On the Landau equation

We aim to establish the existence of solutions to the Landau equation

$$
\begin{equation*}
\partial_{t} f(t, v)=Q(f, f)(t, v), \quad f(0, v)=f_{0}(v) \tag{0.1}
\end{equation*}
$$

on the density function $f=f(t, v) \geq 0, t \geq 0, v \in \mathbb{R}^{d}, d \geq 2$, where the Landau kernel is defined by the formula

$$
Q(f, f)(v):=\frac{\partial}{\partial v_{i}}\left\{\int_{\mathbb{R}^{d}} a_{i j}\left(v-v_{*}\right)\left(f\left(v_{*}\right) \frac{\partial f}{\partial v_{j}}(v)-f(v) \frac{\partial f}{\partial v_{j}}\left(v_{*}\right)\right) d v_{*}\right\} .
$$

Here and the sequel we use Einstein's convention of sommation of repeated indices. The matrix $a=\left(a_{i j}\right)$ is defined by

$$
a(z)=|z|^{2} \Pi(z), \quad \Pi_{i j}(z):=\delta_{i j}-\hat{z}_{i} \hat{z}_{j}, \quad \hat{z}_{k}:=\frac{z_{k}}{|z|},
$$

so that Π is the is the orthogonal projection on the hyperplan $z^{\perp}:=\left\{y \in \mathbb{R}^{d} ; y \cdot z=0\right\}$.

1 Part 0-Some functional estimates.

(01) Prove that for any $0 \leq f \in L_{2}^{1}$, there holds

$$
\int_{\mathbb{R}^{d}} f(\log f)_{-} \leq \frac{1}{2} M_{2}(f)+C(d), \quad M_{2}(f):=\int_{\mathbb{R}^{d}} f|v|^{2} d v
$$

and deduce that

$$
\int_{\mathbb{R}^{d}} f(\log f)_{+} d v \leq \int_{\mathbb{R}^{d}} f \log f d v+\frac{1}{2} M_{2}+C(M), \quad M:=\int_{\mathbb{R}^{d}} f d v
$$

(Hint. One may prove and use the estimate

$$
\left.s(\log s)_{-} \leq \sqrt{s} \mathbf{1}_{0 \leq s \leq e^{-a|x|^{k}}}+s a|x|^{k} \mathbf{1}_{e^{-a|x|^{k} \leq s \leq 1}}, \quad \forall s \geq 0 .\right)
$$

(02) Prove that for for any $0 \leq f \in L^{1}$ such that $M=1$, there holds

$$
\int_{\mathbb{R}^{d}}|\nabla f| d v \leq \int_{\mathbb{R}^{d}} \frac{|\nabla f|^{2}}{f} d v
$$

(Hint. Use the Cauchy-Schwarz inequality).

2 Part I - Physical properties and a priori estimates.

(1) Observe that $a(z) z=0$ for any $z \in \mathbb{R}^{d}$ and $a(z) \xi \xi \geq 0$ for any $z, \xi \in \mathbb{R}^{d}$. Here and below, we use the bilinear form notation $a u v={ }^{t} v a u=v \cdot a u$. In particular, the symmetric matrix a is positive but not strictly positive.
(2) For any nice functions $f, \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}, f \geq 0$, prove that

$$
\int Q(f, f) \varphi d v=\frac{1}{2} \iint a\left(v-v_{*}\right)\left(f \nabla_{*} f_{*}-f_{*} \nabla f\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}
$$

where $f_{*}=f\left(v_{*}\right), \nabla_{*} \psi_{*}=(\nabla \psi)\left(v_{*}\right)$. Deduce that

$$
\int Q(f, f) \varphi d v=0, \quad \text { for } \varphi=1, v_{i},|v|^{2}
$$

and

$$
-D(f):=\int Q(f, f) \log f d v \leq 0
$$

Establish then

$$
\left|\int Q(f, f) \varphi d v\right| \leq D(f)^{1 / 2}\left(\frac{1}{2} \iint f f_{*} a\left(v-v_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right)\left(\nabla \varphi-\nabla_{*} \varphi_{*}\right) d v d v_{*}\right)^{1 / 2}
$$

