On the Landau equation

We aim to establish the existence of solutions to the Landau equation

$$
\begin{equation*}
\partial_{t} f(t, v)=Q(f, f)(t, v), \quad f(0, v)=f_{0}(v), \tag{0.1}
\end{equation*}
$$

on the density function $f=f(t, v) \geq 0, t \geq 0, v \in \mathbb{R}^{d}, d \geq 2$, where the Landau kernel is defined by the formula

$$
Q(f, f)(v):=\frac{\partial}{\partial v_{i}}\left\{\int_{\mathbb{R}^{d}} a_{i j}\left(v-v_{*}\right)\left(f\left(v_{*}\right) \frac{\partial f}{\partial v_{j}}(v)-f(v) \frac{\partial f}{\partial v_{j}}\left(v_{*}\right)\right) d v_{*}\right\}
$$

Here and the sequel we use Einstein's convention of sommation of repeated indices. The matrix $a=\left(a_{i j}\right)$ is defined by

$$
a(z)=|z|^{2} \Pi(z), \quad \Pi_{i j}(z):=\delta_{i j}-\hat{z}_{i} \hat{z}_{j}, \quad \hat{z}_{k}:=\frac{z_{k}}{|z|}
$$

so that Π is the is the orthogonal projection on the hyperplan $z^{\perp}:=\left\{y \in \mathbb{R}^{d} ; y \cdot z=0\right\}$.

1 Part 0 - Some functional estimates.

(01) Prove that for any $0 \leq f \in L_{2}^{1}$, there holds

$$
\int_{\mathbb{R}^{d}} f(\log f)_{-} \leq \frac{1}{2} M_{2}(f)+C(d), \quad M_{2}(f):=\int_{\mathbb{R}^{d}} f|v|^{2} d v
$$

and deduce that

$$
\int_{\mathbb{R}^{d}} f(\log f)_{+} d v \leq \int_{\mathbb{R}^{d}} f \log f d v+\frac{1}{2} M_{2}(f)+C(d)
$$

(Hint. One may prove and use the estimate

$$
\left.s(\log s)_{-} \leq \sqrt{s} \mathbf{1}_{0 \leq s \leq e^{-a|v|^{k}}}+s a|v|^{k} \mathbf{1}_{e^{-a|v|^{k}} \leq s \leq 1}, \quad \forall s \geq 0 .\right)
$$

Elements of correction. We may indeed observe that

$$
\begin{aligned}
s(\log s)_{-} & =s(\log s)_{-} \mathbf{1}_{0 \leq s \leq e^{-a|v|^{k}}}+s(\log s)_{-} \mathbf{1}_{e^{-a|v|^{k}} \leq s \leq 1} \\
& \leq \sqrt{s} \mathbf{1}_{0 \leq s \leq e^{-a|v|^{k}}}+s a|v|^{k} \mathbf{1}_{e^{-a|v|^{k}} \leq s \leq 1} \\
& \leq e^{-a|v|^{k} / 2}+s a|v|^{k}
\end{aligned}
$$

by using the inequality $s(\log s)_{-} \leq \sqrt{s}$ on $[0,1]$ (coming from $\phi(s):=1+\sqrt{s} \log s \geq \phi\left(e^{-2}\right)>0$ on $[0,1])$ and the fact that $s \mapsto(\log s)_{-}$is a decreasing function. Using the above inequality with $a=1 / 2$ and $k=2$, we have

$$
\int f(\log f)_{-} \leq \int e^{-|v|^{2} / 4} d v+\frac{1}{2} \int f|v|^{2}
$$

and we conclude thanks to

$$
\int_{\mathbb{R}^{d}} f(\log f)_{+}=\int_{\mathbb{R}^{d}} f \log f+\int_{\mathbb{R}^{d}} f(\log f)_{-}
$$

(02) Prove that for for any $0 \leq f \in L^{1}$ such that $\int f=1$, there holds

$$
\int_{\mathbb{R}^{d}}|\nabla f| d v \leq \int_{\mathbb{R}^{d}} \frac{|\nabla f|^{2}}{f} d v
$$

(Hint. Use the Cauchy-Schwarz inequality).
Elements of correction. Write $|\nabla f|=\left(|\nabla f| f^{-1 / 2}\right) f^{1 / 2}$ and use the Cauchy-Schwarz inequality.

