (Q1 ∪ Q̃)|+ |{0 < gk < 1/2} ∩ (Q1 ∪ Q̃)|
≥ kη,

which provide a finite bound on k0. For the first k = k0 such that (3.8) fails, we
have ∥(gk0+1)+∥L2(Q1) ≤ δ, and thus gk0+1 ≤ 1/2 in Q1/2 from the first De Giorgi

Lemma 3.2. Rescaling back to g gives the result with λ := 2−k0−2. □

Proof of Theorem 3.4. Step 1. Assume first f defined in Q2. We write

g :=
2

oscQ2
f

(
f − sup f + inf f

2

)
,

so that −1 ≤ g ≤ 1 on Q2. We have either

|{g ≤ 0} ∩ Q̃| ≥ |Q̃|/2 or |{g ≥ 0} ∩ Q̃| ≥ |Q̃|/2.
In the first case, we apply Lemma 3.7 to g and we deduce g ≤ 1 − λ on Q1/2. In
the second case, we apply Lemma 3.7 to −g and we deduce g ≥ −1 + λ on Q1/2.
In both cases, we conclude with oscQ1/2

g ≤ 2− λ. Hence, we have

oscQ1/2
f ≤ (1− λ/2)oscQ2

f.

Step 2. We come to the general case and we assume f defined in U . Take y0 ∈ U
and d0 := min(d(y0,Uc), 1). We define

f̃(y) := f(y0 +
d0
4
y0) on Q2

and recursively

f̃1 = f̃ , f̃k(y) = f̃k−1(y/4), k ≥ 2.

Applying the first Step to f̃k gives

oscQ1/2
f̃k ≤ ϑ oscQ2 f̃k,

with ϑ := 1− λ/2 ∈ (0, 1), and thus

oscQ
1/4k

f̃ ≤ ϑk oscQ2
f̃ ≤ 2ϑk∥f∥L∞(U).

In other words, we have

sup
4−k−1≤|y−y0|≤4−k

|f̃(y)− f̃(y0)| ≤ (4αϑ)k|y0 − y|α∥f∥L∞(U)

by choosing α := − log θ/ log 4. We have established that f̃ is α-Holder near y0,
and thus also f on U . □
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4. Parabolic equations in a L1 framework

In this section, we are interested with the evolution equation

(4.1) ∂tf = ∆f + b · ∇f in (0, T )× Rd, f(0, ·) = f0 in Rd,
with initial datum f0 ∈ Lp, 1 ≤ p <∞, p ̸= 2. For further references, we note

L f := ∂tf −∆f − b · ∇f, L ∗φ := −∂tφ−∆φ+ div(bφ),

B the set of functions β ∈ C2(R) such that β′′ has compact support

Tk(s) := max(min(s, k),−k), θk(s) := min((|s| − k)+, 1)

and U := [0, T )× Rd.
In order to simplify the presentation, we consider the case 0 ≤ f0 ∈ L1(Rd). In
that case, the main result writes as follows.

Theorem 4.1. We assume b ∈ L∞, divb ∈ L∞. For any 0 ≤ f0 ∈ L1(Rd), there
exists a unique function f ∈ C([0, T );L1(Rd)) such that

(4.2) ∇TK(f) ∈ L2(U), ∀K > 0, ∥∇θn(f)∥L2(U) → 0 as n→ ∞
which is a renormalized solution to (4.1), that is

(4.3)

∫ T

0

∫
Rd

{β(f)L ∗φ+ β′′(f)|∇f |2φ} =

∫
Rd

β(f0)φ(0, ·)dx,

for any φ ∈ D(U) and β ∈ B.

It is worth emphasizing that because β ∈ B, we have suppβ′′ ⊂ [−K,K] for some
K > 0 and thus

(4.4) β′′(g) |∇g|2 = β′′(g)1|g|≤K |∇g|2 = β′′(g) |∇TK(g)|2.
Together with (4.2), that implies that the second term in (5.6) makes sense.

4.1. A priori estimates. We quickly review the available estimates.

• Multiplying the equation by fp−1, we have

1

2
∂tf

p + 2
p− 1

p
|∇fp/2|2 =

1

2
∆fp + b · ∇fp/2fp/2,

so that we cannot kill uniformly in p > 1 the last term at the RHS by the last term
as the LHS (since this one vanishes in the limit p → 1). Anyway, integrating, we
have

d

dt

∫
fp

p
+

∫
4
p− 1

p2
|∇fp/2|2 =

∫
(−divb)

fp

p
.

From the Gronwall lemma, we deduce

(4.5) ∥f(t, ·)∥Lp ≤ e
1
p∥divb∥L∞ t∥f0∥Lp , ∀ t ≥ 0.

