An introduction to evolution PDEs November 9, 2023

Exercises about chapter 1 & 2

1. ABOUT VARIATIONAL SOLUTIONS (CHAPTER 1)

Exercise 1.1. (Poincaré Wirtinger inequality) Consider f € L (R?) such that Vf € L?(R?) and
0 < p € L3(RY) with unit integral. Prove that
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Exercise 1.2. Consider the Fokker-Planck equation
(1.1) ouf = Af +div(zf) in (0,T)xR%  £(0,) = fo in R%

Under convenient assumptions on fy show the existence and uniqueness of a variational solution to the
Fokker-Planck equation (1.1) by using Lions’ theorem.

Exercise 1.3. Consider the transport equation

(1.2) Ohf=0b-Vf+ecf in (0,T)xRY  f(0,-) = fo € L*(R?),
and its small viscosity regularized version

(1.3) Of=eAf+b-Vf+cf in (0,7) xR f(0,) = fo € L*(RY),
with € > 0.

(1) Under convenient assumptions on a,b show the existence of a weak solution to the transport
equation (1.2) by using Lions’ variant of the Lax-Milgram theorem.

(2) Establish the same result by proving first the existence of a solution to the parabolic equation (1.3)
with € > 0 and next passing to the limit ¢ — 0.

Exercise 1.4. Consider the kinetic Fokker-Planck equation

(1.4) Of =v-Vof + A f in U, f(0,-)=fo in O,
and its small viscosity regularized version

(1.5) Of =elpf+v-Vof +A,f in U, f(0,)=fo in O,
with e >0, O :=R% x R4, U := (0,T) x O.

(1) Under convenient assumptions on f; show the existence of a weak solution to the kinetic Fokker-
Planck equation (1.4) by using Lions’ variant of the Lax-Milgram theorem.

(2) Establish the same result by proving first the existence of a solution to the parabolic equation (1.5)
with € > 0 and next passing to the limit € — 0.



2. DE GIORGI-NASH-MOSER AND BEYOND (CHAPTER 2)

Exercise 2.1. (Interpolation inequality) (1) For any 1 < p,q < 00, 6 € (0,1) and f € LP N LY, prove
that f € L" and
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(2) For any 1 < p;,q; < o0, 0 € (0,1) and f € LP*LP2 N L™ L2, prove that f € L™ L™ and
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Exercise 2.2. 1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension
d > 3. (Hint. Write the interpolation estimate

0 1-6
112 < A2 I e
and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.
(Hint. Prove the interpolation estimate
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then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p* := 2 and finally the
Cauchy-Schwartz inequality in order to bound the second term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate
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then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p* := oo and finally the
Cauchy-Schwartz inequality in order to bound the second term).

Exercise 2.3. 1) Prove the Poincaré-Wirtinger inequality

1
1f = frllez < CrV Iz, fr(@) = m——F f(y) dy,
" : B, b
for any r > 0 and some constant C' = C(d) > 0.
2) Recover the Nash inequality in any dimension d > 1. (Hint. Write that || f||2. = (f, f— f»)+ (f, fr)

and deduce that || f||2. < Cir | fllz2 [V fllzz + Cor= || f||2:, for any r > 0).



