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On the Landau equation

We aim to establish the existence of solutions to the Landau equation

6tf(t7v) = Q(f7 f)(tav)7 f(Oﬂ)) = fO(U)a (0'1)

on the density function f = f(t,v) > 0, ¢ > 0, v € R% d > 2, where the Landau kernel is defined by the
formula

Q(f, f)(v) :== 6?}1»{/]1@ a;;(v —U*)(f(v*)gqi(v) - f(v)gi(v*)) dv*}.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The matrix a = (a;;) is

defined by
L R z
a(z) = |2*TI(2), IL; (2) == 6s5 — 224, 2k = ﬁ,

so that IT is the is the orthogonal projection on the hyperplan z*+ := {y € R%; y - z = 0}.

1 Part 0 - Some functional estimates.

(01) Prove that for any 0 < f € L3, there holds

1
[ #0851 < M) + ). Ma(f)i= [ oo,
Rd Rd
and deduce that .
[ #ogp)sdo < [ flog fav () + L),

Rd Rd 2

(Hint. One may prove and use the estimate
s (logs)_ < \/Elogsge,awk + salv|® Loapbcgeys V82 0.)

Elements of correction. We may indeed observe that

s(logs)- = s(logs)-1 o +s(logs)- 1

0<s<e—alv e_"’lv‘kgsgl
k
< \/glossge—alvwk + salv| L—apik <o
k
— 2 k
< e 2 4 galu),

by using the inequality s(logs)- < /s on [0,1] (coming from ¢(s) := 1+ /slogs > ¢(e™?) > 0 on
[0,1]) and the fact that s+ (logs)—- is a decreasing function. Using the above inequality
with a=1/2 and k=2, we have

[sosn- < [ a3 [ g

[ ptons = [ rioas+ [ foosp).

and we conclude thanks to



(02) Prove that for for any 0 < f € L' such that / f =1, there holds

IV fldv < NIE,,
f oo | 5

(Hint. Use the Cauchy-Schwarz inequality).
Elements of correction. Write |Vf| = (|[Vf|f %) f"? and use the Cauchy-Schwarz inequality.

2 Part I - Physical properties and a priori estimates.

(1) Observe that a(z)z = 0 for any z € R? and a(z)¢€ > 0 for any z,& € R, Here and below, we use the
bilinear form notation auv = wau = v-au. In particular, the symmetric matrix a is positive but not strictly
positive.

Elements of correction. We observe that

TI(2)€€ = TLi; (2)&&; = (i — 2i%5)&& = 1€)° — (2- &) = €7 (1 — (- %) >0

with equality if &= z.
(2) For any nice functions f,p : R? — R, f > 0, prove that

[atnedo=; [ [aw-0)(19.1. - £95) (Vo = V.o.) dod.,

where f. = f(vs), Vit = (V¢0)(vi). Deduce that

/Q(f, fHedv=0, forp=1 v, |U\2,

and

- [at.pogfav<o
Establish then
1/2
‘/Q HLf wdv‘<D 1/2 / ffea(v —v) (Ve — V*w*)(Vgo—V*cp*)dvdv*) .
Elements of correction. By definition
Jat.nedo= [ [atw-0)(59.5. - £.9) Vo dudo..
Changing the name of variables and using that a(—z) =a(z), we also have

/Q(f, Fodo = —// a(v ~v) (V. f. = 1.9 F) Vipu dud..

The first identity follows by taking the arithmetic mean of the two expressions. The RHS
of the identity vanishes when particularizing ¢ =1,v so that Vp—V,p.=0. Choosing ¢ =

[v|?, we also have a(v—v.)(Vp— Vips) =a(v—v.)(2v —2v,) =0 from (1). By definition and (1)
—D(f) = %/ ffea(v —v) X Xdvdv, >0, X := V;;f* — VTf
The bilinear form
(A,B) — &(A, B) //ff*a v — vy ) ABdvdv,



being positive and symmetric, it verifies the Cauchy-Schwarz inequality which writes
|[Qu.near] =|ex )| < sx 0 28y,

with Y :=Vp - V.p..
(3) For Hy € R, we define &, the set of functions

Ene = {feL;(Rd);fzo,/fdsz/fudv:o,
[ 1P av < a H(p) = [ f1os o< o).
Prove that there exists a constant Cy such that
H(f) = [ flogf)-dv < Co, VS < Eny,

and define Dy := Hg + Cy. Deduce that for any nice positive solution f to the Landau equation such that
fo € Em,, there holds

feFr:= {g € C([0,T); LY); g(t) € Em,, Yt € (0,T), /0 D(g(t))dt < Do}.

