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On the Landau equation

We aim to establish the existence of solutions to the Landau equation

∂tf(t, v) = Q(f, f)(t, v), f(0, v) = f0(v), (0.1)

on the density function f = f(t, v) ≥ 0, t ≥ 0, v ∈ Rd, d ≥ 2, where the Landau kernel is defined by the
formula

Q(f, f)(v) :=
∂

∂vi

{∫
Rd

aij(v − v∗)
(
f(v∗)

∂f

∂vj
(v)− f(v)

∂f

∂vj
(v∗)

)
dv∗

}
.

Here and the sequel we use Einstein’s convention of sommation of repeated indices. The matrix a = (aij) is
defined by

a(z) = |z|2Π(z), Πij(z) := δij − ẑiẑj , ẑk :=
zk
|z|
,

so that Π is the is the orthogonal projection on the hyperplan z⊥ := {y ∈ Rd; y · z = 0}.

1 Part 0 - Some functional estimates.

(01) Prove that for any 0 ≤ f ∈ L1
2, there holds∫

Rd

f(log f)− ≤ 1

2
M2(f) + C(d), M2(f) :=

∫
Rd

f |v|2 dv,

and deduce that ∫
Rd

f(log f)+dv ≤
∫
Rd

f log fdv +
1

2
M2(f) + C(d).

(Hint. One may prove and use the estimate

s (log s)− ≤
√
s1

0≤s≤e−a|v|k + s a|v|k 1
e−a|v|k≤s≤1

, ∀ s ≥ 0.)

Elements of correction. We may indeed observe that

s (log s)− = s (log s)− 1
0≤s≤e−a|v|k + s (log s)− 1

e−a|v|k≤s≤1

≤
√
s1

0≤s≤e−a|v|k + s a|v|k 1
e−a|v|k≤s≤1

≤ e−a|v|k/2 + s a|v|k,

by using the inequality s(log s)− ≤
√
s on [0, 1] (coming from ϕ(s) := 1 +

√
s log s ≥ ϕ(e−2) > 0 on

[0, 1]) and the fact that s 7→ (log s)− is a decreasing function. Using the above inequality
with a = 1/2 and k = 2, we have∫

f(log f)− ≤
∫

e−|v|2/4dv +
1

2

∫
f |v|2,

and we conclude thanks to ∫
Rd

f(log f)+ =

∫
Rd

f log f +

∫
Rd

f(log f)−.
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(02) Prove that for for any 0 ≤ f ∈ L1 such that
∫
f = 1, there holds

∫
Rd

|∇f |dv ≤
∫
Rd

|∇f |2

f
dv.

(Hint. Use the Cauchy-Schwarz inequality).
Elements of correction. Write |∇f | = (|∇f |f−1/2)f1/2 and use the Cauchy-Schwarz inequality.

2 Part I - Physical properties and a priori estimates.
(1) Observe that a(z)z = 0 for any z ∈ Rd and a(z)ξξ ≥ 0 for any z, ξ ∈ Rd. Here and below, we use the
bilinear form notation auv = tvau = v ·au. In particular, the symmetric matrix a is positive but not strictly
positive.
Elements of correction. We observe that

Π(z)ξξ := Πij(z)ξiξj = (δij − ẑiẑj)ξiξj = |ξ|2 − (ẑ · ξ)2 = |ξ|2(1− (ẑ · ξ̂)2) ≥ 0

with equality if ξ = z.

(2) For any nice functions f, φ : Rd → R, f ≥ 0, prove that∫
Q(f, f)φdv =

1

2

∫ ∫
a(v − v∗)

(
f∇∗f∗ − f∗∇f

)(
∇φ−∇∗φ∗

)
dvdv∗,

where f∗ = f(v∗), ∇∗ψ∗ = (∇ψ)(v∗). Deduce that∫
Q(f, f)φdv = 0, forφ = 1, vi, |v|2,

and
−D(f) :=

∫
Q(f, f) log f dv ≤ 0.

Establish then∣∣∣∫ Q(f, f)φdv
∣∣∣ ≤ D(f)1/2

(1
2

∫ ∫
ff∗a(v − v∗)(∇φ−∇∗φ∗

)
(∇φ−∇∗φ∗

)
dvdv∗

)1/2

.

