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1. INTRODUCTION

We mainly consider the parabolic equation

(1.1) %{ =div(AVf) in (0,00) x RY, f(0,)=fo inR%
with a measurable, bounded and strictly elliptic matrix A, namely A satisfies (in
the sense of quadratic forms) v < A(z) < v~ for any x € R? and for some v > 0.
The establish the ultracontractivity estimate
Cr,d

(1.2) 1F Iz < 5755 1ol e,

t2'\a p
for any ¢ > 0 and p,q € [1,00], p > ¢, where r € [1,00] is defined by the relation
1/p=1/g+1/r—1.

2. DE GIORGI-NASH-MOSER AND ULTRACONTRACTIVITY

We recall the interpolation inequality

-0
(2.1) lgllzaere < N1gl1%a0 o 19l Zat rrs

where 1 6 1-6 1 6 1-9
—=—+—, =—+—, 0€[0,1].
de do q1 7o To 71
We observe the general and fundamental fact: if § : R — R is a function and f is

a solution to the heat equation, there holds

0B(f) — AB(f) = =B"(NHIVFI*.

In particular, if 8 is convex, g := S(f) is a subsolution to the heat equation in the
sense that it satisfies
(2.2) Og — Ag < 0.

1
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3. DE GIORGI HOLDER CONTINUITY ARGUMENT

We give another proof of (a localized variant of) (1.2) by mainly modifying the
second step in the proof presented in Section 2. For ¢ € R fixed, chosing §(s) :=
(s — ¢)4, the function g := B(f) is a subsolution of the heat equation in the sense
of (2.2). Multiplying the equation (2.2) by g¢? for 0 < ¢ € DU), U := (0,T) x R4,
and integrating in the space and time variables, we obtain

SN = 1l — 5 1) — 1913

. /st/v(f =)+ V((f = 0)16") dudr

- / IV — o) dll2e dr + / / OV(f — s (f — )4 Vo ddr,

forany 0 <s<t<T.
Choising now 0 < r < R, ¢(z) = ¢o(|z|), ¢o(0) =1 and ¢y = —(R —r)"'1, 5] on
R, we deduce

/(f - dw—|—// (f —¢)4|? dadr
S/JBR(f(s)—c)idx+M/s /13R|(f_c)+|2dxd7'

Taking the mean value in s € (¢o, 1) with tp < t1 < ¢, we have

(tl—to)/ (f(t) = ¢)2dx + (t1 — to) /tl/ (f — )1 |* duds

S( tO // —c+\ dxds.
toJ Br

Using the Sobolev mequahty and the interpolation inequality (2.1), we finally get

1 1
3:3) I(f = +lTr(ctr.ryxm) < C(tl _— + = T)Q)H(f = )72 (0.7 % Br)

with p :=2(1 + 2/d)
We shall use the following elementary result.

Lemma 3.1. If (v;),>0 satisfies 0 < v; < C’jv;-{l foranyj >1andvy < C (a—1)?
for some C' >0 and o > 1, then v; — 0 as j — oo.

Proof of Lemma 3.1. We write recursively
v; < C’w(j)vg‘j, Y(G)i=j4+a(i—1) 4+ +ad.
We next observe that
J
P(j) =D iam D <o/ MW (a),
i=1
with

1
= — 1).
sz =22 Va e (0,1)
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That last identity comes from the fact that ¥ = &’ with

d(x) ::Zx =1—=
=0

We have thus N _ N .
v; < (Cvg)®, C:=Cw17,
from what we immeditaly conclude. (Il

We establish now some local gain of regularity for a solution f to the parabolic
equation (1.1) in a region (tg,t1) x 2 C R x RY. For the sake of simplicity, we will
rather consider the equation set in the region

Q. :=(-r,0) X B,

and during the proof we will only consider a solution to the heat equation (?7).
The generalisation to general domain and general parabolic equation is not difficult
by scaling/change of variables/mere translation and by repeating the arguments, it
is left to the reader.

Lemma 3.2 (first De Giorgi lemma). Let f be a solution to the parabolic equation
(1.1) in Q1. There holds

[ f+ oo (@i ) £ 1/2 if [ f+llL2(@i) <6,

for some constant 6 > 0 which only depends on the dimension d > 3.