2 Part I - Physical properties and a priori estimates.

(1) Observe that $a(z) z=0$ for any $z \in \mathbb{R}^{d}$ and $a(z) \xi \xi \geq 0$ for any $z, \xi \in \mathbb{R}^{d}$. Here and below, we use the bilinear form notation $a u v={ }^{t} v a u=v \cdot a u$. In particular, the symmetric matrix a is positive but not strictly positive.
Elements of correction. We observe that

$$
\Pi(z) \xi \xi:=\Pi_{i j}(z) \xi_{i} \xi_{j}=\left(\delta_{i j}-\hat{z}_{i} \hat{z}_{j}\right) \xi_{i} \xi_{j}=|\xi|^{2}-(\hat{z} \cdot \xi)^{2}=|\xi|^{2}\left(1-(\hat{z} \cdot \hat{\xi})^{2}\right) \geq 0
$$

with equality if $\xi=z$.
(2) For any nice functions $f, \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}, f \geq 0$, prove that

$$
\int Q(f, f) \varphi d v=\frac{1}{2} \iint a\left(v-v_{*}\right)\left(f \nabla_{*} f_{*}-f_{*} \nabla f\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}
$$

where $f_{*}=f\left(v_{*}\right), \nabla_{*} \psi_{*}=(\nabla \psi)\left(v_{*}\right)$. Deduce that

$$
\int Q(f, f) \varphi d v=0, \quad \text { for } \varphi=1, v_{i},|v|^{2}
$$

and

$$
-D(f):=\int Q(f, f) \log f d v \leq 0
$$

Establish then

$$
\left|\int Q(f, f) \varphi d v\right| \leq D(f)^{1 / 2}\left(\frac{1}{2} \iint f f_{*} a\left(v-v_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}\right)^{1 / 2}
$$

Elements of correction. By definition

$$
\int Q(f, f) \varphi d v=\iint a\left(v-v_{*}\right)\left(f \nabla_{*} f_{*}-f_{*} \nabla f\right) \nabla \varphi d v d v_{*}
$$

Changing the name of variables and using that $a(-z)=a(z)$, we also have

$$
\int Q(f, f) \varphi d v=-\iint a\left(v-v_{*}\right)\left(f \nabla_{*} f_{*}-f_{*} \nabla f\right) \nabla \varphi_{*} d v d v_{*} .
$$

The first identity follows by taking the arithmetic mean of the two expressions. The RHS of the identity vanishes when particularizing $\varphi=1, v$ so that $\nabla \varphi-\nabla_{*} \varphi_{*}=0$. Choosing $\varphi=$ $|v|^{2}$, we also have $a\left(v-v_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right)=a\left(v-v_{*}\right)\left(2 v-2 v_{*}\right)=0$ from (1). By definition and (1)

$$
-D(f)=\frac{1}{2} \iint f f_{*} a\left(v-v_{*}\right) X X d v d v_{*} \geq 0, \quad X:=\frac{\nabla_{*} f_{*}}{f^{*}}-\frac{\nabla f}{f}
$$

The bilinear form

$$
(A, B) \mapsto \mathscr{E}(A, B):=\frac{1}{2} \iint f f_{*} a\left(v-v_{*}\right) A B d v d v_{*}
$$

being positive and symmetric, it verifies the cauchy-Schwarz inequality which writes

$$
\left|\int Q(f, f) \varphi d v\right|=|\mathscr{E}(X, Y)| \leq \mathscr{E}(X, X)^{1 / 2} \mathscr{E}(Y, Y)^{1 / 2}
$$

with $Y:=\nabla \varphi-\nabla_{*} \varphi_{*}$.
(3) For $H_{0} \in \mathbb{R}$, we define $\mathcal{E}_{H_{0}}$ the set of functions

$$
\begin{array}{r}
\mathcal{E}_{H_{0}}:=\left\{f \in L_{2}^{1}\left(\mathbb{R}^{d}\right) ; f \geq 0, \int f d v=1, \int f v d v=0\right. \\
\\
\left.\int f|v|^{2} d v \leq d, H(f):=\int f \log f d v \leq H_{0}\right\}
\end{array}
$$

Prove that there exists a constant C_{0} such that

$$
H_{-}(f):=\int f(\log f)_{-} d v \leq C_{0}, \quad \forall f \in \mathcal{E}_{H_{0}}
$$

and define $D_{0}:=H_{0}+C_{0}$. Deduce that for any nice positive solution f to the Landau equation such that $f_{0} \in \mathcal{E}_{H_{0}}$, there holds

$$
f \in \mathcal{F}_{T}:=\left\{g \in C\left([0, T] ; L_{2}^{1}\right) ; g(t) \in \mathcal{E}_{H_{0}}, \forall t \in(0, T), \int_{0}^{T} D(g(t)) d t \leq D_{0}\right\}
$$

We say that $f \in C\left([0, T) ; L^{1}\right)$ is a weak solution to the Landau equation if $f \in \mathcal{F}_{T}$ and (0.1) holds in the distributional sense. Why the definition is meaningful?
Elements of correction. The first estimate on $H_{-}\left(f_{0}\right)$ follows from (01). From (2), a nice solution to the Landau equation starting from $f_{0} \in \mathcal{E}_{H_{0}}$ satisfies

$$
\int f_{t}=\int f_{0}=1, \quad \int f_{t} v=\int f_{0} v=0, \quad \int f_{t}|v|^{2}=\int f_{0}|v|^{2} \leq d
$$

and

$$
\int f_{t} \log f_{t} \leq \int f_{t} \log f_{t}+\int_{0}^{t} D\left(f_{s}\right) d s=\int f_{0} \log f_{0} \leq H_{0}
$$