Elements of correction. By definition∫
Q(f, f)φdv =

∫ ∫
a(v − v∗)

(
f∇∗f∗ − f∗∇f

)
∇φdvdv∗.

Changing the name of variables and using that a(−z) = a(z), we also have∫
Q(f, f)φdv = −

∫ ∫
a(v − v∗)

(
f∇∗f∗ − f∗∇f

)
∇φ∗ dvdv∗.

The first identity follows by taking the arithmetic mean of the two expressions. The RHS
of the identity vanishes when particularizing φ = 1, v so that ∇φ−∇∗φ∗ = 0. Choosing φ =
|v|2, we also have a(v− v∗)(∇φ−∇∗φ∗) = a(v− v∗)(2v− 2v∗) = 0 from (1). By definition and (1)

−D(f) =
1

2

∫ ∫
ff∗a(v − v∗)XXdvdv∗ ≥ 0, X :=

∇∗f∗
f∗ − ∇f

f
.

The bilinear form

(A,B) 7→ E (A,B) :=
1

2

∫ ∫
ff∗a(v − v∗)ABdvdv∗
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being positive and symmetric, it verifies the Cauchy-Schwarz inequality which writes∣∣∣∫ Q(f, f)φdv
∣∣∣ = ∣∣∣E (X,Y )

∣∣∣ ≤ E (X,X)1/2E (Y, Y )1/2,

with Y := ∇φ−∇∗φ∗.

(3) For H0 ∈ R, we define EH0
the set of functions

EH0
:=

{
f ∈ L1

2(Rd); f ≥ 0,

∫
f dv = 1,

∫
f v dv = 0,∫

f |v|2 dv ≤ d, H(f) :=

∫
f log f dv ≤ H0

}
.

Prove that there exists a constant C0 such that

H−(f) :=

∫
f(log f)−dv ≤ C0, ∀ f ∈ EH0

,

and define D0 := H0 + C0. Deduce that for any nice positive solution f to the Landau equation such that
f0 ∈ EH0 , there holds

f ∈ FT :=
{
g ∈ C([0, T ];L1

2); g(t) ∈ EH0
, ∀ t ∈ (0, T ),

∫ T

0

D(g(t)) dt ≤ D0

}
.

We say that f ∈ C([0, T );L1) is a weak solution to the Landau equation if f ∈ FT and (0.1) holds in the
distributional sense. Why the definition is meaningful?
Elements of correction. The first estimate on H−(f0) follows from (01). From (2), a nice
solution to the Landau equation starting from f0 ∈ EH0 satisfies∫

ft =

∫
f0 = 1,

∫
ftv =

∫
f0v = 0,

∫
ft|v|2 =

∫
f0|v|2 ≤ d

and ∫
ft log ft ≤

∫
ft log ft +

∫ t

0

D(fs)ds =

∫
f0 log f0 ≤ H0,

so that ft ∈ EH0 for any t > 0. Because∫ T

0

D(fs)ds ≤
∫

f0 log f0 +

∫
ft(log fT )− ≤ H0 + C0,

we deduce that f ∈ FT (in fact, we have to assume f ∈ C([0, T );L1
2) or modify the definition

of FT accordingly). With the definition of Y made in (2), we have

E(Y, Y ) ≤ 1

2

∫ ∫
ff |v − v∗|2∥2∇φ∥2L∞dvdv∗

= 4

∫
f |v|2

∫
f ∥∇φ∥2L∞ ≤ d∥∇φ∥2L∞ ,

so that ⟨Q(f, f), φ⟩ is well defined as a distribution (of order 1) thanks to the last esti-
mate in (2).

(4) Prove that
Q(f, f) = ∂i(āij∂jf − b̄if) = ∂2ij(āijf)− 2∂i(b̄if) = āij∂

2
ijf − c̄f,

with
āij = āfij := aij ∗ f, b̄i = b̄fi := bi ∗ f, c̄ = c̄f := c ∗ f, (2.2)
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and

bi :=

d∑
j=1

∂jaij = −(d− 1)zi, c :=

d∑
i=1

∂ibi = −(d− 1)d.