Remark 3.3. (1) An alternative formulation is that there exists a constant C > 0
such that any solution satisfies

1+l (@uy2) < ClIf+llL2@u)-

(2) In particular, we recover the same global ultracontractivity estimate L? — L™ as
yet established in the previous sections. It is however worth emphasizing that in the
present argument we only use L2 — LP bound and we do not use an interpolation
with a global growth estimate in another Lebesgue space LY.

Proof of Lemma 3.2. We define the sequence of (increasing) time and (decreasing)
radius

T, :=—-11+27%), ro=301+27"),
the sequence of (decreasing) cylinder and (increasing) truncation barrier

Qp = (T), 0) x B(0,11), cx:=1(1—27"),

and the sequence of energy

& = fRdzdt,  fi = (f —cr)-

Qr,

Using the estimate (2.1) with ¢ = ¢, T = 0, to = T, t1 = Tg41, r = 7 and
R =7ry41, we get

(3.4) 1Fil20 0,y < C(2k+2 + 22(k+2)) 1 £ell72(00)-

‘We next observe that

U >0} = {f —eeer > 0} = {f — > oz} = e > gomgh
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so that from Tchebychev inequality

(3.5) Hnﬂ>%nmgﬂn§2%“”/' frdwdt < 22D £)13, 0,
Qrt1

Using the Holder inequality and the two estimates (3.4) and (3.5), we obtain
I fistllEo (o {Fier > 0} N Qpa 27

2/p’
< O fullTa 0, (PNl T2 g0,) T -

Recalling that p’ =14 d/2, we thus conclude with

IA

Ery1

AN

k1+ﬁ
Epp1 S MFE, T2 V> 1,

for some constant M > 1. Choosing § > 0 small enough, we deduce from Lemma 3.1
that & — oo as k — oo and in particular

oo = / (f - coo)idxdt =0,

oo

with Qo = Q12 and ¢, = 1/2. That precisely means that f <1/2on Q5. O

We now drastically improve the above L™ estimate by establishing a Holder con-
tinuity result.

Theorem 3.4. Let

be a variational solution to the parabolic equation (1.1) in (to,T) x Q. There exists
a € (0,1) such that for any O CC Q and any t1 € (to,T) there holds

fe o ((t,T) x ).

The proof is split into several intermediate results. The first step is the already
established first De Giorgi Lemma. The second argument is an intermediate value
result. We start with stating the De Giorgi isoperimetric inequality which is a kind
of quantitative version of the fact that a function in H' has no jump discontinuity.

Lemma 3.5 (De Giorgi isoperimetric inequality). Consider a function g on B
such that |\Vg+||2L2(Bl) < Cy and denote

A={g<0}nNBy, C:={g>iInB, D:={0<g<ilnBb.
Then the following inequality holds true
1
Co|D| = Ca(IC|A]'~4)?,
for a constant Cyq which only depends on d.

Proof of Lemma 3.5. We set h := (g A1/2), and observe that Vh = Vg, 1ocg<1/2-
For x € A and y € C, we write

1/2 = h(y)—h(x):/OOOVh(x+t(y—a:))~(y—x)dt

IN

ly—z|
/0 |Vh|(z + so)ds, oy :=(y—x)/|ly —z|.
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Integrating this inequality all over y € C, we get

ly—=|
ICl/2 < // |Vh|(x + swy)dsdy
cJo

/ / |Vh|(z + soy)dsdy
By Jo

1 o)
= / rd_l/ / |Vh|(x + so)dsdodr
0 si-1.Jo

> 1
cd/ / sHVh|(x + 50)——dsdo,
sd—-1 Jo S

1
- ¢ Vh|(y) ———dy,
o] )

where we have extended the integration along the whole ray coming from z in the
direction oy in the second line and we have used that in the last integration the
function does not depend on r in the last line. Integrating in z € A, we find

alct2 < [ 19nw)( [ =)

Among all A with same measure |A| the integral in z is maximized by the ball of
radius |A|'/¢ centered in y so that

/LMS|A|1/CI~
Az =yl

Using that bound and the Cauchy-Schwarz inequality, we deduce

IN

[AlICI/2 S (IVAlL2l{0 < h < 1/2} N By[/?|A]V4
S IVgyllez DIV AV,
from what we immediately conclude. O

An analogous version of Lemma 3.5 for a solution to a parabolic equation can be
formulated as follows. We denote

Q :=(=3/2,—1) x By.

