1 Problem I (2016-2017)

We consider the evolution PDE

$$
\begin{equation*}
\partial_{t} f=\Delta f+\operatorname{div}(E f) \tag{1.1}
\end{equation*}
$$

on the unknown $f=f(t, x), t \geq 0, x \in \mathbb{R}^{d}$, with $E=E(x)$ a given smooth force field which satisfies for some $\gamma \geq 1$

$$
\forall|x| \geq 1, \quad|E(x)| \leq C|x|^{\gamma-1}, \quad \operatorname{div} E(x) \leq C|x|^{\gamma-2}, \quad x \cdot E \geq|x|^{\gamma}
$$

We complement the equation with an initial condition

$$
f(0, x)=f_{0}(x)
$$

Question 1. Which strategy can be used in order to exhibit a semigroup $S(t)$ in $L^{p}\left(\mathbb{R}^{d}\right)$, which provides solutions to (1.1) for initial data in $L^{p}\left(\mathbb{R}^{d}\right)$? Is the semigroup positive? mass conservative? Explain briefly why there exists a function $G=G(x)$ such that

$$
0 \leq G \in L^{2}(m), \quad\langle G\rangle:=\int G=1, \quad \mathcal{L} G=0
$$

We rather accept this fact! We accept that $G>0$. For any nice function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we denote $h:=f / G$ and, reciprocally, for any nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we denote $f:=G h$.
In the sequel we will not try to justify rigorously the a priori estimates we will establish, but we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions. We denote by C or C_{i} some constants which may differ from line to line.
Question 2. Prove that for any weight function $m: \mathbb{R}^{d} \rightarrow[1, \infty)$ and any nice function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, there holds

$$
\int(\mathcal{L} f) f m=-\int|\nabla f|^{2} m+\frac{1}{2} \int f^{2} \mathcal{L}^{*} m
$$

where we will make explicit the expression of \mathcal{L}^{*}.
Question 3. Prove that there exist $w: \mathbb{R}^{d} \rightarrow[1, \infty), \alpha>0$ and $b, R_{0} \geq 0$ such that

$$
\mathcal{L}^{*} w \leq-\alpha w+b \mathbf{1}_{B_{R_{0}}} .
$$

Question 4. For some constant $\lambda \geq 0$ to be specified later, we define $W:=w+\lambda$. Deduce from the previous question that

$$
\int h^{2} w G \leq \frac{1}{\alpha} \int h^{2}\left(b \mathbf{1}_{B_{R_{0}}}-\mathcal{L}^{*} W\right) G
$$

for any nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Question 5. Take a nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\langle h G\rangle=0$ and denote $G(\Omega):=$ $\left\langle G \mathbf{1}_{\Omega}\right\rangle$. Prove that for any $R \geq R_{0}$ there exists $\kappa_{R} \in(0, \infty)$ such that

$$
\int h^{2} \mathbf{1}_{B_{R}} G \leq \kappa_{R} \int_{B_{R}}|\nabla h|^{2} G+\frac{1}{G\left(B_{R}\right)}\left(\int_{B_{R}^{c}} h G\right)^{2}
$$

and deduce that

$$
\int h^{2} \mathbf{1}_{B_{R}} G \leq \frac{\kappa_{R}}{1+\lambda} \int|\nabla h|^{2} W G+\frac{G\left(B_{R}^{c}\right)}{G\left(B_{R}\right)} \int h^{2} w G
$$

Question 6. Establish finally that there exist some constants $\lambda, K_{1} \in(0, \infty)$ such that

$$
\frac{2}{K_{1}} \int h^{2} w G \leq \int\left(W|\nabla h|^{2}-\frac{1}{2} h^{2} \mathcal{L}^{*} W\right) G=\int(-\mathcal{L} f) f G^{-1} W
$$

for all nice function h such that $\langle h G\rangle=0$.
Question 7. Consider a nice solution f to (1.1) associated to an initial datum f_{0} such that $\left\langle f_{0}\right\rangle=0$. Establish that f satisfies

$$
\frac{1}{2} \frac{d}{d t} \int h_{t}^{2} W G=-\int|\nabla h|^{2} W G+\frac{1}{2} \int h^{2} G \mathcal{L}^{*} W
$$

Deduce that there exists $K_{2} \in(0, \infty)$ such that f satisfies the decay estimate

$$
\int f_{t}^{2} W G^{-1} d x \leq e^{-K_{2} t} \int f_{0}^{2} W G^{-1} d x, \quad \forall t \geq 0
$$