For f ∈ EH0
, prove that there existe C ∈ (0,∞) such that

|āij | ≤ C(1 + |v|2), |b̄i| ≤ C(1 + |v|),

Elements of correction. We compute for instance

|āij | ≤
∫

|aij |f∗dv∗
∫

|v − v∗|2f∗dv∗ = |v|2
∫

f∗dv∗ +

∫
f∗|v∗|2dv∗ ≤ |v|2 + d,

for f ∈ EH0. The other points are similar or elementary computations.

3 Part II - On the ellipticity of ā.
We fix H0 ∈ R and f ∈ EH0

.
(5a) Show that there exists a function η ≥ 0 (only depending of D0) such that

∀A ⊂ Rd,

∫
A

f dv ≤ η(|A|)

and η(r) → 0 when r → 0. Here |A| denotes the Lebesgue measure of A. Deduce that

∀R, ε > 0,

∫
f 1|v|≤R 1|vi|≤ε dv ≤ ηR(ε)

and ηR(r) → 0 when r → 0.
Elements of correction. For any M > 1, we may write∫

A

f dv =

∫
A

f1f≤M dv +

∫
A

f1f>M dv

≤ M |A|+
∫
A

f
(log f)+
logM

1f>M dv ≤ M |A|+ D0

logM
=: Ξ(|A|,M).

We then define η(r) := Ξ(r,
√
2) if r > 1/2 and η(r) := Ξ(r, r−1/2) if r ∈ (0, 1/2). For the second

estimate, we write ∫
f 1|v|≤R 1|vi|≤ε dv ≤ η(|BR ∩ {|vi| ≤ ε}) ≤ η(2dRd−1ε) =: ηR(ε).

(5b) Show that ∫
f1|v|≤R ≥ 1− d

R2
.

Elements of correction. We write∫
f1|v|≤R = 1−

∫
f1|v|>R

≥ 1− 1

R2

∫
f |v|21|v|>R ≥ 1− d

R2
.

(5c) Deduce from the two previous questions that

∀ i = 1, . . . , d, Ti :=

∫
fv2i dv ≥ λ,
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for some constant λ > 0 which only depends on D0. Generalize the last estimate into

∀ ξ ∈ Rd, T (ξ) :=

∫
f |v · ξ|2dv ≥ λ|ξ|2.

Elements of correction. For ε,R > 0, we write

Ti ≥ ε2
∫

f1|vi|>ε1|v|≤Rdv

≥ ε2
(∫

f1|v|≤Rdv −
∫

f1|vi|≤ε1|v|≤Rdv

)
≥ ε2

(
1− d

R2
− ηR(ε)

)
.

We fix first R such that d/R2 ≤ 1/4 and next ε > 0 such that ηR(ε) ≤ 1/4. The estimate holds
with λ := ε2/2. The same result holds by replacing vi by v · ξ̂ for any fixed ξ ∈ Rd\{0}.

(6) Deduce that

∀ v, ξ ∈ Rd, ā(v)ξξ :=

d∑
i,j=1

āij(v)ξiξj ≥ (d− 1)λ |ξ|2.

Prove that any weak solution formally satisfies

d

dt
H(f) = −

∫
āij

∂if∂jf

f
−
∫
c̄f,

and thus the following bound on the Fisher information

I(f) :=

∫
|∇f |2

f
∈ L1(0, T )

Elements of correction. We write

ā(v)ξξ =

∫
(|v − v∗|2δij − (vi − v∗i)(vj − v∗j))f∗dv∗ξiξj

= |ξ|2
∫

[(|v|2 + |v∗|2)δij − (vivj + v∗iv∗j)]f∗dv∗ξ̂iξ̂j

= a(v)ξξ + |ξ|2
∫

[|v∗|2 − (v∗ · ξ̂)2]f∗dv∗.

The first term is nonnegative from (1). For the second term, we introduce an euclidian
basis (e1, . . . , ed) such that e1 = ξ̂ and we observe that

|v∗|2 − (v∗ · ξ̂)2 =

d∑
i=2

(v∗ · ei)2.

