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In this chapter we introduce two techniques which are useful for analyzing the longtime asymptotic
of evolution PDEs. On the one hand, it is the use of splitting tool though the itarated Duhamel
formula. On the other hand, it is an introduction of the analysis of stochastic semigroup following
Harris-Meyn-Tweedie type approach.

1. Weighted L1 decay through semigroups factorization technique

In this section, we establish the following weighted L1 decay through a semigroups factorization
technique and the already known weighted L2 decay (consequence and equivalent to the Poincaré
inequality) prsented in chapter 3. We consider the Fokker-Planck equation

∂

∂t
f = L f = ∆f +∇ · (f ∇V ) in (0,∞)× Rd(1.1)

f(0, x) = f0(x) on Rd,(1.2)

and we assume that the “confinement potential” V is the harmonic potential

V (x) :=
|x|2

2
+ V0, V0 :=

d

2
log 2π.

We recall

(1.3) ∥f(t, .)− ⟨f0⟩G∥E ≤ e−λP t ∥f0 − ⟨f0⟩G∥E as t→ ∞,

where ∥ · ∥E stands for the norm of the Hilbert space E := L2(G−1) defined by

∥f∥2E :=

∫
Rd

f2G−1 dx

and λP is the best (larger) constant in the Poincaré inequality.

Theorem 1.1. For any a ∈ (−λP , 0) and for any k > k∗ := λP there exists Ck,a such that for
any φ ∈ L1

k, the associated solution f to the Fokker-Planck equation (1.1)-(1.2) satisfies

(1.4) ∥f − ⟨φ⟩G∥L1
k
≤ Ck,a e

a t ∥φ− ⟨φ⟩G∥L1
k
.

A refined version of the proof below shows that the same estimate holds with a := −λP .

1



2 CHAPTER 6 - SEMIGROUP AND LONGTIME BEHAVIOUR

Proof of Theorem 1.1. In order to simplify a bit the presentation, we only present the proof in the
case of the dimension d ≤ 3, but the same arguments can be generalized to any dimension d ≥ 1.

Step 1. The splitting. We introduce the splitting L = A+ B with

Bf := ∆f +∇ · (f x)−M f χR, Af :=M f χR,

where χR(x) = χ(x/R), χ ∈ D(Rd), 1B1
≤ χ ≤ 1B2

, and where R,M > 0 are two real constants to
be chosen later. We define, in any Banach space X such that G ∈ X ⊂ L1, the projection operator

Πf := ⟨f⟩G,
which thus satisfies Π2 = Π and Π ∈ B(X ). When SL is well defined as a semigroup in X , we have

(1.5) SL(I −Π) = (I −Π)SL = (I −Π)SL(I −Π)

as a consequence of the projection property (I−Π)2 = (I−Π)2, of the facts that G is a stationary
solution to the Fokker-Planck equation and that the mass is preserved by the associated flow. Now,
iteraration the Duhamel formula

SL = SB + SL ∗ ASB,

we have

(1.6) SL = SB + SB ∗ (ASB) + SL ∗ (ASB) ∗ (ASB).

The two identities (1.5) and (1.6) together and using the shorthand Π⊥ = I −Π, we have

SLΠ
⊥ = Π⊥SBΠ

⊥ +Π⊥SB ∗ (ASB)Π
⊥ + SLΠ

⊥ ∗ (ASB) ∗ (ASBΠ
⊥) =:

3∑
i=1

Ti(t).

In order to get (1.4), we will establish that

SB(t) : L
1
k → L1

k, with bound O(ea
′t), ∀ t ≥ 0, ∀ a′ > a∗, ∀ k > k∗,(1.7)

SB(t) : L
1
K → L2

K , with bound O
( ea′t

t3/4
)
, ∀ t > 0, ∀ a′ > a∗, ∀K > K∗,(1.8)

A : L1
k → L1

K , A : L2
K → L2(G−1), ∀K > k∗, ∀ k > k∗,(1.9)

with K∗ := λP + d/2. We also recall that

SL(t)Π
⊥ : L2(G−1) → L2(G−1), with bound O(e−λP t), ∀ t ≥ 0,(1.10)

which is nothing but (1.3). We finally observe that

(1.11) u ∗ w(t) = O(eat) and u ∗ v ∗ w(t) = O(eat), ∀ t ≥ 0, ∀ a > a∗,

if

(1.12) u(t) = O(ea
′t), v(t) = O

( ea′t

t3/4
)
, w(t) = O(ea

′t), ∀ t > 0, ∀ a′ > a∗.