• From De Giorgi, Nash, Moser analysis in Section 2, we know that

(4.6) ∥f(t, ·)∥Lp ≤ Cp,T t
−(1−1/p)d/2∥f0∥L1 , ∀ t ∈ (0, T ).

Indeed, multiplying by fφ2, with φ ∈ D((0, T )), we have similarly

2

∫ T

0

φ2

∫
|∇f |2 =

∫ T

0

(φ2)′
∫
f2 +

∫ T

0

φ2

∫
(−divb)f2.

We may then argue as in Section 2 using (4.5) for p = 1 and p = 2∗ and we obtain
(4.6) with p = 2∗.



10 CHAPTER 2: DE GIORGI-NASH-MOSER THEORY AND BEYOND

• Repeating the estimates presented in Section 2, we also obtain

∇f ∈ Lqloc(U), ∀ q ∈
[
1,
d+ 2

d+ 1

)
,

what follows from adapting Boccardo-Gallouet argument to the present situation.
More precisely, we formally have

∂tβ(f) = −β′′(f)|∇f |2 +∆β(f) + b · ∇β(f)

with the choice β′′(f) = 1M≤f≤M+1, β(0) = β′(0) = 0, which implies

d

dt

∫
β(f) +

∫
|∇θM (f)|2 =

∫
(−divb)β(f).

Defing κ := ∥divb∥L∞ and using the Gronwall lemma, we deduce∫
U
|∇θM (f)|2 ≤ eκT

∫
β(f0) ≤ eκT

∫
|f0|1|f0|≥M → 0,

as M → ∞, which is nothing but (4.2).

• In fact, using the De Giorgi, Nash, Moser estimate (4.6) with p = 2 combined
with the usual energy estimate, we deduce

(4.7)

∫ T

t

∫
|∇f |2dxds ≤ CeκT t−d/4∥f0∥L1 , for any 0 < t < T.

For further reference, we recall the following result established in the Chapter 1.

Lemma 4.2. With the usual notations, assume that g ∈ XT is a weak solution to
the parabolic equation

∂tg = ∆g + b · ∇g + G ,

with b ∈ L2
loc and G ∈ L1

loc. For any β ∈ B such that β(0) = 0, the function
β(g) ∈ XT and it satisfies

∂tβ(g) = ∆β(g)− β′′(g)|∇g|2 + b · ∇β(g) + β′(g)G .

4.2. Existence of a renormalized solution.
For 0 ≤ f0 ∈ L1, we introduce the sequence f0n := f0 ∧ n ∈ L1 ∩ L2 and the
associated variational solution fn ∈ XT . We may justify all the previous estimate
on fn, in particular (fn) is a Cauchy sequence in C([0, T ];L1) and converges to a
limit f ∈ C([0, T ];L1). Passing to the limit n → ∞, we obtain that f satisfies the
estimates listed in the above paragraph 4.1 and it is a weak (in the distributional
sense) solution to the parabolic equation (4.1). Because of (4.7) and Lemma 4.2,
we know that f is a renormalized solution on (t, T ), namely∫ T

t

∫
Rd

β(f)(L ∗φ)− β′′(f)|∇f |2φ =

∫
Rd

[β(f)φ](T, ·)−
∫
Rd

[β(f)φ](t, ·)

for any φ ∈ D(Rd), β ∈ B and t ∈ (0, T ). Using that β(f) ∈ C([0, T ];L1) and
β′′(f)|∇f |2 ∈ L1(U), we may pass to the limit t→ 0 and we deduce∫ T

0

∫
Rd

β(f)(L ∗φ)− β′′(f)|∇f |2φ =

∫
Rd

[β(f)φ](T, ·)−
∫
Rd

β(f0)φ(0, ·)

for any φ ∈ D(Rd) and β ∈ B.
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4.3. Uniqueness. Let us consider now two renormalized solutions f1 and f2 to
the parabolic equation (4.1) with the same initial datum f0 and let us prove that
f1 = f2. For a given function S ∈ B, we thus have

∂tS(fi) = −S′′(fi)|∇fi|2 +∆S(fi) + b · ∇S(fi), S(fi)(0) = S(f0).

More precise, taking S′′ := −1[−n−1,−n]+1[n,n+1], S(0) = 0, S′(0) = 1, we see that
S′ ∈ L∞ so that S(fi) ∈ XT (with usual definition). We next define

f := S(f2)− S(f1), F := S′′(f1)|∇f1|2 − S′′(f2)|∇f2|2,
and renormalizing the resulting equation thanks to Lemma 4.2, we get

∂tβ(f) = −β′′(f)|∇f |2 +∆β(f) + b · ∇β(f) + β′(f)F, β(f)(0) = 0,

for any β ∈ B such that β(0) = 0. Choosing β ∈ B such that β(0) = 0, each term
involved in the above equation is in L1(U) and we may integrate it over U , what
implies ∫

Rd

β(fT ) = −
∫
U
β′′(f)|∇f |2 +

∫
U
β(f)divb+

∫
U
β′(f)F.