We say that f € C([0,T); L) is a weak solution to the Landau equation if f € F7 and (0.1) holds in the
distributional sense. Why the definition is meaningful?

Elements of correction. The first estimate on H_(fo) follows from (0l1). From (2), a nice
solution to the Landau equation starting from fy € €y, satisfies

/ft:/f():l, /ftU:/fOUZO, /ft|v\2:/f0\v|2ﬁd

/ftlogft < /ft log f, +/0tD(fs)ds= [ fotog o < o,

so that f; €€y, for any t>0. Because

and

T 9 .
/ D(f.)ds s/fologfw/fz(longL < Ho + Co,
(0]

we deduce that f & Fr (in fact, we have to assume f € C([0,7);L3) or modify the definition
of Fr accordingly). With the definition of Y made in (2), we have

EV,Y) < %//fﬂvfv*|2\|2Vgo||2Loodvdv*

4 / flof? / SVl < dIVel2e,

so that (Q(f,f),») is well defined as a distribution (of order 1) thanks to the last esti-
mate in (2) .

(4) Prove that ) )
Q(f, f) = 0:(ai;0; f — bif) = 07;(as; f) — 204(bi f) = @:; 03 f — Ef,
with -
@ij:afj ::aij*f, b; = {: bz*f, E:Ef ZZC*f, (2.2)



and .,
bi=> 0jai;=—(d—1)z, ci=Y 0ibj=—(d—1)d.
=1 j
For f € &y, prove that there existe C' € (0, 00) such that
lail < CA+ o), [bi] < C1+]v]),
Elements of correction. We compute for instance
|a;;| < /|a¢j\f*dv*/\v — v, fudv. = |v\2/f*dv* +/f*|v*\2dv* < |v|* +d,

for f€&u,. The other points are similar or elementary computations.

3 Part II - On the ellipticity of a.

We fix Hy € R and f € &x,.
(5a) Show that there exists a function 17 > 0 (only depending of D) such that

vACR! [ fav<y(a)
A
and n(r) — 0 when r — 0. Here |A| denotes the Lebesgue measure of A. Deduce that
VR,e >0, /flng 1)y, <c dv < nr(e)

and ng(r) — 0 when r — 0.

Elements of correction. For any M >1, we may write

/fdv = /flngdv—&-/flf>Mdv
A A A

)+ Do

(log -
< M|A 1ismdv < M|A =:Z(|A|, M).
< M+ [ pEERE o < bA 4 5 =041 M)
We then define n(r) := E(r,v/2) if r > 1/2 and n(r) := E(r,r /%) if r € (0,1/2). For the second

estimate, we write
[ £ten e do < 1B o] < ) < 0@ Be) = o).

(5b) Show that
d

/f1|v|§R > lfﬁ-

Elements of correction. We write

/fllvlgR = 1_/f1|v|>R

1 d
1— ﬁ/f\vﬁl‘v‘ﬁ >1— T

AV

(5¢) Deduce from the two previous questions that

Vi=1,...,d, Ti::/fvfdvz)\,

4



for some constant A > 0 which only depends on Dgy. Generalize the last estimate into
VeeRY T(©)i= [ flv-€Pdv = AP

Elements of correction. For ¢, R >0, we write

T, > Ez/flm,xlw@dv
> 52 (/flleSRd’U—/f1|vi|§€]_|v|§Rd,U>
d
= (1 TR 7]R(E)>.

We fix first R such that d/R®*<1/4 and next ¢ >0 such that ngr(¢) <1/4. The estimate holds
with A:=¢e?/2. The same result holds by replacing v by v-£ for any fixed &€ RM\{0}.

(6) Deduce that
d

Vo, €RY, a(u)éd = ai;(v)&& > (d— DAL
ij=1
Prove that any weak solution formally satisfies

%H(f)z—/@ijaiffajf —/Eﬁ

and thus the following bound on the Fisher information

2
I(f) :—/WJ{' € LY(0,T)

Elements of correction. We write

a(v)ee = / ([0 = 02655 — (5 — 0a2) (05 — v25)) fodvabil

I / (10 + 01655 — (@105 + Vi) fudvabiy

a()€€ + [¢]? / [0l = (00 - )2 fudv.

The first term is nonnegative from (1). For the second term, we introduce an euclidian
basis (ei1,...,eq) such that e; =¢§ and we observe that

d

fou]? = (02 €7 = (0 i),

=2

Together with (5c), we deduce

X d
/Hv*|2 — (Vs - &)%) fudvs = Z/(v* i) fudvy > (d— 1)

Writing the Landau equation as B
Ouf = 0i(ai;0; f —bif)

from (4), we have

G = [@na o)

_/(aijajf_l;if)ai(logf)

= _/aijaiffaff +/Biaif:—/aij%—/éf.