The first estimate in (1.11) is obtained by writing

u ∗ w(t) =
∫ t

0

u(s)w(t− s) ds ≲
∫ t

0

ea
′sea

′(t−s) ds ≲ tea
′t ≲ eat,

for any t ≥ 0 and any a > a′ > a∗. For the second estimate in (1.11), we first write

v ∗ w(t) =
∫ t

0

v(s)w(t− s) ds ≲
∫ t

0

ea
′′s

s3/4
ea

′′(t−s) ds ≲ t1/4ea
′′t ≲ ea

′t,

for any t ≥ 0 and any a′ > a′′ > a∗, and we conclude by combining that estimate with the first
estimate in (1.11).

Step 2. The conclusion. With the help of the estimates stated in step 1, we are in position to prove
(1.4) or equivalently that

(1.13) ∥Ti(t)∥L1
k→L1

k
≲ eat, ∀ t ≥ 0, ∀ a > a∗, ∀ k > k∗,

for any i = 1, 2, 3. For i = 1, (1.13) is nothing but (1.7) together with Π⊥ ∈ B(L1
k). For proving

(1.13) when i = 2, we use the first estimate in (1.11) with

u(t) := ∥Π⊥SB(t)∥L1
k→L1

k
, w(t) := ∥ASB(t)Π

⊥∥L1
k→L1

k
,
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where both functions satisfy the hypothesizes of (1.12) because of Π⊥ ∈ B(L1
k), of the first estimate

on A with K = k in (1.9) and of the estimate (1.8) on SB(t) in L
1
k. For proving (1.13) when i = 3,

we use the second estimate in (1.11) with

u(t) := ∥SL(t)Π
⊥∥L2(G−1)→L1

k
, v(t) := ∥ASB(t)∥L1

K→L2(G−1), w(t) := ∥ASB(t)Π
⊥∥L1

k→L1
K
,

where the three functions satisfy the hypothesizes of (1.12). To check the estimate on u, we use
(1.10) and L2(G−1) ⊂ L1

k. For the estimate on v, we use (1.8) and the second estimate on A in
(1.9). Finally, to check the estimate on w, we use the first estimate on A in (1.9), the estimate
(1.7) on SB(t) in L

1
k and Π⊥ ∈ B(L1

k).

In order to conclude the proof of Theorem 1.1, we thus need to establish (1.7), (1.8) and (1.9).
That is done in the three following steps.

Step 3. Proof of (1.9). The operator A is clearly bounded in any Lebesgue space and more precisely

∥A f∥Lp(m) ≤ CR,M ∥f∥Lp
ℓ
, ∀ f ∈ Lp

ℓ , ∀ p = 1, 2,

for m := ⟨x⟩K or m := G−1 and with

CR,M :=M∥ m

⟨·⟩pℓ
∥1/pL∞(B2R).

Step 4. Proof of (1.7). For any k, ε > 0 and for any M,R > 0 large enough (which may depend
on k and ε) the operator B is dissipative in L1

k in the sense that

(1.14) ∀ f ∈ D(Rd),

∫
Rd

(Bf) (signf) ⟨x⟩k ≤ (ε− k) ∥f∥L1
k
.

We immediately deduce (1.7) from (1.14) and the Gronwall lemma. In oder to establish (1.14), we
set β(s) = |s| (and more rigorously we must take a smooth version of that function) and m = ⟨x⟩k,
and we compute∫

(L f)β′(f)m =

∫
(∆f + d f + x · ∇f)β′(f)m

=

∫
{−∇f ∇(β′(f)m) + d |f |m+mx · ∇|f |}

= −
∫

|∇f |2 β′′(f)m+

∫
|f | {∆m+ d−∇(xm)}

≤
∫

|f | {∆m− x · ∇m},

where we have used that β is a convex function. Defining

ψ := ∆m− x · ∇m−MχRm

= (k2 |x|2 ⟨x⟩−4 − k |x|2 ⟨x⟩−2 −M χR)m

we easily see that we can choose M,R > 0 large enough such that ψ ≤ (ε− k)m and then (1.14)
follows.

Step 5. Proof of (1.8). Fix now K > K∗ and a > −λP . There holds

(1.15) ∥SB(t)φ∥L2
K
≤ Ca,K

td/4
ea t ∥φ∥L1

K
, ∀φ ∈ L1

K ,

which immediately implies (1.8) since we are restricted to the case of a dimension d ≤ 3. We set
m = ⟨x⟩K . A similar computation as in step 4 gives∫

(B f) f m2 = −
∫

|∇(f m)|2 +
∫

|f |2
{ |∇m|2

m2
+
d

2
− x · ∇m−M χR

}
m2

= −
∫

|∇(f m)|2 + (
d

2
+ ε−K)

∫
|f |2m2,

for M,R > 0 chosen large enough. Denoting by f(t) = SB(t)φ the solution to the evolution PDE

∂tf = Bf, f(0) = φ,
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we (formally) have

1

2

d

dt

∫
f2m2 =

∫
(B f) f m2 ≤ −

∫
|∇(f m)|2 + a

∫
|f |2m2.