so that $f_{t} \in \mathcal{E}_{H_{0}}$ for any $t>0$. Because

$$
\int_{0}^{T} D\left(f_{s}\right) d s \leq \int f_{0} \log f_{0}+\int f_{t}\left(\log f_{T}\right)_{-} \leq H_{0}+C_{0}
$$

we deduce that $f \in \mathcal{F}_{T}$ (in fact, we have to assume $f \in C\left([0, T) ; L_{2}^{1}\right)$ or modify the definition of \mathcal{F}_{T} accordingly). With the definition of Y made in (2), we have

$$
\begin{aligned}
\mathcal{E}(Y, Y) & \leq \frac{1}{2} \iint f f\left|v-v_{*}\right|^{2}\|2 \nabla \varphi\|_{L^{\infty}}^{2} d v d v_{*} \\
& =4 \int f|v|^{2} \int f\|\nabla \varphi\|_{L^{\infty}}^{2} \leq d\|\nabla \varphi\|_{L^{\infty}}^{2}
\end{aligned}
$$

so that $\langle Q(f, f), \varphi\rangle$ is well defined as a distribution (of order 1) thanks to the last estimate in (2).
(4) Prove that

$$
Q(f, f)=\partial_{i}\left(\bar{a}_{i j} \partial_{j} f-\bar{b}_{i} f\right)=\partial_{i j}^{2}\left(\bar{a}_{i j} f\right)-2 \partial_{i}\left(\bar{b}_{i} f\right)=\bar{a}_{i j} \partial_{i j}^{2} f-\bar{c} f
$$

with

$$
\begin{equation*}
\bar{a}_{i j}=\bar{a}_{i j}^{f}:=a_{i j} * f, \quad \bar{b}_{i}=\bar{b}_{i}^{f}:=b_{i} * f, \quad \bar{c}=\bar{c}^{f}:=c * f, \tag{2.2}
\end{equation*}
$$

and

$$
b_{i}:=\sum_{j=1}^{d} \partial_{j} a_{i j}=-(d-1) z_{i}, \quad c:=\sum_{i=1}^{d} \partial_{i} b_{i}=-(d-1) d .
$$

For $f \in \mathscr{E}_{H_{0}}$, prove that there existe $C \in(0, \infty)$ such that

$$
\left|\bar{a}_{i j}\right| \leq C\left(1+|v|^{2}\right), \quad\left|\bar{b}_{i}\right| \leq C(1+|v|),
$$

Elements of correction. We compute for instance

$$
\begin{aligned}
& \qquad\left|\bar{a}_{i j}\right| \leq \int\left|a_{i j}\right| f_{*} d v_{*} \int\left|v-v_{*}\right|^{2} f_{*} d v_{*}=|v|^{2} \int f_{*} d v_{*}+\int f_{*}\left|v_{*}\right|^{2} d v_{*} \leq|v|^{2}+d, \\
& \text { for } f \in \mathscr{E}_{H_{0}} .
\end{aligned}
$$

3 Part II - On the ellipticity of \bar{a}.

We fix $H_{0} \in \mathbb{R}$ and $f \in \mathcal{E}_{H_{0}}$.
(5a) Show that there exists a function $\eta \geq 0$ (only depending of D_{0}) such that

$$
\forall A \subset \mathbb{R}^{d}, \quad \int_{A} f d v \leq \eta(|A|)
$$

and $\eta(r) \rightarrow 0$ when $r \rightarrow 0$. Here $|A|$ denotes the Lebesgue measure of A. Deduce that

$$
\forall R, \varepsilon>0, \quad \int f \mathbf{1}_{|v| \leq R} \mathbf{1}_{\left|v_{i}\right| \leq \varepsilon} d v \leq \eta_{R}(\varepsilon)
$$

and $\eta_{R}(r) \rightarrow 0$ when $r \rightarrow 0$.
Elements of correction. For any $M>1$, we may write

$$
\begin{aligned}
\int_{A} f d v & =\int_{A} f \mathbf{1}_{f \leq M} d v+\int_{A} f \mathbf{1}_{f>M} d v \\
& \leq M|A|+\int_{A} f \frac{(\log f)_{+}}{\log M} \mathbf{1}_{f>M} d v \leq M|A|+\frac{D_{0}}{\log M}=: \Xi(|A|, M) .
\end{aligned}
$$

We then define $\eta(r):=\Xi(r, \sqrt{2})$ if $r>1 / 2$ and $\eta(r):=\Xi\left(r, r^{-1 / 2}\right)$ if $r \in(0,1 / 2)$. For the second estimate, we write

$$
\int f \mathbf{1}_{|v| \leq R} \mathbf{1}_{\left|v_{i}\right| \leq \varepsilon} d v \leq \eta\left(\mid B_{R} \cap\left\{\left|v_{i}\right| \leq \varepsilon\right\}\right) \leq \eta\left(2^{d} R^{d-1} \varepsilon\right)=: \eta_{R}(\varepsilon) .
$$