Together with (5c), we deduce∫
[|v∗|2 − (v∗ · ξ̂)2]f∗dv∗ =

d∑
i=2

∫
(v∗ · ei)2f∗dv∗ ≥ (d− 1)λ.

Writing the Landau equation as
∂tf = ∂i(āij∂jf − b̄if)

from (4), we have

d

dt
H(f) =

∫
(∂tf)(1 + log f)

= −
∫

(āij∂jf − b̄if)∂i(log f)

= −
∫

āij
∂if∂jf

f
+

∫
b̄i∂if = −

∫
āij

∂if∂jf

f
−

∫
c̄f.
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From (4) and the above estimate, we deduce

d

dt
H(f) ≤ −λ(d− 1)I(f) + (d− 1)d,

so that

H(fT ) + λ(d− 1)

∫ T

0

I(fs)ds ≤ H(f0) + (d− 1)dT.

We get I(f) ∈ L1(0, T ) as in (3).

4 Part III - Weak stability.
We consider here a sequence of weak solutions (fn) to the Landau equation such that fn ∈ FT for any n ≥ 1.
(7) Prove that ∫ T

0

∫
|∇vfn| dvdt ≤ CT

and that
d

dt

∫
fnφdv is bounded in L∞(0, T ), ∀φ ∈ C2

c (Rd).

Deduce that (fn) belongs to a compact set of L1((0, T ) × Rd). Up to the extraction of a subsequence, we
then have

fn → f strongly in L1((0, T )× Rd).

Deduce that
Q(fn, fn) ⇀ Q(f, f) weakly in D′((0, T )× Rd)

and that f is a weak solution to the Landau equation.
Elements of correction. From (02) and (6), we have∫ T

0

∫
|∇fn| ≤

∫ T

0

I(fn)dt ≤ CT . (4.3)

From (2) (or (4)), we have ∣∣∣∣ ddt
∫

fnφdv

∣∣∣∣ = |⟨Q(fn, fn), φ⟩| ≤ C∥∇φ∥L∞ . (4.4)

We then argue as in Aubin-Lions Lemma. For a mollifier (ρε) in D(Rd), we write

fn = fn ∗ ρε + [fn − fn ∗ ρε],

with (fn ∗ ρε) bounded in W 1,∞
tx by (4.4) and

∥fn − fn ∗ ρε∥L1 ≤ ε∥∇vfn∥L1 ≤ εCT

uniformly in n ≥ 1 by a L1 version of the Poincaré-Wirtinger inequality (same proof as for
the L2 version). We deduce fn → f strongly in L1((0, T )×BR) and thus strongly in L1((0, T )×
Rd) thanks to the moment estimate coming from fn ∈ FT . We write∫

Q(fn, fn)φdv =

∫
ān
ijfn∂

2
ijφ+ 2b̄ni fn∂iφ

where we have used the second expression of Q(f, f) in (4), several integrations by part and
the notations σ̄n := σ∗fn. Here we need probably an additional estimate. The simplest way
consists in assuming additionally M4(f0) < ∞ and to prove

sup
[0,T ]

M4(ft) ≤ C(M4(f0)), M4(h) :=

∫
h|v|4dv.
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Writing the Landau equation as

∂tf = ∂2
ij(āijf)− 2∂i(b̄if)

and observing that ∂i|v|4 = 4|v|2vi, ∂2
ij |v|4 = 4|v|2δij + 8vivj, we may indeed compute

d

dt
M4(f) =

∫
fāij(4|v|2δij + 8vivj) + 8

∫
f b̄i|v|2vi.

Observing next that

aijδij = (d− 1)|v − v∗|2, aijvivj = |v|2|v∗|2 − (v · v∗)2, bi|v|2vi = −(d− 1)|v|4 + (d− 1)|v|2v · v∗,

and using that the first moment vanishes, we get

d

dt
M4(f) =

∫ ∫
ff∗[4(d+ 1)|v|2|v∗|2 − 8(v · v∗)2 − 2(d− 1)|v|4]

≤ 4(d+ 3)M2(f)
2 − 2(d− 1)M4(f) ≤ 4(d+ 3)d2 −M4(f),

and finally
M4(ft) ≤ e−tM4(f0) + 4(d+ 3)d2(1− e−t), ∀ t ≥ 0.