Lemma 3.6 (Parabolic intermediate value). Consider a solution f to the parabolic
equation (1.1) in Q2 such that f <1 on Q2 and denote

A={f21/24NQ:, C:={f<0}NQ, D={0<f<1/2}N(Q1UQ).
If |A| > 6, > 0 and |C| > |Q|/2, there holds
D = 1.
for some constant n. = n.(d, ) > 0 non constructive but independent of f.

Proof of Lemma 3.6. We assume by contradiction that the conclusion of the lemma
is wrong. We can then find a sequence (fx) such that with obvious notations

|Ax| > 0., |Cx| > 1Q1/2, |Dy| < 1/k.

Multiplying the equation by fr¢?, ¢1 € D(B2), 1p(r) < ¢1 < 1, 71 € (1,2), and
after integrating, we have

3 [ [ [wwonr =3 [ nerat+ [ [ mvar
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for any to,t1 € I := (—2,0). For ¢o € D(Bs), B(0,1) C suppos C B(0,r1),
observing that V(fxg2) = V(fe¢192) = V(fe1)d2 + ft V2, we thus have (frp2)
is bounded in L?(I; H}(Bz)). Similarly, observing that

(Afe)p2 = A(frd2) — 2V fi - Voo — frAds

A(fk@2> - (A<fl\¢l))¢2 + 2v<fk¢l) : v¢2 + fk:(blA(b2

(Vi) V(fep1) — fxVér,

we thus have

Or(frd2) = (A(fxd1))d2 +2fi V1 - Vo

with second term bounded in L?(I; H 1(Bs), and we may use the Aubin-Lions
lemma in order to deduce that there exists satisfying —1 < f <1 and fr¢2 — foo
(up to a subsequence) in L?(I x By) and thus f; — f in LQ(Q UQ®1). In particular,
using Tchebychev inequality, we have

lim [{|fe—flZe}nIx Bi| =0, ¥e>0.
— 00

e Now, we observe that if ¢ < f < 1/2 — ¢ for some ¢ > 0, then either 0 < fj, < 1/2
or fr > 1/2 and thus |f — fx| > €, so that
fe</<1/2-e}n(QUQ) <

<HIf = ful 23N (@ UQ)+ K0 < fi <1/2} N (Q1UQ)]

<HIf = ful e} N (@1 U Q)|+ 1/k.
That last sequence converges to 0 as k — oo, and thus

fe<f<1/2-e}n(QUQ) =0, Ve>0,
so that also
{0 < f<1/2}N(Q1uUQ)| =0,

by passing to the limit € — 0. Because f(t,-) € H'(Bj) for a.e. t € (—2,0), the
isoperimetric Lemma 3.5 tells us that either

(3.6) f(t,-) <0 in By or f(t,-)>1/2 in Bj.

e Next, in the same way, if fr < 0, then either f < e or f > ¢ and thus |f — fx| > e.
We deduce

Q/2< {fe <OINQI<[{If - fil >} N QI+ {f <eknql.

Passing first to the limit £ — oo and next to the limit ¢ — 0, we find

1Ql/2< [{f <0}nQl.

That in particular implies that there exists to € (—3/2, —1) such that f(to,-) < 0on
some non negligible subset of B;. But, because of (3.6), that means that f(tp,) <0
on B;. We then fix 0 < ¢; € D(B;) with L? norm equal to 1 and we write the
energy estimate

1 t 1 t
2 ), fwet = [ [ vy [ et [ ] sivar

C(t - tO),

IN
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for ¢ > to. Because of this estimate, the second alternative in (3.6) is not achieved
for t — to small enough. That implies that fi (t) = 0 for ¢t — ¢y small enough, and
thus by a continuation argument for any ¢ € (¢o,0). In particular, we have

(3.7) f<0 in Q.
e Last, if fr > 1/2, then either f > 1/2 —e or f < 1/2 — ¢ and thus |f — fix| > e.
We deduce
o SHfez1/2n@Qul < HIf = el > el 0@ + {f 2 1/2 -} N Q1.
Passing first to the limit £ — oo and next to the limit € — 0, we find
5. < IS = 1/2) N Q.
That is in contradiction with (3.7). O

Gathering the first De Giorgi Lemma 3.2 and the intermediate value Lemma 3.6,
we deduce the following oscillation or second De Giorgi Lemma.