(5b) Show that

$$
\int f \mathbf{1}_{|v| \leq R} \geq 1-\frac{d}{R^{2}} .
$$

Elements of correction. We write

$$
\begin{aligned}
\int f \mathbf{1}_{|v| \leq R} & =1-\int f \mathbf{1}_{|v|>R} \\
& \geq 1-\frac{1}{R^{2}} \int f|v|^{2} \mathbf{1}_{|v|>R} \geq 1-\frac{d}{R^{2}} .
\end{aligned}
$$

(5c) Deduce from the two previous questions that

$$
\forall i=1, \ldots, d, \quad T_{i}:=\int f v_{i}^{2} d v \geq \lambda
$$

for some constant $\lambda>0$ which only depends on D_{0}. Generalize the last estimate into

$$
\forall \xi \in \mathbb{R}^{d}, \quad T(\xi):=\int f|v \cdot \xi|^{2} d v \geq \lambda|\xi|^{2}
$$

Elements of correction. For $\varepsilon, R>0$, we write

$$
\begin{aligned}
T_{i} & \geq \varepsilon^{2} \int f \mathbf{1}_{\left|v_{i}\right|>\varepsilon} \mathbf{1}_{|v| \leq R} d v \\
& \geq \varepsilon^{2}\left(\int f \mathbf{1}_{|v| \leq R} d v-\int f \mathbf{1}_{\left|v_{i}\right| \leq \varepsilon} \mathbf{1}_{|v| \leq R} d v\right) \\
& \geq \varepsilon^{2}\left(1-\frac{d}{R^{2}}-\eta_{R}(\varepsilon)\right)
\end{aligned}
$$

We fix first R such that $d / R^{2} \leq 1 / 4$ and next $\varepsilon>0$ such that $\eta_{R}(\varepsilon) \leq 1 / 4$. The estimate holds with $\lambda:=\varepsilon^{2} / 2$. The same result holds by replacing v_{i} by $v \cdot \hat{\xi}$ for any fixed $\xi \in \mathbb{R}^{d} \backslash\{0\}$.
(6) Deduce that

$$
\forall v, \xi \in \mathbb{R}^{d}, \quad \bar{a}(v) \xi \xi:=\sum_{i, j=1}^{d} \bar{a}_{i j}(v) \xi_{i} \xi_{j} \geq(d-1) \lambda|\xi|^{2}
$$

Prove that any weak solution formally satisfies

$$
\frac{d}{d t} H(f)=-\int \bar{a}_{i j} \frac{\partial_{i} f \partial_{j} f}{f}-\int \bar{c} f
$$

and thus the following bound on the Fisher information

$$
I(f):=\int \frac{|\nabla f|^{2}}{f} \in L^{1}(0, T)
$$

Elements of correction. We write

$$
\begin{aligned}
\bar{a}(v) \xi \xi & =\int\left(\left|v-v_{*}\right|^{2} \delta_{i j}-\left(v_{i}-v_{* i}\right)\left(v_{j}-v_{* j}\right)\right) f_{*} d v_{*} \xi_{i} \xi_{j} \\
& =|\xi|^{2} \int\left[\left(|v|^{2}+\left|v_{*}\right|^{2}\right) \delta_{i j}-\left(v_{i} v_{j}+v_{* i} v_{* j}\right)\right] f_{*} d v_{*} \hat{\xi}_{i} \hat{\xi}_{j} \\
& =a(v) \xi \xi+|\xi|^{2} \int\left[\left|v_{*}\right|^{2}-\left(v_{*} \cdot \hat{\xi}\right)^{2}\right] f_{*} d v_{*}
\end{aligned}
$$

The first term is nonnegative from (1). For the second term, we introduce an euclidian basis $\left(e_{1}, \ldots, e_{d}\right)$ such that $e_{1}=\hat{\xi}$ and we observe that

$$
\left|v_{*}\right|^{2}-\left(v_{*} \cdot \hat{\xi}\right)^{2}=\sum_{i=2}^{d}\left(v_{*} \cdot e_{i}\right)^{2} .
$$

Together with (5c), we deduce

$$
\int\left[\left|v_{*}\right|^{2}-\left(v_{*} \cdot \hat{\xi}\right)^{2}\right] f_{*} d v_{*}=\sum_{i=2}^{d} \int\left(v_{*} \cdot e_{i}\right)^{2} f_{*} d v_{*} \geq(d-1) \lambda .
$$

Writing the Landau equation as

$$
\partial_{t} f=\partial_{i}\left(\bar{a}_{i j} \partial_{j} f-\bar{b}_{i} f\right)
$$

from (4), we have

$$
\begin{aligned}
\frac{d}{d t} H(f) & =\int\left(\partial_{t} f\right)(1+\log f) \\
& =-\int\left(\bar{a}_{i j} \partial_{j} f-\bar{b}_{i} f\right) \partial_{i}(\log f) \\
& =-\int \bar{a}_{i j} \frac{\partial_{i} f \partial_{j} f}{f}+\int \bar{b}_{i} \partial_{i} f=-\int \bar{a}_{i j} \frac{\partial_{i} f \partial_{j} f}{f}-\int \bar{c} f
\end{aligned}
$$

From (4) and the above estimate, we deduce

$$
\frac{d}{d t} H(f) \leq-\lambda(d-1) I(f)+(d-1) d
$$

so that

$$
H\left(f_{T}\right)+\lambda(d-1) \int_{0}^{T} I\left(f_{s}\right) d s \leq H\left(f_{0}\right)+(d-1) d T .
$$

We get $I(f) \in L^{1}(0, T)$ as in (3).