We next assume that fn ∈ F♯
T , where F♯

T is defined accordingly with this additional esti-
mate. We now write

ān
ij =

∫
BR

fn(t, v∗)(|v − v∗|2δij − (v − v∗)i(v − v∗)j)dv∗

+

∫
Bc

R

fn(t, v∗)(|v − v∗|2δij − (v − v∗)i(v − v∗)j)dv∗ =: An,R +Bn,R.

Because of the strong convergence fn → f in L1, we have

An,R → AR :=

∫
BR

f(t, v∗)(|v − v∗|2δij − (v − v∗)i(v − v∗)j)dv∗

a.e. and locally bounded in L∞([0, T ]×Rd). Because of the additional moment estimate, we
have

Bn,R ≤
∫
Bc

R

fn(t, v∗)(|v|2 + |v∗|2)dv∗ ≤ 1

R2
(1 + |v|2) sup

[0,T ]

M4(fn) → 0,

as R → ∞ uniformly in n ≥ 1. These two pieces of information together imply

ān
ij → āij := aij ∗ f a.e. and locally bounded in L∞([0, T ]× Rd),

and then ∫
ān
ijfn∂

2
ijφ →

∫
āijf∂

2
ijφ.

The other contribution in ⟨Q(fn, fn), φ⟩ can be handled in a similar (and even simpler) way.

(8) (Difficult, here d = 3) Take f ∈ EH0 with energy equals to d. Establish that D(f) = 0 if, and only if,

∇f
f

− ∇f∗
f∗

= λ(v, v∗)(v − v∗), ∀ v, v∗ ∈ Rd,

for some scalar function (v, v∗) 7→ λ(v, v∗). Establish then that the last equation is equivalent to

log f = λ1|v|2/2 + λ2v + λ3, ∀ v ∈ Rd,

for some constants λ1 ∈ R, λ2 ∈ Rd, λ3 ∈ R. Conclude that

D(f) = 0 if, and only if, f =M(v) := (2π)−3/2 exp(−|v|2/2).

(9) (very difficult, because needs many steps) Prove that for any global weak solution f associated to
f0 ∈ L1

3 ∩ EH0
with energy equals d, there holds f(t) ⇀ M when t → ∞. (Hint. Accept that the energy

M2(f(t)) = d and prove that the third moment M3(f(t)) is uniformly bounded).
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5 Part IV - Existence.
In this part, we may accept the following abstract version of the J.-L. Lions theorem:
Consider two Hilbert spaces H and V such that V ⊂ H = H ′ ⊂ V ′, with dense embeddings. Assume that
a(t) : V ×V → R is defined for any t ∈ [0, T ] as a bounded bilinear form (and thus as an element of L(V, V ′))
and is such that
(i) [0, T ] → L(V, V ′), t 7→ a(t) is continuous;
(ii) ∃α > 0 and κ ∈ R such that a(t, u, u) ≤ −α∥u∥2V + κ∥u∥2H , ∀ t ∈ [0, T ], ∀u ∈ V .
Then, for any u0 ∈ H, there exists a unique function u ∈ XT := C([0, T ];H) ∩ L2(0, T ;V ) ∩ L2(0, T ;V ′)
such that

(u(t), φ(t)) = (u0, φ(0)) +

∫ t

0

a(s, u(s), φ(s)) ds,

for any φ ∈ XT .

(10) We fix k = d + 4. Show that H := L2
k ⊂ L1

3 and that H0 := H(f0) ∈ R if 0 ≤ f0 ∈ L2
k. In the sequel,

we first assume that f0 ∈ EH0
∩H.

Elements of correction. The inclusion L2
k ⊂ L1

3 comes from the Cauchy-Schwarz inequality while
H(f0) < ∞ comes from the inequality f(log f)+ ≤ f2 and the material of (01).

(11) For f ∈ C([0, T ]; EH0
), we define ā, b̄ and c̄ thanks to (2.2) and then

ãij := āij + ε|v|2δij , b̃i := b̄i − ε
d+ 4

2
vi, ε ∈ (0, λ).