On the one hand, throwing away the last (negative) term at the RHS of the above differential
inequality and using Nash trick, we get

(1.16) ∥f(t)m∥L2 ≤ C

td/4
∥f(0)m∥L1 , ∀ t > 0.

On the other hand, throwing away the first (negative) term at the RHS of the above differential
inequality and using the Gronwall lemma exactly as in step 4, we get

(1.17) ∥f(t)m∥L2 ≤ Cea(t−t0) ∥f(t0)m∥L2 , ∀ t ≥ t0 ≥ 0.

Using (1.16) for t ∈ (0, 1] and (1.17) for t ≥ 1, we deduce (1.15). □

2. Asymptotic of Stochastic semigroups

2.1. Generalities. From now on, we will be interested in Stochastic semigroups which is a class
of semigroups which enjoy both a positivity and a “conservativity” property. The importance of
Stochastic semigroups comes from its deep relation with Markov processes in stochastic theory
as well as from the fact that a quite satisfactory description of the longtime behaviour of such a
semigroups can be performed.

We start with the notion of positivity. It can be formulated in the abstract framework of Banach
lattices (X, ∥·∥,≥) which are Banach spaces endowed with compatible order relation or equivalently
with an appropriate positive cone X+. To be more concrete, we just observe that the following
three examples are Banach lattices when endowed with their usual order relation:

• X := C0(E), the space of continuous functions which tend to 0 at infinity (when E is not a
compact set) endowed with the uniform norm ∥ · ∥;
• X := Lp(E) = Lp(E, E , µ), the Lebesgue space of functions associated to the Borel σ-algebra E ,
a positive σ-finite measure µ and an exponent p ∈ [1,∞];

• X :=M1(E) = (C0(E))′, the space of Radon measures defined as the dual space of C0(E).

Here E denotes a σ-locally compact metric space (typically E ⊂ Rd) and in the last example the
positivity can be defined by duality: µ ≥ 0 if ⟨µ, φ⟩ ≥ 0 for any 0 ≤ φ ∈ C0(E).

Lemma 2.1. Consider X a Banach lattice (one of the above examples), a bounded linear operator
A on X and its dual operator A∗ on X ′. The following equivalence holds:
(1) A is positive, namely Af ≥ 0 for any f ∈ X, f ≥ 0;
(2) A∗ is positive, namely A∗φ ≥ 0 for any φ ∈ X ′, φ ≥ 0.

The (elementary) proof is left as an exercise. We emphasize that ⟨f, φ⟩ ≥ 0 for any φ ∈ X ′
+ (resp.

for any f ∈ X+) implies f ∈ X+ (resp. φ ∈ X ′
+).

There are two “equivalent” (or “dual”) ways to formulate the notion of Stochastic and Markov
semigroup.

Definition 2.2. On a Banach lattice Y ⊃ C0(E) we say that (Pt) is a Markov semigroup if
(1) (Pt) is a continuous semigroup in Y ;
(2) (Pt) is positive, namely Pt ≥ 0 for any t ≥ 0;
(3) (Pt) is conservative, namely 1 ∈ Y and Pt1 = 1 for any t ≥ 0.

Definition 2.3. On a Banach lattice X ⊂M1(E) we say that (St) is a stochastic semigroup if
(1) (St) is a (strongly or weakly ∗ continuous) continuous semigroup in X;
(2) (St) is positive, namely St ≥ 0 for any t ≥ 0;
(3) (St) is conservative, namely ⟨Stf⟩ = ⟨f⟩, ∀ t ≥ 0, ∀ f ∈ X, where ⟨g⟩ := ⟨g,1⟩.

The two notions are dual. In particular, if (Pt) is a Markov semigroup on Y ⊃ C0(E), the dual
semigroup (St) defined by St := P ∗

t on X := Y ′ is a stochastic semigroup. In the sequel we will
only consider stochastic semigroups defined on X ⊂ L1(E).

Stochastic semigroup and semigroup of contractions for the L1 are closely linked.
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Proposition 2.4. A Stochastic semigroup is a semigroup of contractions for the L1 norm. In the
other way round, a mass conservative semigroup of contractions for the L1 norm is positive, and
thus it is a Stochastic semigroup.