(3) For $H_{0} \in \mathbb{R}$, we define $\mathcal{E}_{H_{0}}$ the set of functions

$$
\begin{aligned}
& \mathcal{E}_{H_{0}}:=\left\{f \in L_{2}^{1}\left(\mathbb{R}^{d}\right) ; f \geq 0, \int f d v=1, \int f v d v=0\right. \\
&\left.\int f|v|^{2} d v \leq d, H(f):=\int f \log f d v \leq H_{0}\right\} .
\end{aligned}
$$

Prove that there exists a constant C_{0} such that

$$
H_{-}(f):=\int f(\log f)_{-} d v \leq C_{0}, \quad \forall f \in \mathcal{E}_{H_{0}}
$$

and define $D_{0}:=H_{0}+C_{0}$. Deduce that for any nice positive solution f to the Landau equation such that $f_{0} \in \mathcal{E}_{H_{0}}$, there holds

$$
f \in \mathcal{F}_{T}:=\left\{g \in C\left([0, T] ; L_{2}^{1}\right) ; g(t) \in \mathcal{E}_{H_{0}}, \forall t \in(0, T), \int_{0}^{T} D(g(t)) d t \leq D_{0}\right\}
$$

We say that $f \in C\left([0, T) ; L^{1}\right)$ is a weak solution to the Landau equation if $f \in \mathcal{F}_{T}$ and (0.1) holds in the distributional sense. Why the definition is meaningful?
(4) Prove that

$$
Q(f, f)=\partial_{i}\left(\bar{a}_{i j} \partial_{j} f-\bar{b}_{i} f\right)=\partial_{i j}^{2}\left(\bar{a}_{i j} f\right)-2 \partial_{i}\left(\bar{b}_{i} f\right)=\bar{a}_{i j} \partial_{i j}^{2} f-\bar{c} f
$$

with

$$
\begin{equation*}
\bar{a}_{i j}=\bar{a}_{i j}^{f}:=a_{i j} * f, \quad \bar{b}_{i}=\bar{b}_{i}^{f}:=b_{i} * f, \quad \bar{c}=\bar{c}^{f}:=c * f, \tag{2.2}
\end{equation*}
$$

and

$$
b_{i}:=\sum_{j=1}^{d} \partial_{j} a_{i j}=-(d-1) z_{i}, \quad c:=\sum_{i=1}^{d} \partial_{i} b_{i}=-(d-1) d .
$$

Prove that there existe $C \in(0, \infty)$ such that

$$
\left|\bar{a}_{i j}\right| \leq C\left(1+|v|^{2}\right), \quad\left|\bar{b}_{i}\right| \leq C(1+|v|)
$$

3 Part II - On the ellipticity of \bar{a}.

We fix $H_{0} \in \mathbb{R}$ and $f \in \mathcal{E}_{H_{0}}$.
(5a) Show that there exists a function $\eta \geq 0$ (only depending of D_{0}) such that

$$
\forall A \subset \mathbb{R}^{d}, \quad \int_{A} f d v \leq \eta(|A|)
$$

and $\eta(r) \rightarrow 0$ when $r \rightarrow 0$. Here $|A|$ denotes the Lebesgue measure of A. Deduce that

$$
\forall R, \varepsilon>0, \quad \int f \mathbf{1}_{|v| \leq R} \mathbf{1}_{\left|v_{i}\right| \leq \varepsilon} d v \leq \eta_{R}(\varepsilon)
$$

and $\eta_{R}(r) \rightarrow 0$ when $r \rightarrow 0$.
(5b) Show that

$$
\int f \mathbf{1}_{|v| \leq R} \geq 1-\frac{d}{R^{2}}
$$

(5c) Deduce from the two previous questions that

$$
\forall i=1, \ldots, d, \quad T_{i}:=\int f v_{i}^{2} d v \geq \lambda
$$

for some constant $\lambda>0$ which only depends on D_{0}. Generalize the last estimate into

$$
\forall \xi \in \mathbb{R}^{d}, \quad T(\xi):=\int f|v \cdot \xi|^{2} d v \geq \lambda|\xi|^{2}
$$