We define V := H1
k+2 and then

∀ g ∈ V, Lg := ∂i
(
ãij∂jg − b̃ig

)
∈ V ′.

Show that for some constant Ci ∈ (0,∞), there hold

(Lg, g)H ≤ −ε∥g∥2V + C1∥g∥2H, |(Lg, h)H| ≤ C2∥g∥V∥h∥V , ∀ g, h ∈ V.

Deduce that there exists a unique variational solution

g ∈ XT := C([0, T ];H) ∩ L2(0, T ;V) ∩H1(0, T ;V ′)

to the parabolic equation
∂tg = Lg, g(0) = f0.

Prove furthermore that g ∈ FT .
Elements of correction. We observe that

(Lg, g)H = −
∫

ãij∂ig∂jg⟨v⟩2k +
1

2

∫
g2∂j(ãij∂i⟨v⟩2k) +

1

2

∫
g2[(∂ib̃i)⟨v⟩2k − b̃i∂i⟨v⟩2k],

with from (6)
ãξξ = āξξ + ε|v|2|ξ|2 ≥ ε(1 + |v|2)|ξ|2,

and thus ∫
ãij∂ig∂jg⟨v⟩2k ≥ ε∥∇g∥2L2

k+1
= ε∥g∥2V − ε∥g∥2L2

k
,

if we define the space V in that way ! We conclude to the coercivity estimate thanks to
the bounds

∂j(ãij∂i⟨v⟩2k), (∂ib̃i)⟨v⟩2k, b̃i∂i⟨v⟩2k = O(⟨v⟩2k).
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Existence and uniqueness of a solution in XT comes from J.-L. Lions’ theorem. We next have
to repeat the estimates established in (3) in order to get g ∈ FT . We also have to re-
peat the estimates established in (7) in order to get g ∈ F♯

T . We may for instance com-
pute

⟨Lg, φ⟩ =

∫
g[∂j(ãij∂iφ) + b̃i∂iφ]

=

∫
g[ãij∂

2
ijφ+ 2b̄i∂iφ− ε

d

2
vi∂iφ]

We deduce first ⟨Lg, 1⟩ = 0 and the mass conservation. We deduce next ⟨Lg, v⟩ = C⟨g, v⟩ and
the first moment conservation. We also deduce

⟨Lg, |v|2⟩ =

∫ ∫
gf∗{(aij + ε|v|2δij)2δij − 4(d− 1)(v − v∗)ivi − εd|v|2)}

=

∫ ∫
gf∗{2(d− 1)|v − v∗|2 − 4(d− 1)|v|2}

= 2(d− 1)

∫
f∗|v∗|2 − 2(d− 1)

∫
g|v|2

and the energy conservation when M2(ft) = M2(f0) = d or uniform estimate when M2(ft) ≤ d,
M2(f0) ≤ d. For the entropy, we compute

⟨Lg, log g⟩ = −
∫

ãij
∂ig∂jg

g
−

∫
c̃g,

with c̃ := ∂ib̃i, and we get a similar estimate as in (6) and (7). For the fourth moment, we
compute

d

dt
M4(g) =

∫
g(āij + ε|v|2δij)(4|v|2δij + 8vivj) + 8

∫
g(b̄i − ε

d+ 4

2
vi)|v|2vi.

= . . .− 14εM4(g)

and a similar estimate as in (7) holds.

(12) Prove that there exists a unique fonction

fε ∈ C([0, T ];L2
k) ∩ L2(0, T ;H1

k) ∩ F ♯
T

solution to the nonlinear parabolic equation

∂tfε = ∂i(ã
fε
ij ∂jfε + b̃fεi fε), fε(0) = f0,

where ãfεij denotes the
Elements of correction. We have to proceed similarly as for the nonlinear McKean-Vlasov equa-
tion in Chapter 1.

(13) For f0 ∈ EH0
and T > 0, prove that there exists at least one weak solution f ∈ FT to the Landau

equation.
Elements of correction. We have to use the a priori estimates as deduced in (11) and to use
the stability result established in (7).
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