Proof of Proposition 2.4. We fix f ∈ X and t ≥ 0. We write

|Stf | = |Stf+ − Stf−|
≤ |Stf+|+ |Stf−|
= Stf+ + Stf−

= St|f |,

where we have used the positivity property in the third line. We deduce∫
|Stf | ≤

∫
St|f | =

∫
|f |,

because of the mass conservation. For the reciprocal part, we consider f ≥ 0. From both the
contraction property and the mass conservation, we have

∥Stf∥1 ≤ ∥f∥1 =

∫
f =

∫
Stf.

As a consequence,

∥(Stf)−∥L1 =
1

2

∫
(|Stf | − Stf) ≤ 0

so that (Stf)− = 0 and thus Stf ≥ 0. That proves the positivity property.

We may also characterize a Stochastic semigroup in terms of its generator.

Theorem 2.5. Let S = SL be a strongly continuous semigroup on a Banach space X ⊂ L1. There
is equivalence between
(a) SL is a Stochastic semigroup;
(b) L∗1 = 0 and L satisfies Kato’s inequality

(sign f)Lf ≤ L|f |, ∀ f ∈ D(L).

Partial proof of Theorem 2.5. Step 1. We prove (a) ⇒ (b). On the one hand, for any f ∈ D(L)
and any 0 ≤ ψ ∈ D(L∗), we have

⟨ψ, (signf)Lf⟩ = lim
t→0

1

t
⟨ψ, (signf)(S(t)f − f)⟩

≤ lim
t→0

1

t
⟨ψ, |S(t)f | − |f |⟩

≤ lim
t→0

1

t
⟨ψ, S(t)|f | − |f |⟩

= lim
t→0

1

t
⟨S∗(t)ψ − ψ, |f |⟩

= ⟨L∗ψ, |f |⟩,

where we have used the inequality (signf)g ≤ |g| in the second line and the positivity assumption
in the third line. That inequality is the weak formulation of Kato’s inequality. On the other hand
and similarly, for any f ∈ D(L), we have

⟨L∗1, f⟩ = ⟨1,Lf⟩

= lim
t→0

1

t
⟨1, S(t)f − f⟩ = 0,

by just using the mass conservation property.

Step 2. We prove (b) ⇒ (a). On the one hand, for any f ∈ D(L) and t ≥ 0, we denote ft := Stf
and we write

⟨Stf − f⟩ =
〈∫ t

0

Lfs ds,1
〉
=

∫ t

0

⟨fs,L∗1⟩ ds = 0.



6 CHAPTER 6 - SEMIGROUP AND LONGTIME BEHAVIOUR

On the other hand, in order to conclude it is enough to prove that (St) is a semigroup of contrac-
tions. We consider f ∈ D(L2), t ≥ 0, n ∈ N∗, we introduce the notation ft := Stf , tk := kt/n, and
we write

|Stf | − |f | =

n−1∑
k=0

(|ftk+1
| − |ftk |)

≤
n−1∑
k=0

signftk+1
(ftk+1

− ftk)

=

n−1∑
k=0

signftk+1

∫ tk+1

tk

Lfs ds

=

n−1∑
k=0

signftk+1

{ 1

n
Lftk+1

+

∫ tk+1

tk

L(fs − ftk+1
) ds

}
≤

n−1∑
k=0

{ 1

n
L|ftk+1

|+ signftk+1

∫ tk+1

tk

∫ s

tk+1

(SuL2f) duds
}
,

where we have used the inequality (signf)g ≤ |g| in the second line and Kato’s inequality in the
last line. Taking the mean and using the mass conservation, we have

∥Stf∥ − ∥f∥ ≤
n−1∑
k=0

∫ tk+1

tk

∫ tk+1

s

∥SuL2f∥ duds

≤ 1

n

∫ t

0

∥SuL2f∥ du→ 0,

as n→ ∞. □

Exercise 2.6. Consider SL∗ a (constant preserving) Markov semigroup and Φ : R → R a concave
function. Prove that L∗Φ(m) ≤ Φ′(m)L∗m. (Hint. Use that Φ(a) = inf{ℓ(a); ℓ affine such that ℓ ≥
Φ} in order to prove S∗

t (Φ(m)) ≤ Φ(S∗
tm) and Φ(b)− Φ(a) ≥ Φ′(a)(b− a)).