(6) Deduce that

$$
\forall v, \xi \in \mathbb{R}^{d}, \quad \bar{a}(v) \xi \xi:=\sum_{i, j=1}^{d} \bar{a}_{i j}(v) \xi_{i} \xi_{j} \geq(d-1) \lambda|\xi|^{2} .
$$

Prove that any weak solution formally satisfies

$$
\frac{d}{d t} H(f)=-\int \bar{a}_{i j} \frac{\partial_{i} f \partial_{j} f}{f}-\int \bar{c} f
$$

and thus the following bound on the Fisher information

$$
I(f):=\int \frac{|\nabla f|^{2}}{f} \in L^{1}(0, T)
$$

4 Part III - Weak stability.

We consider here a sequence of weak solutions $\left(f_{n}\right)$ to the Landau equation such that $f_{n} \in \mathcal{F}_{T}$ for any $n \geq 1$.
(7) Prove that

$$
\int_{0}^{T} \int\left|\nabla_{v} f_{n}\right| d v d t \leq C_{T}
$$

and that

$$
\frac{d}{d t} \int f_{n} \varphi d v \text { is bounded in } L^{\infty}(0, T), \quad \forall \varphi \in C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

Deduce that $\left(f_{n}\right)$ belongs to a compact set of $L^{1}\left((0, T) \times \mathbb{R}^{d}\right)$. Up to the extraction of a subsequence, we then have

$$
f_{n} \rightarrow f \text { strongly in } L^{1}\left((0, T) \times \mathbb{R}^{d}\right)
$$

Deduce that

$$
Q\left(f_{n}, f_{n}\right) \rightharpoonup Q(f, f) \text { weakly in } \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)
$$

and that f is a weak solution to the Landau equation.
(8) (Difficult, here $d=3$) Take $f \in \mathcal{E}_{H_{0}}$ with energy equals to d. Establish that $D(f)=0$ if, and only if,

$$
\frac{\nabla f}{f}-\frac{\nabla f_{*}}{f_{*}}=\lambda\left(v, v_{*}\right)\left(v-v_{*}\right), \quad \forall v, v_{*} \in \mathbb{R}^{d}
$$

for some scalar function $\left(v, v_{*}\right) \mapsto \lambda\left(v, v_{*}\right)$. Establish then that the last equation is equivalent to

$$
\log f=\lambda_{1}|v|^{2} / 2+\lambda_{2} v+\lambda_{3}, \quad \forall v \in \mathbb{R}^{d}
$$

for some constants $\lambda_{1} \in \mathbb{R}, \lambda_{2} \in \mathbb{R}^{d}, \lambda_{3} \in \mathbb{R}$. Conclude that

$$
D(f)=0 \text { if, and only if, } f=M(v):=(2 \pi)^{-3 / 2} \exp \left(-|v|^{2} / 2\right)
$$

(9) (very difficult, because needs many steps) Prove that for any global weak solution f associated to $f_{0} \in L_{3}^{1} \cap \mathcal{E}_{H_{0}}$ with energy equals d, there holds $f(t) \rightharpoonup M$ when $t \rightarrow \infty$. (Hint. Accept that the energy $M_{2}(f(t))=d$ and prove that the third moment $M_{3}(f(t))$ is uniformly bounded).