Lemma 3.7 (Oscillation). There exists 0 < A < 1 such that for any solution g to
the parabolic equation (1.1) in Qo such that —1 < g <1 on Q2 and |{g < 0} ﬂ@ >
1Q|/2, we have

g<1—=X on Q-
Proof of Lemma 3.7. From the very definition on a variational solution, we have
Co = [IVagll 12 (g,ua) < o0- We define the sequence

ge = 2"g - (1-27")].

We may observe that for any k, we also have g, < 1, |[{gr <0} N Q| > p:= |Q|/2
and [|Vagi+llr2(Q,,,) < Co. For that last estimate, for some ¢ € D(Bs) such that
¢ > 1p,, we may indeed compute

1d ) L.
i [ et == [ 1V 5 [ oo

and thus

R T i e
Q7/a Q2 Bs

[(—2,0]

We assume that for some kg > 1 and any k € {1,--- , ko}, we have

(3.9) / (grsr)2 dedt > &,

where we recall that § > 0 has been defined in the first De Giorgi Lemma 3.2. From
the very definition of (gi), we have

(3.9) {ox <1/2} = {gr41 < 0}.
‘We deduce that
m%zwﬂmQqu%HszQuz/<%HKMﬁzﬁ,

Q1
where we have used the fact that grr1 < 1 in the second inequality. Applying
Lemma 3.5, we know that there exists n > 0 independent of k such that

{0 < gx <1/2}N(Q1UQ)| > 1.
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Using (3.9) again and repeatedly the above lower bound, we have

Q1UQ = gkt S0}N(QUQ)
Hor <0} N (Q1UQ) + {0 <gr <1/2}N(Q1UQ)|
kn,
which provide a finite bound on k. For the first k = ko such that (3.8) fails, we
have ||(gro+1)+22(@.) < 6, and thus gr, 11 < 1/2 in Qy /5 from the first De Giorgi
Lemma 3.2. Rescaling back to g gives the result with \ := 27%0—2, (I
Proof of Theorem 3.4. Step 1. Assume first f defined in Q2. We write
2 (f_supf+inff)

oscQ, f 2 ’

so that —1 < g <1 on Q3. We have either

{g<0}n@QI>1Ql/2 or H{g>0}nQ|>1Ql/2
In the first case, we apply Lemma 3.7 to g and we deduce g <1 — X on Q/3. In

the second case, we apply Lemma 3.7 to —g and we deduce g > —1 + X on Q3.
In both cases, we conclude with oscq, ,,g <2 — A. Hence, we have

0scq, ,f < (1 —X/2)oscq, f.

Step 2. We come to the general case and we assume [ defined in U. Take yg € U
and do := min(d(yo,U°),1). We define

Fw) = Foo+ Do) on @

AV VALY,

and recursively L N
fi=1f fe(y) = froa(y/4), k= 2.
Applying the first Step to fi gives

ochl/2fk < 190ch2]?;€,
with ¥ :=1— /2 € (0,1), and thus
0SCQ, 1 fg v OSCQ2f§ Zﬁk||f||Loo(u).
In other words, we have

sup 17 (y) = Flyo)l < (4°9) yo — 11 fll L=y
4=kt <]y —yo|<4™F

by choosing « := —log6/log4. We have established that f is a-Holder near o,
and thus also f on U. O
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4. PARABOLIC EQUATIONS IN A L' FRAMEWORK

In this section, we are interested with the evolution equation
(4.1) Ohf=Af+0b-Vf in (0,T) x RY, f(0,) = fo in R%
with initial datum fo € LP; 1 < p < 00, p # 2. For further references, we note

Lf=0f—Af—=b-Vf, L p:=—-0p— Ap+div(by),
2P the set of functions 8 € C?(R) such that 3” has compact support

Ti(s) := max(min(s, k), —k), 0O(s):=min((|s| — k)4,1)

and U := [0,T) x R4,

In order to simplify the presentation, we consider the case 0 < f, € L'(R?). In
that case, the main result writes as follows.