2.2. Strong positivity condition and Doblin Theorem. We consider the case of a strong
positivity condition.

Theorem 2.7 (Doeblin). Consider a Stochastic semigroup St such that

ST f ≥ αν ⟨f⟩, ∀ f ∈ X+,

for some constants T > 0 and α ∈ (0, 1) and some probability measure ν. There holds

∥Stf∥L1 ≤ C eat∥f∥L1 , ∀ t ≥ 0, ∀ f ∈ X, ⟨f⟩ = 0,

for some constants C ≥ 1 and a < 0.

Proof of Theorem 2.7. We fix f ∈ X such that ⟨f⟩ = 0 and we define η := αν⟨f+⟩ = αν⟨f−⟩. We
write

|ST f | = |ST f+ − η − ST f− + η|
≤ |ST f+ − η|+ |ST f− − η|
= ST f+ − η + ST f− − η,

where in the last equality we have used the Doeblin condition. Integrating, we deduce∫
|ST f | ≤

∫
ST f+ − α⟨ν⟩⟨f+⟩+

∫
ST f− − α⟨ν⟩⟨f−⟩

≤
∫
f+ − α ⟨f+⟩+

∫
f− − α ⟨f−⟩

≤ (1− α)

∫
|f |.

By induction, we obtain a := [log(1− α)]/T and C := exp[|a|T ]. □
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2.3. Geometric stability under Harris and Lyapunov conditions. We consider now a semi-
group S with generator L and we assume that

(H1) there exists some weight function m : Rd → [1,∞) satisfying m(x) → ∞ as x→ ∞ and there
exist some constants α > 0, b > 0 such that

L∗m ≤ −αm+ b;

(H2) for any R > 0, there exists a constant T ≥ T0 > 0 and a positive and not zero measure ν = νR
such that

ST f ≥ ν

∫
BR

f, ∀ f ∈ X+.

Theorem 2.8 (Doeblin). Consider a Stochastic semigroup S on X := L1(m) which satisfies (H1)
and (H2). There holds

∥Stf∥L1(m) ≤ C eat∥f∥L1(m), ∀ t ≥ 0, ∀ f ∈ X, ⟨f⟩ = 0,

for some constants C ≥ 1 and a < 0.

We start with a variant of the key argument in the above Doeblin’s Theorem.

Lemma 2.9 (Doeblin’s variant). Under assumption (H2), if f ∈ L1(m), with m(x) → ∞ as
|x| → ∞, satisfies

(2.1) ∥f∥L1 ≥ 4

m(R)
∥f∥L1(m) and ⟨f⟩ = 0,

we then have

∥ST f∥L1 ≤
(
1− ⟨ν⟩

2

)
∥f∥L1 .

Proof of Lemma 2.9. From the hypothesis (2.1), we have∫
BR

f± =

∫
f± −

∫
Bc

R

f±

≥ 1

2

∫
|f | − 1

m(R)

∫
|f |m ≥ 1

4

∫
|f |.

Together with (H2), we get

ST f± ≥ ν

4

∫
|f | =: η.

We deduce

|ST f | ≤ |ST f+ − η|+ |ST f− − η| = ST f+ − η + ST f− − η = ST |f | − 2η,

and next ∫
|ST f | ≤

∫
ST |f | − 2

∫
η =

∫
|f | − ⟨ν⟩1

2

∫
|f |,

which is nothing but the announced estimate. □

Proof of Theorem 2.8. We split the proof in several steps. We fix f0 ∈ L1(m), ⟨f0⟩ = 0 and we
denote ft := Stf0.

Step 1. From (H1), we have

d

dt
∥ft∥L1(m) ≤ −α∥ft∥L1(m) + b∥ft∥L1 ,

from what we deduce

∥ft∥L1(m) ≤ e−αt∥f0∥L1(m) +
(
1− e−αt

) b
α
∥f0∥L1 ∀ t ≥ 0.

In other words, for any T ≥ T0 > 0, we have

(2.2) ∥ST f0∥L1(m) ≤ γL∥f0∥L1(m) +K∥f0∥L1 ,

with γL ∈ (0, 1) and K > 0, both constants depending only of T0. We fix R > 0 large enough such
that K/A < 1− γL with A := m(R)/4.

On the other hand, we recall that

(2.3) ∥ST f0∥L1 ≤ ∥f0∥L1 , ∀T ≥ 0,
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and because of Lemma 2.9, there exists γH ∈ (0, 1) and T ≥ T0 only depending on R defined above
such that

(2.4) ∥ST f0∥L1 ≤ γH∥f0∥L1 when A ∥f0∥L1 ≥ ∥f0∥L1(m).