5 Part IV - Existence.

In this part, we may accept the following abstract version of the J.-L. Lions theorem:
Consider two Hilbert spaces H and V such that $V \subset H=H^{\prime} \subset V^{\prime}$, with dense embeddings. Assume that $a(t): V \times V \rightarrow \mathbb{R}$ is defined for any $t \in[0, T]$ as a bounded bilinear form (and thus as an element of $\left.\mathcal{L}\left(V, V^{\prime}\right)\right)$ and is such that
(i) $[0, T] \rightarrow \mathcal{L}\left(V, V^{\prime}\right), t \mapsto a(t)$ is continuous;
(ii) $\exists \alpha>0$ and $\kappa \in \mathbb{R}$ such that $a(t, u, u) \leq-\alpha\|u\|_{V}^{2}+\kappa\|u\|_{H}^{2}, \forall t \in[0, T], \forall u \in V$.

Then, for any $u_{0} \in H$, there exists a unique function $u \in X_{T}:=C([0, T] ; H) \cap L^{2}(0, T ; V) \cap$ $L^{2}\left(0, T ; V^{\prime}\right)$ such that

$$
(u(t), \varphi(t))=\left(u_{0}, \varphi(0)\right)+\int_{0}^{t} a(s, u(s), \varphi(s)) d s
$$

for any $\varphi \in X_{T}$.
(10) We fix $k=d+4$. Show that $\mathcal{H}:=L_{k}^{2} \subset L_{3}^{1}$ and that $H_{0}:=H\left(f_{0}\right) \in \mathbb{R}$ if $0 \leq f_{0} \in L_{k}^{2}$. In the sequel, we first assume that $f_{0} \in \mathcal{E}_{H_{0}} \cap \mathcal{H}$.
(11) For $f \in C\left([0, T] ; \mathcal{E}_{H_{0}}\right)$, we define \bar{a}, \bar{b} and \bar{c} thanks to (2.2) and then

$$
\tilde{a}_{i j}:=\bar{a}_{i j}+\varepsilon|v|^{2} \delta_{i j}, \quad \tilde{b}_{i}:=\bar{b}_{i}-\varepsilon \frac{d+2}{2} v_{i}, \quad \varepsilon \in(0, \lambda) .
$$

We define $\mathcal{V}:=H_{k+2}^{1}$ and then

$$
\forall g \in \mathcal{V}, \quad L g:=\partial_{i}\left(\tilde{a}_{i j} \partial_{j} g-\tilde{b}_{i} g\right) \in \mathcal{V}^{\prime}
$$

Show that for some constant $C_{i} \in(0, \infty)$, there hold

$$
(L g, g)_{\mathcal{H}} \leq-\varepsilon\|g\|_{\mathcal{V}}^{2}+C_{1}\|g\|_{\mathcal{H}}^{2}, \quad\left|(L g, h)_{\mathcal{H}}\right| \leq C_{2}\|g\|_{\mathcal{V}}\|h\|_{\mathcal{V}}, \quad \forall g, h \in \mathcal{V} .
$$

Deduce that there exists a unique variational solution

$$
g \in \mathcal{X}_{T}:=C([0, T] ; \mathcal{H}) \cap L^{2}(0, T ; \mathcal{V}) \cap H^{1}\left(0, T ; \mathcal{V}^{\prime}\right)
$$

to the parabolic equation

$$
\partial_{t} g=L g, \quad g(0)=f_{0}
$$

Prove furthermore that $g \in \mathcal{F}_{T}$.
(12) Prove that there exists a unique fonction

$$
f_{\varepsilon} \in C\left([0, T] ; L_{k}^{2}\right) \cap L^{2}\left(0, T ; H_{k}^{1}\right) \cap \mathcal{F}_{T}
$$

solution to the nonlinear parabolic equation

$$
\partial_{t} f_{\varepsilon}=\partial_{i}\left(\tilde{a}_{i j}^{f_{\varepsilon}} \partial_{j} f_{\varepsilon}+\tilde{b}_{i}^{f_{\varepsilon}} f_{\varepsilon}\right), \quad f_{\varepsilon}(0)=f_{0}
$$

where $\tilde{a}_{i j}^{f_{\varepsilon}}$ denotes the
(13) For $f_{0} \in \mathcal{E}_{H_{0}}$ and $T>0$, prove that there exists at least one weak solution $f \in \mathcal{F}_{T}$ to the Landau equation.