Theorem 4.1. We assume b € L™, divb € L>. For any 0 < fo € L*(RY), there
exists a unique function f € C([0,T); L*(RY)) such that

(4.2) VTk(f) € L*(U), VK >0, [[VO(f)|lz2@y =0 as n— oo

which is a renormalized solution to (4.1), that is

4 [ [0 0Nt = [ sUoe. s
for any ¢ € D(U) and B € B.

It is worth emphasizing that because 3 € %, we have supp 8" C [ K, K] for some
K > 0 and thus

(4.4) B"(9) IVgl* = 8"(9) Ljg<x|Val* = B"(9) [VTk (9).
Together with (4.2), that implies that the second term in (5.6) makes sense.

4.1. A priori estimates. We quickly review the available estimates.
e Multiplying the equation by fff’*1 we have

,3tfp+2 |pr/2|2 Af”+b~pr/2fp/2,

so that we cannot kill umformly in p > 1 the last term at the RHS by the last term
as the LHS (since this one vanishes in the limit p — 1). Anyway, integrating, we

have f . o

@ + /4]’7|pr/2|2 = /(—divb)?
From the Gronwall lemmau7 we deduce
(4.5) (e < es M=t foln, V> 0.
e From De Giorgi, Nash, Moser analysis in Section 2, we know that
(4.6) 1F(t ) Le < Cprt™ VP2 fol| e, Vit € (0,T).
Indeed, multiplying by f¢?, with ¢ € D((0,T)), we have similarly

o[ fir [0 [ i

We may then argue as in Section 2 using (4.5) for p = 1 and p = 2* and we obtain
(4.6) with p = 2*.
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e Repeating the estimates presented in Section 2, we also obtain
d+2
) m)7
what follows from adapting Boccardo-Gallouet argument to the present situation.
More precisely, we formally have

08(f) = ~B"(PIVS + A5(7) +b- VA(/)

with the choice ,B”(f) = 1M§f§M+17 B(O) = ﬂ/(O) = 07 which implies
d
G [+ [Ivomnp = [abyss)

Defing x := ||divb|| = and using the Gronwall lemma, we deduce

v9 2 rT rT ,
[ 19oupF < e [ a0 < [0 =0

as M — oo, which is nothing but (4.2).

e In fact, using the De Giorgi, Nash, Moser estimate (4.6) with p = 2 combined
with the usual energy estimate, we deduce

VfeLl M), Vqe|l

loc

T
(4.7 / /|Vf|2dxds < Ce"Tt= 4 foll 1, forany 0<t<T.
t

For further reference, we recall the following result established in the Chapter 1.

Lemma 4.2. With the usual notations, assume that g € Xt is a weak solution to
the parabolic equation

0g=Ag+b-Vg+9,
withb € L2 and 4 € Llloc. For any B € B such that 3(0) = 0, the function

loc

B(g) € X1 and it satisfies
0B(g) = AB(g) — B"(9)IVgl* +b-VB(g) + B (9)¥.

4.2. Existence of a renormalized solution.

For 0 < fy € L', we introduce the sequence fo, := fo An € L' N L? and the
associated variational solution f, € Xp. We may justify all the previous estimate
on f,, in particular (f,,) is a Cauchy sequence in C([0,T]; L) and converges to a
limit f € C([0,T]; L'). Passing to the limit n — oo, we obtain that f satisfies the
estimates listed in the above paragraph 4.1 and it is a weak (in the distributional
sense) solution to the parabolic equation (4.1). Because of (4.7) and Lemma 4.2,
we know that f is a renormalized solution on (¢,T"), namely

| [z - it = [ nam - [ Bode

Rd

for any ¢ € D(RY), B € # and t € (0,T). Using that 3(f) € C([0,T]; L') and
B"(f)IVf|? € L*(U), we may pass to the limit ¢ — 0 and we deduce

T
/ UL ) — B"(F)IVf P = / BT~ | B(fo)e(0.)
0 JRd4 Rd R4

for any ¢ € D(R?) and 8 € Z.
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4.3. Uniqueness. Let us consider now two renormalized solutions f; and fs to
the parabolic equation (4.1) with the same initial datum fy and let us prove that
f1 = fa2. For a given function S € £, we thus have

9S(fi) = =S"(f)IVFiIP + AS(fi) +b-VS(fi), S(fi)(0) = S(fo).