4 Part III - Weak stability.

We consider here a sequence of weak solutions $\left(f_{n}\right)$ to the Landau equation such that $f_{n} \in \mathcal{F}_{T}$ for any $n \geq 1$.
(7) Prove that

$$
\int_{0}^{T} \int\left|\nabla_{v} f_{n}\right| d v d t \leq C_{T}
$$

and that

$$
\frac{d}{d t} \int f_{n} \varphi d v \text { is bounded in } L^{\infty}(0, T), \quad \forall \varphi \in C_{c}^{2}\left(\mathbb{R}^{d}\right) .
$$

Deduce that $\left(f_{n}\right)$ belongs to a compact set of $L^{1}\left((0, T) \times \mathbb{R}^{d}\right)$. Up to the extraction of a subsequence, we then have

$$
f_{n} \rightarrow f \text { strongly in } L^{1}\left((0, T) \times \mathbb{R}^{d}\right) .
$$

Deduce that

$$
Q\left(f_{n}, f_{n}\right) \rightharpoonup Q(f, f) \text { weakly in } \mathcal{D}^{\prime}\left((0, T) \times \mathbb{R}^{d}\right)
$$

and that f is a weak solution to the Landau equation.
Elements of correction. From (02) and (6), we have

$$
\begin{equation*}
\int_{0}^{T} \int\left|\nabla f_{n}\right| \leq \int_{0}^{T} I\left(f_{n}\right) d t \leq C_{T} . \tag{4.3}
\end{equation*}
$$

From (2) (or (4)), we have

$$
\begin{equation*}
\left|\frac{d}{d t} \int f_{n} \varphi d v\right|=\left|\left\langle Q\left(f_{n}, f_{n}\right), \varphi\right\rangle\right| \leq C\|\nabla \varphi\|_{L^{\infty}} . \tag{4.4}
\end{equation*}
$$

We then argue as in Aubin-Lions Lemma. For a mollifier $\left(\rho_{\varepsilon}\right)$ in $\mathcal{D}\left(\mathbb{R}^{d}\right)$, we write

$$
f_{n}=f_{n} * \rho_{\varepsilon}+\left[f_{n}-f_{n} * \rho_{\varepsilon}\right],
$$

with ($f_{n} * \rho_{\varepsilon}$) bounded in $W_{t x}^{1, \infty}$ by (4.4) and

$$
\left\|f_{n}-f_{n} * \rho_{\varepsilon}\right\|_{L^{1}} \leq \varepsilon\left\|\nabla_{v} f_{n}\right\|_{L^{1}} \leq \varepsilon C_{T}
$$

uniformly in $n \geq 1$ by a L^{1} version of the Poincaré-Wirtinger inequality (same proof as for the L^{2} version). We deduce $f_{n} \rightarrow f$ strongly in $L^{1}\left((0, T) \times B_{R}\right)$ and thus strongly in $L^{1}((0, T) \times$ \mathbb{R}^{d}) thanks to the moment estimate coming from $f_{n} \in \mathcal{F}_{T}$. We write

$$
\int Q\left(f_{n}, f_{n}\right) \varphi d v=\int \bar{a}_{i j}^{n} f_{n} \partial_{i j}^{2} \varphi+2 \bar{b}_{i}^{n} f_{n} \partial_{i} \varphi
$$

where we have used the second expression of $Q(f, f)$ in (4), several integrations by part and the notations $\bar{\sigma}^{n}:=\sigma * f_{n}$. Here we need probably an additional estimate. The simplest way consists in assuming additionally $M_{4}\left(f_{0}\right)<\infty$ and to prove

$$
\sup _{[0, T]} M_{4}\left(f_{t}\right) \leq C\left(M_{4}\left(f_{0}\right)\right), \quad M_{4}(h):=\int h|v|^{4} d v .
$$

Writing the Landau equation as

$$
\partial_{t} f=\partial_{i j}^{2}\left(\bar{a}_{i j} f\right)-2 \partial_{i}\left(\bar{b}_{i} f\right)
$$

and observing that $\partial_{i}|v|^{4}=4|v|^{2} v_{i}, \partial_{i j}^{2}|v|^{4}=4|v|^{2} \delta_{i j}+8 v_{i} v_{j}$, we may indeed compute

$$
\frac{d}{d t} M_{4}(f)=\int f \bar{a}_{i j}\left(4|v|^{2} \delta_{i j}+8 v_{i} v_{j}\right)+8 \int f \bar{b}_{i}|v|^{2} v_{i} .
$$

