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Exercises about chapter 1 & 2

1. About variational solutions (Chapter 1)

Exercise 1.1. (Poincaré Wirtinger inequality) Consider f ∈ L1
loc(Rd) such that ∇f ∈ L2(Rd) and

0 ≤ ρ ∈ L1
2(Rd) with unit integral. Prove that

∥f − f ∗ ρ∥L2(Rd) ≤ C
(∫

Rd

ρ(z)|z|2dz
)1/2

∥∇f∥L2(Rd).

Exercise 1.2. Consider the Fokker-Planck equation

(1.1) ∂tf = ∆f + div(xf) in (0, T )× Rd, f(0, ·) = f0 in Rd.

Under convenient assumptions on f0 show the existence and uniqueness of a variational solution to the
Fokker-Planck equation (1.1) by using Lions’ theorem.

Exercise 1.3. Consider the transport equation

(1.2) ∂tf = b · ∇f + cf in (0, T )× Rd, f(0, ·) = f0 ∈ L2(Rd),

and its small viscosity regularized version

(1.3) ∂tf = ε∆f + b · ∇f + cf in (0, T )× Rd, f(0, ·) = f0 ∈ L2(Rd),

with ε > 0.
(1) Under convenient assumptions on a, b show the existence of a weak solution to the transport

equation (1.2) by using Lions’ variant of the Lax-Milgram theorem.
(2) Establish the same result by proving first the existence of a solution to the parabolic equation (1.3)

with ε > 0 and next passing to the limit ε → 0.

Exercise 1.4. Consider the kinetic Fokker-Planck equation

(1.4) ∂tf = v · ∇xf +∆vf in U , f(0, ·) = f0 in O,

and its small viscosity regularized version

(1.5) ∂tf = ε∆xf + v · ∇xf +∆vf in U , f(0, ·) = f0 in O,

with ε > 0, O := Rd × Rd, U := (0, T )×O.
(1) Under convenient assumptions on f0 show the existence of a weak solution to the kinetic Fokker-

Planck equation (1.4) by using Lions’ variant of the Lax-Milgram theorem.
(2) Establish the same result by proving first the existence of a solution to the parabolic equation (1.5)

with ε > 0 and next passing to the limit ε → 0.
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2. De Giorgi-Nash-Moser and beyond (Chapter 2)

Exercise 2.1. (Interpolation inequality) (1) For any 1 ≤ p, q ≤ ∞, θ ∈ (0, 1) and f ∈ Lp ∩Lq, prove
that f ∈ Lr and

∥f∥Lr ≤ ∥f∥θLp∥f∥1−θ
Lq , with

1

r
=

θ

p
+

1− θ

q
.

(2) For any 1 ≤ pi, qi ≤ ∞, θ ∈ (0, 1) and f ∈ Lp1Lp2 ∩ Lq1Lq2 , prove that f ∈ Lr1Lr2 and

∥f∥Lr1Lr2 ≤ ∥f∥θLp1Lp2∥f∥1−θ
Lq1Lq2 , with

1

ri
=

θ

pi
+

1− θ

qi
.

Exercise 2.2. 1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension
d ≥ 3. (Hint. Write the interpolation estimate

∥f∥L2 ≤ ∥f∥θL1 ∥f∥1−θ
L2∗

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.

(Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/4L1 ∥f3/2∥1/2L2 ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := 2 and finally the
Cauchy-Schwartz inequality in order to bound the second term).

3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/2L1 ∥f3/2∥1/3L∞ ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := ∞ and finally the
Cauchy-Schwartz inequality in order to bound the second term).

Exercise 2.3. 1) Prove the Poincaré-Wirtinger inequality

∥f − fr∥L2 ≤ C r∥∇f∥L2 , fr(x) :=
1

|B(x, r)|

∫
B(x,r)

f(y) dy,

for any r > 0 and some constant C = C(d) > 0.
2) Recover the Nash inequality in any dimension d ≥ 1. (Hint. Write that ∥f∥2L2 = (f, f −fr)+(f, fr)

and deduce that ∥f∥2L2 ≤ C1 r ∥f∥L2 ∥∇f∥L2 + C2 r
−d ∥f∥2L1 , for any r > 0).