More precise, taking S” := —1[_,,_1,_n) + 1in,nt1), S(0) = 0, 5(0) = 1, we see that
S’ € L™ so that S(f;) € Xr (with usual definition). We next define

f=58(f) = S(f), F=8"(AIVA] = S"(£)IV ol
and renormalizing the resulting equation thanks to Lemma 4.2, we get
0B(f) = =B"(NIVF?+AB() +b-VB(f) +B'(NT, B()0) =0,

for any § € % such that 5(0) = 0. Choosing 5 € % such that 3(0) = 0, each term
involved in the above equation is in L*() and we may integrate it over U, what
implies

[ ot == [ gowse [ s [ 503

Assuming further that 8 is convex, we have

[ s < [ snaiv+ [ 515

More specifically, for 5 we choose B = él[,m] and B:(0) = B(0) = 0, in such a

€

way that |8'(s)] < 1 for any € > 0 and S.(s) — |s| as € — 0. Passing to the limit
€ — 0 in the last estimate, we get

/ ol < / |fidivh + / US"(FOIIV AL + 18" (£ IV fof?).
R4 U u

With the above choice of S = S,,, we know that the last integral converges to 0 as
n — oo from the very definition of a renormalized solution, and we may thus pass
to the limit n — oo in the last equation in order to get

divb|| e .
[ el < bl [ 17

We conclude that f = 0 thanks to the Gronwall lemma. We have thus established
the uniqueness part in Theorem 4.1.

5. THE FUNDAMENTAL SOLUTION TO A PARABOLIC EQUATION
In this section, we are interested with the evolution equation
(5.1) Oif = div(AVS) in (0,T) xRY,  £(0,-) =6,, in R%
For further references, we note
Lf =0 f —div(AVf), L*p:=—0yp —div(AT V).

Theorem 5.1. We assume A € L>®, A>vI, v > 0. For any xo € R?, there exists
a unique function F = F(t,z;x0) > 0 such that

(5.2) IF(t, )|~ < C(T)2, Vte (0,T);
(5.3) [E(t, ) <1, Vte(0,T);

(5.4) IVE| L2 (,ryxrey < C(T), Vte(0,1),
(5.5) IVF|Lauy < C(T,q), Yqe(l,q"), ¢" > 1,
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which is a weak solution to (4.1), that is

(5.6 [ [Lsoe-ve a0 = [ o090,

for any ¢ € DU) .

5.1. Existence. The proof is very similar to the proof of Theorem 4.1. The last a
priori estimate comes from Boccardo-Gallotiet result.

5.2. Uniqueness. Let us consider now two solutions F; and F, to the parabolic
equation (5.1). The difference f := F, — F} is a weak solution to the parabolic
equation with vanishing initial datum

(5.7) oif = div(AVf) in (0,T) x R?, f(0,)=0 in R%

On the other hand, we know from (5.4) that it is a variational solution on (¢, T') x R?,
and we may thus write

/RdlﬁTfT-s-/tT/Rd(_fatw—kvzﬁ.Avf):/Rd%f“

for any 1 € WH>°([0,T] x RY). For ¢ € L' N L>°, we define the solution ¢ € X7 to
the backward problem

(5.8) —0yp = div(ATVyp) in (0,T) x RY, o(T,-)=¢ in R%
We define ¢ = ¢ *,, p. for a mollifer (p.). Observing that
0%, V&, 0,07 = (—div(ATV)) % p. € LoU),

we may take 1) = ¢° in the above variational formulation and we get

L

| [ saaTve) «p. - 9 avs)

/tT/Rd(VfE-ATV<p+V<p€-AVf),

with f¢ := f % p., pe(x) := pe(—z). Using that Vf¢ — Vf and V¢* — Vo in
L2((t,T) x R%), as well as ¢S — @, in L?(R?) for s = ¢, T, we may pass to the limit
€ — 0 in the previous equation and we conclude that