Step 2. We introduce the modified norm

|||g||| := ∥g∥L1 + β∥g∥L1(m)

and we observe that we have the alternative

A ∥f0∥L1 ≥ ∥f0∥L1(m) or A ∥f0∥L1 < ∥f0∥L1(m).

In the first case of the alternative, using the Lyapunov estimate (2.2) and the coupling estimate
(2.4), we have

|||ST f0||| = ∥ST f0∥L1 + β∥ST f0∥L1(m)

≤ (γH + βK)∥f0∥L1 + βγL∥f0∥L1(m)

≤ γ1|||f0|||,
with γ1 := max(γH + βK, γL) < 1, by fixing from now on β > 0 small enough. In the second case
of the alternative, using the Lyapunov estimate (2.2) and the non expansion estimate (2.4), we
have

|||ST f0||| = ∥ST f0∥L1 + β∥ST f0∥L1(m)

≤ (1 + βK − βδ)∥f0∥L1 + β(γL + δ/A)∥ST f0∥L1(m)

≤ γ2|||f0|||,
with γ2 := max(1 + βK − βδ, γL + δ/A) for any 0 < βδ < 1 + βK. We take δ := K + ε, ε > 0, so
that we get

γ2 = max(1− βε, (γL +K/A) + ε/A) < 1,

by choosing ε > 0 small enough and by recalling from the very definition of A that γL +K/A < 1.
In any cases, we have thus established that

|||ST f0||| ≤ γ|||f0|||, with γ := max(γ1, γ2) < 1.

We then conclude as in the proof of Theorem 2.7.

Step 3 (Alternative argument). Alternatively, the two estimates (2.3) and (2.4) together give

(2.5) ∥Sf0∥L1 ≤ γH∥f0∥L1 +
1− γH
A

∥f0∥L1(m).

Together with step 1, we deduce that

Un+1 =MUn

with

Un :=

(
∥Sn

T f0∥L1(m)

∥Sn
T f0∥L1

)
and M :=

(
γL K

1−γH

A γH

)
.

The eigenvalues of M are

µ± :=
1

2

(
T ±

√
T 2 − 4D

)
,

with

T := trM = γL + γH , D := detM = γLγH − (1− γH)
K

A
.

We observe that

γLγH > D > γLγH − (1− γH)(1− γL) = T − 1,

so that

(γH − γL)
2 = T 2 − 4γLγH < T 2 − 4D < T 2 − 4(T − 1) = (T − 2)2

and finally

θ := max(|µ+|, |µ−|) < max(γH , γL, |T − 1|, 1) = 1.

We have established that ∥Mn∥ ≤ C θn → 0 for some constant C ≥ 1, and we then conclude as in
the proof of Theorem 2.7. □
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3. An example: the renewal equation

We will discuss now the renewal equation for which we apply some of the results of the preceding
sections in order to get some insight about its qualitative behavior in the large time asymptotic.
We are thus interesting by the renewal equation

(3.1)

{
∂tf + ∂xf + af = 0
f(t, 0) = ρf(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, and

ρg :=

∫ ∞

0

g(y) a(y) dy.

Here f typically represents a population of cells (particles) which are aging (getting holder), die
(disappear) with rate a ≥ 0, born again (reappear) with age x = 0 and has distribution f0 at initial
time. At least at a formal level, any solution of (3.1) satisfies

d

dt

∫ ∞

0

f dx =

∫ ∞

0

(−∂xf − af) dx =
[
−f

]∞
0

−
∫ ∞

0

af dx = 0,

so that the mass is conserved. Similarly, we have

d

dt

∫ ∞

0

|f | dx =

∫ ∞

0

(−∂x|f | − a|f |) dx =
[
−|f |

]∞
0

−
∫ ∞

0

a|f | dx ≤ 0,

so that the sign of the solution is preserved by observing that g− = (|g| + g)/2 and using the
above two informations. That seems to indicate that if (3.1) defines a semigroup, this one is a L1

Stochastic semigroup.

Preliminarily, we consider the (simpler) transport equation with boundary condition

(3.2)

{
∂tf + ∂xf + af = 0
f(t, 0) = ρ(t), f(0, x) = f0(x),

with f0 and ρ are given data. We observe that when f is smooth (C1) and satisfies (3.2), we have

d

ds
[f(t+ s, x+ s)eA(x+s)] = 0, A(x) :=

∫ x

0

a(y) dy,

from what we deduce
f(t, x)eA(x) = f(t− s, x− s)eA(x−s),

when both terms are well defined. Choosing either s = t or s = x, we get

(3.3) f(t, x) = f0(x− t) eA(x−t)−A(x) 1x>t + ρ(t− x) e−A(x) 1x<t.