Observing next that

$$
a_{i j} \delta_{i j}=(d-1)\left|v-v_{*}\right|^{2}, \quad a_{i j} v_{i} v_{j}=|v|^{2}\left|v_{*}\right|^{2}-\left(v \cdot v_{*}\right)^{2}, \quad b_{i}|v|^{2} v_{i}=-(d-1)|v|^{4}+(d-1)|v|^{2} v \cdot v_{*}
$$

and using that the first moment vanishes, we get

$$
\begin{aligned}
\frac{d}{d t} M_{4}(f) & =\iint f f_{*}\left[4(d+1)|v|^{2}\left|v_{*}\right|^{2}-8\left(v \cdot v_{*}\right)^{2}-2(d-1)|v|^{4}\right] \\
& \leq 4(d+3) M_{2}(f)^{2}-2(d-1) M_{4}(f) \leq 4(d+3) d^{2}-M_{4}(f)
\end{aligned}
$$

and finally

$$
M_{4}\left(f_{t}\right) \leq e^{-t} M_{4}\left(f_{0}\right)+4(d+3) d^{2}\left(1-e^{-t}\right), \quad \forall t \geq 0
$$

We next assume that $f_{n} \in \mathcal{F}_{T}^{\sharp}$, where \mathcal{F}_{T}^{\sharp} is defined accordingly with this additional estimate. We now write

$$
\begin{aligned}
\bar{a}_{i j}^{n}= & \int_{B_{R}} f_{n}\left(t, v_{*}\right)\left(\left|v-v_{*}\right|^{2} \delta_{i j}-\left(v-v_{*}\right)_{i}\left(v-v_{*}\right)_{j}\right) d v_{*} \\
& +\int_{B_{R}^{c}} f_{n}\left(t, v_{*}\right)\left(\left|v-v_{*}\right|^{2} \delta_{i j}-\left(v-v_{*}\right)_{i}\left(v-v_{*}\right)_{j}\right) d v_{*}=: A_{n, R}+B_{n, R} .
\end{aligned}
$$

Because of the strong convergence $f_{n} \rightarrow f$ in L^{1}, we have

$$
A_{n, R} \rightarrow A_{R}:=\int_{B_{R}} f\left(t, v_{*}\right)\left(\left|v-v_{*}\right|^{2} \delta_{i j}-\left(v-v_{*}\right)_{i}\left(v-v_{*}\right)_{j}\right) d v_{*}
$$

a.e. and locally bounded in $L^{\infty}\left([0, T] \times \mathbb{R}^{d}\right)$. Because of the additional moment estimate, we have

$$
B_{n, R} \leq \int_{B_{R}^{c}} f_{n}\left(t, v_{*}\right)\left(|v|^{2}+\left|v_{*}\right|^{2}\right) d v_{*} \leq \frac{1}{R^{2}}\left(1+|v|^{2}\right) \sup _{[0, T]} M_{4}\left(f_{n}\right) \rightarrow 0
$$

as $R \rightarrow \infty$ uniformly in $n \geq 1$. These two pieces of information together imply

$$
\bar{a}_{i j}^{n} \rightarrow \bar{a}_{i j}:=a_{i j} * f \quad \text { a.e. and locally bounded in } \quad L^{\infty}\left([0, T] \times \mathbb{R}^{d}\right)
$$

and then

$$
\int \bar{a}_{i j}^{n} f_{n} \partial_{i j}^{2} \varphi \rightarrow \int \bar{a}_{i j} f \partial_{i j}^{2} \varphi
$$

The other contribution in $\left\langle Q\left(f_{n}, f_{n}\right), \varphi\right\rangle$ can be handled in a similar (and even simpler) way. (8) (Difficult, here $d=3$) Take $f \in \mathcal{E}_{H_{0}}$ with energy equals to d. Establish that $D(f)=0$ if, and only if,

$$
\frac{\nabla f}{f}-\frac{\nabla f_{*}}{f_{*}}=\lambda\left(v, v_{*}\right)\left(v-v_{*}\right), \quad \forall v, v_{*} \in \mathbb{R}^{d}
$$

for some scalar function $\left(v, v_{*}\right) \mapsto \lambda\left(v, v_{*}\right)$. Establish then that the last equation is equivalent to

$$
\log f=\lambda_{1}|v|^{2} / 2+\lambda_{2} v+\lambda_{3}, \quad \forall v \in \mathbb{R}^{d}
$$

for some constants $\lambda_{1} \in \mathbb{R}, \lambda_{2} \in \mathbb{R}^{d}, \lambda_{3} \in \mathbb{R}$. Conclude that

$$
D(f)=0 \text { if, and only if, } f=M(v):=(2 \pi)^{-3 / 2} \exp \left(-|v|^{2} / 2\right)
$$

(9) (very difficult, because needs many steps) Prove that for any global weak solution f associated to $f_{0} \in L_{3}^{1} \cap \mathcal{E}_{H_{0}}$ with energy equals d, there holds $f(t) \rightharpoonup M$ when $t \rightarrow \infty$. (Hint. Accept that the energy $M_{2}(f(t))=d$ and prove that the third moment $M_{3}(f(t))$ is uniformly bounded).