Assuming further that β is convex, we have∫
Rd

β(fT ) ≤
∫
U
β(f)divb+

∫
U
β′(f)F.

More specifically, for β we choose β′′
ε = 1

ε1[−ε,ε] and βε(0) = β′
ε(0) = 0, in such a

way that |β′(s)| ≤ 1 for any ε > 0 and βε(s) → |s| as ε → 0. Passing to the limit
ε→ 0 in the last estimate, we get∫

Rd

|fT | ≤
∫
U
|f |divb+

∫
U
(|S′′(f1)||∇f1|2 + |S′′(f2)||∇f2|2).

With the above choice of S = Sn, we know that the last integral converges to 0 as
n → ∞ from the very definition of a renormalized solution, and we may thus pass
to the limit n→ ∞ in the last equation in order to get∫

Rd

|fT | ≤ ∥divb∥L∞

∫
U
|f |.

We conclude that f = 0 thanks to the Gronwall lemma. We have thus established
the uniqueness part in Theorem 4.1.

5. The fundamental solution to a parabolic equation

In this section, we are interested with the evolution equation

(5.1) ∂tf = div(A∇f) in (0, T )× Rd, f(0, ·) = δx0
in Rd.

For further references, we note

L f := ∂tf − div(A∇f), L ∗φ := −∂tφ− div(AT∇φ).

Theorem 5.1. We assume A ∈ L∞, A ≥ νI, ν > 0. For any x0 ∈ Rd, there exists
a unique function F = F (t, x;x0) ≥ 0 such that

∥F (t, ·)∥L∞ ≤ C(T )t−d/2, ∀ t ∈ (0, T );(5.2)

∥F (t, ·)∥L1 ≤ 1, ∀ t ∈ (0, T );(5.3)

∥∇F∥L2((t,T )×Rd) ≤ C(T ), ∀ t ∈ (0, T ),(5.4)

∥∇F∥Lq(U) ≤ C(T, q), ∀ q ∈ [1, q∗), q∗ > 1,(5.5)
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which is a weak solution to (4.1), that is

(5.6)

∫ T

0

∫
Rd

{f∂tφ−∇φ ·A∇f} =

∫
Rd

φ(0, ·)δx0
(dx),

for any φ ∈ D(U) .

5.1. Existence. The proof is very similar to the proof of Theorem 4.1. The last a
priori estimate comes from Boccardo-Galloüet result.

5.2. Uniqueness. Let us consider now two solutions F1 and F2 to the parabolic
equation (5.1). The difference f := F2 − F1 is a weak solution to the parabolic
equation with vanishing initial datum

(5.7) ∂tf = div(A∇f) in (0, T )× Rd, f(0, ·) = 0 in Rd.

On the other hand, we know from (5.4) that it is a variational solution on (t, T )×Rd,
and we may thus write∫

Rd

ψT fT +

∫ T

t

∫
Rd

(−f∂tψ +∇ψ ·A∇f) =
∫
Rd

ψtft,

for any ψ ∈W 1,∞([0, T ]×Rd). For ϕ ∈ L1 ∩L∞, we define the solution φ ∈ XT to
the backward problem

(5.8) −∂tφ = div(AT∇φ) in (0, T )× Rd, φ(T, ·) = ϕ in Rd.

We define φε = φ ∗x ρε for a mollifer (ρε). Observing that

φε, ∇φε, ∂tφε = (−div(AT∇φ)) ∗ ρε ∈ L∞(U),

we may take ψ = φε in the above variational formulation and we get[∫
Rd

φεf
]T
t

=

∫ T

t

∫
Rd

({f(−div(AT∇φ)) ∗ ρε −∇φε ·A∇f)

=

∫ T

t

∫
Rd

(∇fε ·AT∇φ+∇φε ·A∇f),

with fε := f ∗ ρ̌ε, ρ̌ε(x) := ρε(−x). Using that ∇fε → ∇f and ∇φε → ∇φ in
L2((t, T )×Rd), as well as φεs → φs in L

2(Rd) for s = t, T , we may pass to the limit
ε→ 0 in the previous equation and we conclude that∫

Rd

ϕfT =

∫
Rd

φtft, ∀ t > 0.