In the other way round, we may check that for any smooth functions a, f0, ρ, the above formula
gives a classical solution to (3.2) at least in the region {(t, x) ∈ R2

+, x ̸= t}, and thus a weak
solution to (3.2) in the sense

(3.4)

∫ ∞

0

∫ ∞

0

f (−∂tφ− ∂xφ+ aφ) dxdt−
∫ ∞

0

f0(x)φ(0, x) dx−
∫ ∞

0

ρ(t)φ(t, 0) dt = 0,

for any φ ∈ C1
c (R2

+). It is worth noticing that this last equation is also the weak formulation of
the evolution equation with source term

∂tf + ∂xf + af = ρ(t)δ0, f(0, x) = f0(x),

defined on the all line (that is for any x ∈ R).
At least at a formal level, for any solution f to (3.2), we may compute

d

dt

∫ ∞

0

|f | dx =
[
−|f |

]∞
0

−
∫ ∞

0

a|f | dx ≤ |ρ(t)|,

so that

(3.5) sup
[0,T ]

∥f(t)∥L1 ≤ ∥f0∥L1 +

∫ T

0

|ρ(t)| dt.

Lemma 3.1. Assume a ∈ L∞. For any f0 ∈ L1(R+) and α ∈ L1(0, T ) there exists a unique weak
solution f ∈ C([0, T ];L1(R+)) associated to equation (3.2).
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Proof Lemma 3.1. Step 1. Existence. When a ∈ Cb(R+) and f0, ρ ∈ C1
c (R+) the solution is

explicitly given thanks to the characteristics formula (3.3). In the general case, we consider three
sequences (aε), (f0,ε) and (ρε) of Cb(R+) and C

1
c (R+) which converge appropriately, namely aε → a

a.e. and (aε) bounded in L∞, f0,ε → f0 in L1(R+) and ρε → ρ in L1(0, T ), and we see immediately
from (3.5) that the functions (fε) and f defined thanks to the characteristics formula (3.3) satisfy
fε → f in C([0, T ];L1). As a consequence, we may pass to the limit in (3.2) and we deduce that
f is a weak solution to equation (3.2).

Step 2. Uniqueness. Consider two weak solutions f1 and f2 to equation (3.2). The difference
f := f2 − f1 satisfies

(3.6)

∫ ∞

0

∫ ∞

0

f (−∂tφ− ∂xφ+ aφ) dxdt = 0,

for any φ ∈ C1
c (R2

+) and thus also for any φ ∈ Cc(R2
+) ∩W 1,∞(R2

+). Introducing the semigroup

(Stg)(x) := g(x− t) eA(x−t)−A(x) 1x>t,

associated to equation (3.2) with no boundary term, its dual is

(S∗
t ψ)(x) := ψ(x+ t) eA(x)−A(x+t), ∀ψ ∈ L∞(R+),

and (S∗
t ) is well-defined as a semigroup in Cc ∩W 1,∞(R+). Now, for ψ ∈ C1

c (R2
+), we define

φ(t, x) :=

∫ T

t

(S∗
s−tψ(s, ·))(x) ds

=

∫ T

t

ψ(s, x+ s− t) eA(x)−A(x+s−t) ds ∈ Cc(R2
+) ∩W 1,∞(R2

+),

and we compute

∂xφ(t, x) =

∫ T

t

[∂xψ(s, x+ s− t) + ψ(s, x+ s− t)(a(x)− a(x+ s− t))] eA(x)−A(x+s−t) ds,

from what we deduce

∂tφ(t, x) = −ψ(t, x) +
∫ T

t

[−∂xψ(s, x+ s− t) + ψ(s, x+ s− t)a(x+ s− t)] eA(x)−A(x+s−t) ds

= −ψ(t, x)− ∂xφ(t, x) + a(x)φ(t, x).

Using then this test function φ in (3.6), we get∫ ∞

0

∫ ∞

0

f ψ dxdt = 0, ∀ψ ∈ C1
c (R2

+),

and finally f1 = f2. □

We are now in position to come back to the renewal equation (3.1).

Lemma 3.2. Assume a ∈ L∞. For any f0 ∈ L1(R+), there exists a unique global weak solution
f ∈ C(R+;L

1(R+)) associated to equation (3.1). We may then associate to the renewal evolution
a Stochastic semigroup.