5 Part IV - Existence.

In this part, we may accept the following abstract version of the J.-L. Lions theorem:
Consider two Hilbert spaces H and V such that $V \subset H=H^{\prime} \subset V^{\prime}$, with dense embeddings. Assume that $a(t): V \times V \rightarrow \mathbb{R}$ is defined for any $t \in[0, T]$ as a bounded bilinear form (and thus as an element of $\left.\mathcal{L}\left(V, V^{\prime}\right)\right)$ and is such that
(i) $[0, T] \rightarrow \mathcal{L}\left(V, V^{\prime}\right), t \mapsto a(t)$ is continuous;
(ii) $\exists \alpha>0$ and $\kappa \in \mathbb{R}$ such that $a(t, u, u) \leq-\alpha\|u\|_{V}^{2}+\kappa\|u\|_{H}^{2}, \forall t \in[0, T], \forall u \in V$.

Then, for any $u_{0} \in H$, there exists a unique function $u \in X_{T}:=C([0, T] ; H) \cap L^{2}(0, T ; V) \cap L^{2}\left(0, T ; V^{\prime}\right)$ such that

$$
(u(t), \varphi(t))=\left(u_{0}, \varphi(0)\right)+\int_{0}^{t} a(s, u(s), \varphi(s)) d s
$$

for any $\varphi \in X_{T}$.
(10) We fix $k=d+4$. Show that $\mathcal{H}:=L_{k}^{2} \subset L_{3}^{1}$ and that $H_{0}:=H\left(f_{0}\right) \in \mathbb{R}$ if $0 \leq f_{0} \in L_{k}^{2}$. In the sequel, we first assume that $f_{0} \in \mathcal{E}_{H_{0}} \cap \mathcal{H}$.
Elements of correction. The inclusion $L_{k}^{2} \subset L_{3}^{1}$ comes from the Cauchy-Schwarz inequality while $H\left(f_{0}\right)<\infty$ comes from the inequality $f(\log f)_{+} \leq f^{2}$ and the material of (01).
(11) For $f \in C\left([0, T] ; \mathcal{E}_{H_{0}}\right)$, we define \bar{a}, \bar{b} and \bar{c} thanks to (2.2) and then

$$
\tilde{a}_{i j}:=\bar{a}_{i j}+\varepsilon|v|^{2} \delta_{i j}, \quad \tilde{b}_{i}:=\bar{b}_{i}-\varepsilon \frac{d+4}{2} v_{i}, \quad \varepsilon \in(0, \lambda) .
$$

We define $\mathcal{V}:=H_{k+2}^{1}$ and then

$$
\forall g \in \mathcal{V}, \quad L g:=\partial_{i}\left(\tilde{a}_{i j} \partial_{j} g-\tilde{b}_{i} g\right) \in \mathcal{V}^{\prime}
$$

Show that for some constant $C_{i} \in(0, \infty)$, there hold

$$
(L g, g)_{\mathcal{H}} \leq-\varepsilon\|g\|_{\mathcal{V}}^{2}+C_{1}\|g\|_{\mathcal{H}}^{2}, \quad\left|(L g, h)_{\mathcal{H}}\right| \leq C_{2}\|g\|_{\mathcal{V}}\|h\|_{\mathcal{V}}, \quad \forall g, h \in \mathcal{V}
$$

Deduce that there exists a unique variational solution

$$
g \in \mathcal{X}_{T}:=C([0, T] ; \mathcal{H}) \cap L^{2}(0, T ; \mathcal{V}) \cap H^{1}\left(0, T ; \mathcal{V}^{\prime}\right)
$$

to the parabolic equation

$$
\partial_{t} g=L g, \quad g(0)=f_{0}
$$

Prove furthermore that $g \in \mathcal{F}_{T}$.
Elements of correction. We observe that

$$
(L g, g)_{\mathcal{H}}=-\int \tilde{a}_{i j} \partial_{i} g \partial_{j} g\langle v\rangle^{2 k}+\frac{1}{2} \int g^{2} \partial_{j}\left(\tilde{a}_{i j} \partial_{i}\langle v\rangle^{2 k}\right)+\frac{1}{2} \int g^{2}\left[\left(\partial_{i} \tilde{b}_{i}\right)\langle v\rangle^{2 k}-\tilde{b}_{i} \partial_{i}\langle v\rangle^{2 k}\right]
$$

with from (6)

$$
\tilde{a} \xi \xi=\bar{a} \xi \xi+\varepsilon|v|^{2}|\xi|^{2} \geq \varepsilon\left(1+|v|^{2}\right)|\xi|^{2},
$$