From (5.1) and (5.5), we formally have

d

dt

∫
⟨x⟩ϑF =

∫
ϑ⟨x⟩ϑ−1 x

|x|
·A∇F ∈ Lq(0, T ),

for some q ∈ (1, q∗) by choosing 1 − ϑ > 0 small enough and using the Holder
inequality. We deduce that

(5.9)

∫
⟨x⟩ϑFt ≤ 1 + Ct1/q

′
≤ CT , ∀ t ∈ (0, T ),
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by using the Holder inequality again, what provides an additional a priori estimate.
For any φ ∈ Cb(Rd), we may write∫

F (t)φ−
∫
F (s)φ =

∫
F (t)(φ− φε,M ) +

∫
F (t)φε,M −

∫
F (s)φε,M

+

∫
F (s)(φε,M − φ),

with φε,M := (φχM ) ∗ ρsε ∈ D(Rd) using the usual notation for the truncations
χM and the mollifiers (ρε). Because F ∈ L∞(0, T ;L1

ϑ(Rd)) and φε,M → φ in
L∞
−ϑ, the two extremal terms are small uniformly in s, t ∈ [0, T ] for any convenient

choices of ε,M > 0. From the very definition of weak solution, we know that
F ∈ C([0, T ];D′(Rd)), so that the middle term is small for |t− s| small enough. We
deduce that F ∈ C([0, T ]; (Cb(Rd))′), in particular Ft ⇀ δx0

weakly in (Cb(Rd))′
as t → 0. Gathering this information with the De Giorgi-Nash regularity estimate
φ ∈ Cb([0, T/2]× Rd), we obtain that∫

Rd

ϕfT = lim
t→0

∫
Rd

φtft = 0.

Because ϕ ∈ L1 ∩ L∞ is arbitrary, we deduce that fT = 0 for any T > 0, and that
concludes the uniqueness of the fundamental solution.

6. Refined bound on the fundamental solution

In this section, we are interest in the fundamental solution to the parabolic equation
(1.1), namely to the solution Γ to

(6.1)
∂Γ

∂t
= div(A∇Γ) in (0,∞)× Rd, Γ0 = δx0

in Rd,

We first consider a smooth, positive and fast decaying initial datum f0, the solution
f to the associated heat equation, and for a given α ∈ Rd, we define g := f eψ,
ψ(x) := α · x. The equation satisfied by g is

∂tg =
1

2
eψ∆(g e−ψ) =

1

2
∆g −∇ψ · ∇g + 1

2
|∇ψ|2g

=
1

2
∆g − α · ∇g + 1

2
|α|2g.

For the L1 norm, we have

d

dt
∥g∥L1 =

1

2
α2 ∥g∥L1 ,

and then ∥g(t, .)∥L1 = eα
2t/2 ∥g0∥L1 for any t ≥ 0. For the L2 norm and thanks to

the Nash inequality, we have

d

dt
∥g∥2L2 = −∥∇g∥2L2 + α2 ∥g∥2L2

≤ −K0 e
−2α2t/d ∥g∥2(1+2/d)

L2 + α2 ∥g∥2L2 ,

with K0 := CN ∥g0∥−4/d
L1 . We see that the function u(t) := e−α

2t ∥g(t)∥2L2 satisfies
the differential inequality

u′ ≤ −K0 u
1+2/d,
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from what, exactly as in Nash L1 → L2 estimate, we deduce

∥g(t)∥2L2 e−α
2t ≤

∥g0∥2L1

(2/dCN t)d/2
, ∀ t > 0.

Denoting by T (t) the semigroup associated to the parabolic equation satisfies by g,
the above estimate writes

∥T (t)g0∥L2 ≤ C eα
2t/2

td/4
∥g0∥L1 , ∀ t > 0.

Because the equation associated to the dual operator is

∂th =
1

2
∆h+ α · ∇h+

1

2
|α|2h, h(0) = h0,

the same estimate holds on T ∗(t)h0 = h(t), and we thus deduce

∥T (t)g0∥L∞ ≤ C eα
2t/2

td/4
∥g0∥L2 , ∀ t > 0.

Using the trick T (t) = T (t/2)T (t/2), both estimates together give an accurate time
depend estimate on the mapping T (t) : L1 → L∞ for any t > 0. More precisely
and in other words, we have proved that the heat semigroup S satisfies

∥(S(t)f0) eψ∥L∞ ≤ C

td/2
eα

2t/2 ∥f0 eψ∥L1 , ∀ t > 0.

Denoting F (t, x, y) := (S(t)δx)(y) the fundamental solution associated to the heat
equation when starting from the Dirac function in x ∈ Rd, the above estimate
rewrites as

F (t, x, y) ≤ C

td/2
eα·(x−y)−α

2t/2, ∀ t > 0,∀x, y, α ∈ Rd.

Choosing α := (x− y)/t, we end with

F (t, x, y) ≤ C

td/2
e−

|x−y|2
2t , ∀ t > 0,∀x, y ∈ Rd.

In particular, we immediately deduce

M2(t) :=

∫
Rd

|y|2F (t, x, y)dy ≤ C(t+ |x|2),

and we thus recover (5.9) with ϑ = 2.
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