[ otr=[ o veso
R R?
From (5.1) and (5.5), we formally have

d L 9—1 T

for some ¢ € (1,¢*) by choosing 1 — ¢ > 0 small enough and using the Holder
inequality. We deduce that

(5.9) /<x>ﬁFt <1+Ct"9 <Cp, Vte(0,T),
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by using the Holder inequality again, what provides an additional a priori estimate.
For any ¢ € Cy(R%), we may write

/F(t)s@j/‘F(s)sa = /.F(t)(’v?*@EVM)+'/‘F(t)g05’Mf/.F(s)ng’M
+ [ Fee - o),

with =M = (pxar) * pS € D(R?) using the usual notation for the truncations
xum and the mollifiers (p.). Because F € L>(0,T;L5(RY)) and =M — ¢ in
L>,, the two extremal terms are small uniformly in s, ¢ € [0, 7] for any convenient
choices of e, M > 0. From the very definition of weak solution, we know that
F € C([0,T); D'(RY)), so that the middle term is small for |t — s| small enough. We
deduce that F € C([0,T); (Cp(R?))), in particular F;, — §,, weakly in (Cy(R?))
as t — 0. Gathering this information with the De Giorgi-Nash regularity estimate
¢ € Cy([0,T/2] x RY), we obtain that

/ 6J7 = lim / oufi = 0.
Rd t—0 R4

Because ¢ € L' N L™ is arbitrary, we deduce that f7 = 0 for any T > 0, and that
concludes the uniqueness of the fundamental solution.

6. REFINED BOUND ON THE FUNDAMENTAL SOLUTION

In this section, we are interest in the fundamental solution to the parabolic equation
(1.1), namely to the solution I to

or
(6.1) YT div(AVT) in (0,00) x RY, =0, inR%
We first consider a smooth, positive and fast decaying initial datum fy, the solution
f to the associated heat equation, and for a given o € R, we define g := fe¥,
¥(z) := a - x. The equation satisfied by g is
1 1 1
dg = Se'Alge™) =509 Vv Vg+|Vul’g

1 1
= éAg —a-Vg+ §|a|2g.
For the L' norm, we have
d 1
S lgllze = 5042 lgllz,

and then |[g(t,.)||1 = e**t/2||go|| 11 for any ¢t > 0. For the L? norm and thanks to
the Nash inequality, we have

d
Zllglze = ~IVglli: +a” gll7s
_ 2 d
< —Koe 2| g 20D 402 g2,

with Ky := Cy ||go||;1/d. We see that the function u(t) := e="t lg(t)||3- satisfies
the differential inequality
'LL/ S 7K0 U1+2/d,
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from what, exactly as in Nash L' — L? estimate, we deduce

||90||2L1
(2/dCnt)¥/2’
Denoting by T'(t) the semigroup associated to the parabolic equation satisfies by g,
the above estimate writes

lg(t)12: e < Vi > 0.

Cea2t/2
IT(t)gollr> < i llgollzr, Vt>0.

Because the equation associated to the dual operator is
1 1
Oh = 5Ah+a-Vh+ 5|a\2h, h(0) = hy,
the same estimate holds on T™*(t)ho = h(t), and we thus deduce

C eazt/Q

1T (t)gollL>= < T

Using the trick T'(t) = T'(t/2)T'(t/2), both estimates together give an accurate time

depend estimate on the mapping T'(t) : L' — L for any ¢t > 0. More precisely
and in other words, we have proved that the heat semigroup S satisfies

C 2
1(S(t) fo) |z < w7 e 2| foe|pr, VE>0.
Denoting F(t,z,y) := (S(t)d5)(y) the fundamental solution associated to the heat
equation when starting from the Dirac function in € R?, the above estimate

rewrites as

lgollzz, Vt>0.

C
F(t,z,y) < a2 e“'(m_y)_aztﬂ, Vit >0,V y ac R

Choosing « := (z — y)/t, we end with

_lz—y|?

F(t,&y)ﬁtd?e o, Vt>0,Vaz,ye R

In particular, we immediately deduce
Ma0)i= [ WPF( )y < Clet fal)
R

and we thus recover (5.9) with ¥ = 2.
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