and thus

$$
\int \tilde{a}_{i j} \partial_{i} g \partial_{j} g\langle v\rangle^{2 k} \geq \varepsilon\|\nabla g\|_{L_{k+1}^{2}}^{2}=\varepsilon\|g\|_{\mathcal{V}}^{2}-\varepsilon\|g\|_{L_{k}^{2}}^{2}
$$

if we define the space \mathcal{V} in that way ! We conclude to the coercivity estimate thanks to the bounds

$$
\partial_{j}\left(\tilde{a}_{i j} \partial_{i}\langle v\rangle^{2 k}\right), \quad\left(\partial_{i} \tilde{b}_{i}\right)\langle v\rangle^{2 k}, \quad \tilde{b}_{i} \partial_{i}\langle v\rangle^{2 k}=\mathcal{O}\left(\langle v\rangle^{2 k}\right)
$$

Existence and uniqueness of a solution in X_{T} comes from J.-L. Lions' theorem. We next have to repeat the estimates established in (3) in order to get $g \in \mathcal{F}_{T}$. We also have to repeat the estimates established in (7) in order to get $g \in \mathcal{F}_{T}^{\sharp}$. We may for instance compute

$$
\begin{aligned}
\langle L g, \varphi\rangle & =\int g\left[\partial_{j}\left(\tilde{a}_{i j} \partial_{i} \varphi\right)+\tilde{b}_{i} \partial_{i} \varphi\right] \\
& =\int g\left[\tilde{a}_{i j} \partial_{i j}^{2} \varphi+2 \bar{b}_{i} \partial_{i} \varphi-\varepsilon \frac{d}{2} v_{i} \partial_{i} \varphi\right]
\end{aligned}
$$

We deduce first $\langle L g, 1\rangle=0$ and the mass conservation. We deduce next $\langle L g, v\rangle=C\langle g, v\rangle$ and the first moment conservation. We also deduce

$$
\begin{aligned}
\left.\left.\langle L g,| v\right|^{2}\right\rangle & \left.=\iint g f_{*}\left\{\left(a_{i j}+\varepsilon|v|^{2} \delta_{i j}\right) 2 \delta_{i j}-4(d-1)\left(v-v_{*}\right)_{i} v_{i}-\varepsilon d|v|^{2}\right)\right\} \\
& =\iint g f_{*}\left\{2(d-1)\left|v-v_{*}\right|^{2}-4(d-1)|v|^{2}\right\} \\
& =2(d-1) \int f_{*}\left|v_{*}\right|^{2}-2(d-1) \int g|v|^{2}
\end{aligned}
$$

and the energy conservation when $M_{2}\left(f_{t}\right)=M_{2}\left(f_{0}\right)=d$ or uniform estimate when $M_{2}\left(f_{t}\right) \leq d$, $M_{2}\left(f_{0}\right) \leq d$. For the entropy, we compute

$$
\langle L g, \log g\rangle=-\int \tilde{a}_{i j} \frac{\partial_{i} g \partial_{j} g}{g}-\int \tilde{c} g
$$

with $\tilde{c}:=\partial_{i} \tilde{b}_{i}$, and we get a similar estimate as in (6) and (7). For the fourth moment, we compute

$$
\begin{aligned}
\frac{d}{d t} M_{4}(g) & =\int g\left(\bar{a}_{i j}+\varepsilon|v|^{2} \delta_{i j}\right)\left(4|v|^{2} \delta_{i j}+8 v_{i} v_{j}\right)+8 \int g\left(\bar{b}_{i}-\varepsilon \frac{d+4}{2} v_{i}\right)|v|^{2} v_{i} \\
& =\ldots-14 \varepsilon M_{4}(g)
\end{aligned}
$$

and a similar estimate as in (7) holds.
(12) Prove that there exists a unique fonction

$$
f_{\varepsilon} \in C\left([0, T] ; L_{k}^{2}\right) \cap L^{2}\left(0, T ; H_{k}^{1}\right) \cap \mathcal{F}_{T}^{\sharp}
$$

solution to the nonlinear parabolic equation

$$
\partial_{t} f_{\varepsilon}=\partial_{i}\left(\tilde{a}_{i j}^{f_{\varepsilon}} \partial_{j} f_{\varepsilon}+\tilde{b}_{i}^{f_{\varepsilon}} f_{\varepsilon}\right), \quad f_{\varepsilon}(0)=f_{0}
$$

where $\tilde{a}_{i j}^{f_{\varepsilon}}$ denotes the
Elements of correction. We have to proceed similarly as for the nonlinear McKean-Vlasov equation in Chapter 1.
(13) For $f_{0} \in \mathcal{E}_{H_{0}}$ and $T>0$, prove that there exists at least one weak solution $f \in \mathcal{F}_{T}$ to the Landau equation.
Elements of correction. We have to use the a priori estimates as deduced in (11) and to use the stability result established in (7).