From (4) and the above estimate, we deduce

LH() < -Md-DIG)+ (-1

so that
H(fr) + \d — 1)/ I1(f.)ds < H(fo) + (d — 1)dT.

We get I(f) € L'(0,T) as in (3).

4  Part III - Weak stability.

We consider here a sequence of weak solutions (f,,) to the Landau equation such that f,, € Fr for any n > 1.

(7) Prove that
T
/ /|van| dvdt < Crp
0

d
p /fngo dv is bounded in L>=(0,T), V¢ € C*R?).

and that

Deduce that (f,,) belongs to a compact set of L'((0,T) x R?). Up to the extraction of a subsequence, we
then have
fn — f strongly in L*((0,T) x R%).

Deduce that
Q(fns fa) = Qf, f) weakly in D'((0,T) x RY)

and that f is a weak solution to the Landau equation.

Elements of correction. From (02) and (6), we have

KVWhmﬂmeﬁgw. (4.3)

d
a/fnnpd'u

We then argue as in Aubin-Lions Lemma. For a mollifier (p.) in D(R?), we write

From (2) (or (4)), we have

= [Q(fns fn); )| < ClIVepl|Loe. (4.4)

Joo=fn*pe+ [fn = fn * pel,
with (fa*pe) bounded in WL™ by (4.4) and
lfn = frx pellir < ellVofnllpr <eCr

uniformly in n>1 by a L' version of the Poincaré-Wirtinger inequality (same proof as for
the L? version). We deduce f, — f strongly in L'((0,T)xBgr) and thus strongly in L'((0,T)x
R%) thanks to the moment estimate coming from f, € Fr. We write

[ @ toypdo = [ @050 + 25 o
where we have used the second expression of Q(f,f) in (4), several integrations by part and

the notations ¢" :=oxf,. Here we need probably an additional estimate. The simplest way
consists in assuming additionally My(fo) < o0 and to prove

wMMMSame,Amm:/mww

[0,7]



Writing the Landau equation as
O f = 07;(ass f) — 20i(bi f)
and observing that 9iv|* =4Jv[?vs, 85|v|* = 4[v|*6i; + 8viv;, we may indeed compute
d

§M4 ) = /f&ij(4\v|25ij +8Uivj)+8/ﬂ_)i|v\2vi4

Observing next that
aijbi; = (d= Do —v.*,  agow; = [ |ouf* = (v-v)?, bilo|*v = —(d = Dol + (d = D]ov|*v - vs,
and using that the first moment vanishes, we get

D) = //ff (d+ Dlol?[o]? = 8(v - v.)? — 2(d — D)[o]"]

A(d+3)Ma(f)* —2(d — 1)Ma(f) < 4(d + 3)d* — Mu(f),

IN

and finally
My(f:) < e "Ma(fo) +4(d+3)d*(1—e"), Yt>0.

We next assume that f, E.Fg, where fﬁ is defined accordingly with this additional esti-
mate. We now write

ay; = Fa(t,v) (v — 0a 055 — (V= va)i (v — va) ) dvs

Br

+/ Fult,0) ([0 = 022655 — (0 — 0.)i (0 — 02),)dvs = An.g + Bu.z.
B

Because of the strong convergence f, — f in L', we have

Anr — AR == Ftv) (v — 02055 — (v — v2)i(v — v2))dus
Br

a.e. and locally bounded in L*([0,T]xR%). Because of the additional moment estimate, we
have

,LR</ Fu(t,v2) (0] + [oa)dve <~ (14 [o]?) sup Ma(f) — 0,

R [0.7)
as R— oo uniformly in n@zl. These two pieces of information together imply
ay, —a; =ai;*f a.e. and locally bounded in L*([0,T] x R%),

and then

/a;}fnagjtp—) /Ez”fafjgp

The other contribution in (Q(fn,fn),9) can be handled in a similar (and even simpler) way.

(8) (Difficult, here d = 3) Take f € &y, with energy equals to d. Establish that D(f) = 0 if, and only if,
Vi Vi
VA

for some scalar function (v,v.) — A(v,vs). Establish then that the last equation is equivalent to

= Av,v.)(v —v,), Vo,v, €RY

log f = M[v2/2 4+ Xav 4+ A3, Vv € RY
for some constants A, € R, Ay € R% A3 € R. Conclude that
D(f) = 0 if, and only if, f = M(v) := (2m) "%/ 2 exp(—|v|?/2).