Proof Lemma 3.2. We define ET := C([0, T ];L1(R+)) and for any g ∈ ET , we define f := Φ(g) ∈ ET
the unique solution to equation (3.2) associated to f0 and ρ(t) := ρg(t) ∈ C([0, T ]). For two given
functions g1, g2 ∈ ET and the two associated images fi := Φ(gi), we observe that f := f2 − f1 is a
weak solution to equation (3.2) associated to f(0) = 0 and ρ(t) := ρg2(t)−g1(t). The estimate (3.5)
reads here

sup
[0,T ]

∥(f2 − f1)(t)∥L1 ≤
∫ T

0

|ρg2(t)−g1(t))| dt ≤
∫ T

0

∫ ∞

0

a(y)|(g2 − g1)(t, y) dydt

≤ T ∥a∥L∞ sup
[0,T ]

∥(g2 − g1)(t)∥L1 .

Taking first T small enough such that T ∥a∥L∞ < 1, we get the existence and uniqueness of a fixed
point f = Φ(f) ∈ ET , which is nothing but a weak solution to the renewal equation (3.1). Iterating
the argument, we get the desired global weak solution f ∈ C(R+;L

1(R+)).



CHAPTER 6 - SEMIGROUP AND LONGTIME BEHAVIOUR 11

We may apply the results of the first section in the semigroup chapter 3 in order to get the existence
of a semigroup St associated to the evolution problem (3.1). This semigroup is clearly positive.
That can be seen by construction for instance. Indeed, if g ∈ ET,+ := {g ∈ ET , g ≥ 0}, then
f = Φ(g) ∈ ET,+ from the representation formula (3.3), and the fixed point argument can be made
in that set. Next, from (3.4), we classical deduce (see chapter 2) that∫ ∞

0

f φR dx =

∫ ∞

0

f0 φR dx+

∫ t

0

∫ ∞

0

(∂xφR + aφR) dxds+

∫ t

0

ρ(s) ds

for φR(x) := φ(x/R), φ ∈ C1
c (R+), 1[0,1] ≤ φ ≤ 1[0,2]. We get the mass conservation by passing to

the limit as R→ ∞. □

Lemma 3.3. Assume furthermore lim inf a ≥ a0 > 0. There exists a unique stationary solution
F ∈W 1,∞(R+) to the stationary problem

∂xF + aF = 0, F (0) = ρF , F ≥ 0, ⟨F ⟩ = 1.

Proof Lemma 3.3. From the first equation we have F (x) = Ce−A(x), so that the boundary condi-
tion is immediately fulfilled and the normalized condition is fulfilled by choosing C := ⟨e−A(x)⟩−1.
It is worth noticing that the additional assumption implies ⟨e−A(x)⟩ < ∞ so that C > 0 and the
same is true for F . □

Lemma 3.4. We still assume a ∈ L∞ and lim inf a ≥ a0 > 0. There exist C ≥ 1 and α < 0 such
that for any f0 ∈ L1(R+) the associated global solutionf to the renewal equation (3.1) satisfies

∥f(t)− ⟨f0⟩F∥L1 ≤ C eαt ∥f0 − ⟨f0⟩F∥L1 , ∀ t ≥ 0.

Proof Lemma 3.4. We check Harris condition. We observe that a ≥ a0/21x≥x0
for some x0 > 0.

We then set T := 2x0 > 0 and we take 0 ≤ f0 ∈ L1(R+). From (3.3), we have

(3.7) f(T, x) ≥ ρf(T−x,·) e
−A(x) 1x<T/2.

with

ρf(T−x,·) =

∫ ∞

0

a(y)f(T − x, y) dy

≥ a0
2

∫ ∞

x0

f(T − x, y) dy,

Using the representation formula (3.3) again, we have

f(T − x, y) ≥ f0(y + x− T ) e−(A(y)−A(y−(x−T ))) 1y>T−x

≥ f0(y + x− T ) e−(x−T )∥a∥∞ 1y>T−x,

so that

ρf(T−x,·) ≥ a0
2

∫ ∞

x0

f0(y + x− T )1y>T−x dy e
−(x−T )∥a∥∞

≥ a0
2

∫ ∞

0

f0(z)1z>x0+x−T dz e
−(x−T )∥a∥∞ .

Together with (3.7), we obtain

f(T, x) ≥ a0
2

∫ ∞

0

f0(z)1z>x0+x−T dz e
−(x−T )∥a∥∞ e−A(x) 1x<T/2

= ν(x)

∫ ∞

0

f0(z) dz, ν(x) :=
a0
2
e−(x−T )∥a∥∞ e−A(x) 1x<T/2,

which is precisely a Harris type lower bound. We conclude thanks to Theorem 2.7. □
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