(9) (very difficult, because needs many steps) Prove that for any global weak solution f associated to
fo € LiN Ey, with energy equals d, there holds f(t) — M when t — oco. (Hint. Accept that the energy
Ms(f(t)) = d and prove that the third moment Ms(f(t)) is uniformly bounded).



5 Part IV - Existence.

In this part, we may accept the following abstract version of the J.-L. Lions theorem:

Consider two Hilbert spaces H and V such that V ¢ H = H' C V', with dense embeddings. Assume that
a(t) : VxV — Ris defined for any ¢ € [0, 7] as a bounded bilinear form (and thus as an element of L(V, V"))
and is such that

(1) [0, 7] = L(V, V'), t — a(t) is continuous;

(ii) 3o > 0 and x € R such that a(t,u,u) < —al|ul|} + &ljul|?}, Vt € [0,T], Vu e V.

Then, for any uy € H, there exists a unique function u € Xt := C([0,T]; H) N L?(0,T;V) N L*(0,T; V")
such that

(u(t), (1)) = (0, 9(0)) + / a(s,u(s), o(s)) ds,
for any ¢ € Xr.

(10) We fix k = d + 4. Show that H := L} C L} and that Hy := H(fy) € Rif 0 < fo € L}. In the sequel,
we first assume that fo € Eg, N H.

Elements of correction. The inclusion L? C L} comes from the Cauchy-Schwarz inequality while
H(fy) < oo comes from the inequality f(logf)+ < f? and the material of (01).

(11) For f € C([0,T); En, ), we define @, b and ¢ thanks to (2.2) and then

= = d+4
aij = ag +elv[*diy, by :=b; — s%vi, g€ (0,)).

We define V := H} , and then
VgeV, Lg:=0;(ai;j0;9—big) €V
Show that for some constant C; € (0,00), there hold
(Lg,g)n < —llglly + Cillglds (Lo h)nl < Callglvliblly, ¥g.h e V.
Deduce that there exists a unique variational solution
g€ Xp:=C([0,T];H) N L*0,T;V) N HY(0,T;V)

to the parabolic equation
Og =Lg, g(0) = fo.
Prove furthermore that g € Fr.

Elements of correction. We observe that

1

Coon = - [asdo0g™ + 5 [ #0000 + 5 [ o1@05) )™ - 5o

with from (6)
ace = até +elv’1€]? > e(1 + v|?)[¢)?,

and thus
~ 2k 2 2 2
/aijai93j9<v> > el[Vylizz,, = ellgllv —ellglizz,
if we define the space V in that way ! We conclude to the coercivity estimate thanks to
the bounds

9;(@i;0: (v)**), (9:bi)()?*, b:9:(v)** = O((v)?*).



Existence and uniqueness of a solution in X7 comes from J.-L. Lions’ theorem. We next have
to repeat the estimates established in (3) in order to get g € Fr. We also have to re-
peat the estimates established in (7) in order to get g € f%. We may for instance com-
pute

(Lg, )

/9[3j(@ij5i<ﬁ) + bidiy]

- - d
/g[aijé‘izjgo + 2b;0;0 — Eiviaﬂp]

We deduce first (Lg,1) = 0 and the mass conservation. We deduce next (Lg,v) = C{(g,v) and
the first moment conservation. We also deduce

l//gﬁHMj+dw%uﬂ&j—4M—1Xv—m%w—fﬂw5}
//@ﬁ{%d—nw—UAW—ad—UWP}
Z(d—l)/f*|v*|272(d71)/g|v|2

and the energy conservation when Mas(fi) = M2(fo) = d or uniform estimate when Ma(f:) < d,
Ms(fo) <d. For the entropy, we compute

(Lg, |v[*)

. 0i90;9 -
(Lg,logg) = —/aij gj —/cg,
with E:zé%@, and we get a similar estimate as in (6) and (7). For the fourth moment, we
compute
d _ = d+4
7 Malg) = /g(aij+€\v|25ij)(4\v|25z‘j+80ivj)+8/g(bi—€ 5 i) [v[*vs.

... — 14eM4(g)

and a similar estimate as in (7) holds.

(12) Prove that there exists a unique fonction
fe € C((0.T); L{) N L*(0, T Hy) N F,
solution to the nonlinear parabolic equation
O fe = 8i(d{;ajfe + E{EfE)a fE(O) = fo,

where dif; denotes the

Elements of correction. We have to proceed similarly as for the nonlinear McKean-Vlasov equa-—
tion in Chapter 1.

(13) For fo € En, and T > 0, prove that there exists at least one weak solution f € Fr to the Landau
equation.

Elements of correction. We have to use the a priori estimates as deduced in (11) and to use
the stability result established in (7).



