Exercises about chapter 1

1. About variational solutions (Chapter 1)

Exercise 1.1. Consider $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{div} f \in L^{1}\left(\mathbb{R}^{d}\right)$. Show that

$$
\int_{\mathbb{R}^{d}} \operatorname{div} f d x=0
$$

Solution or Hint for Exercise 1.1. That is true for $f \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$. For $f \in L^{1}\left(\mathbb{R}^{d}\right)$ we introduce a mollifier $\left(\rho_{\varepsilon}\right)$, a truncation fiunction χ_{M} and $\rho_{\varepsilon} *\left(f \chi_{M}\right) \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$.

Exercise 1.2. Consider the parabolic type equation

$$
\begin{equation*}
\partial_{t} f=\partial_{i}\left(A_{i j} \partial_{j} f\right)+b_{i} \partial_{i} f+c f \tag{1.1}
\end{equation*}
$$

with time dependent coefficients

$$
A, b, c \in L^{\infty}\left((0, T) \times \mathbb{R}^{d}\right)
$$

and under uniformly elliptic condition

$$
\begin{equation*}
\forall t \in(0, T), \forall x \in \mathbb{R}^{d}, \forall \xi \in \mathbb{R}^{d} \quad A_{i j}(t, x) \xi_{i} \xi_{j} \geq \alpha|\xi|^{2}, \quad \alpha>0 \tag{1.2}
\end{equation*}
$$

1) For any initial datum $f_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$, recover the second and generalized version of J.-L. Lions theorem about existence of variational solutions $f \in X_{T}$ by using the first version.
(Hint. Define

$$
A_{k}:=\frac{n}{T} \int_{t_{k-1}}^{t_{k}} A(t, \cdot) d t, \quad i=1, \ldots, n, \quad t_{k}:=k T / n
$$

and a similar way b_{k}, c_{k}, and prove that there exists a unique variational solution $g_{k} \in X_{T / n}$ associated to the A_{k}, b_{k}, c_{k} and the initial condition g_{0} when $k=1, g_{k-1}(T / n)$ when $k \geq 2$. Build next a solution $g^{n} \in X_{T}$ to the equation (1.1) associated to the piecewise constant functions $A^{n}(t)=A_{k}$ if $t \in\left[t_{k}, t_{k+1}\right)$, $k=0, \ldots, n-1$, and b^{n}, c^{n} defined similarly. Conclude by passing to the limit $\left.n \rightarrow \infty\right)$.
2) For the above problem, show that $f \geq 0$ if $f_{0} \geq 0$ and $G \geq 0$. (Hint. Show that the sequence $\left(g_{k}\right)$ defined in step 2 of the proof of the existence part is such that $g_{k} \geq 0$ for any $k \in \mathbb{N}$).

Exercise 1.3. Consider a parabolic equation where the operator \mathcal{L} incloses a kernel term

$$
\mathcal{L} f:=\Delta f+b \cdot \nabla f+c f+\mathcal{K} f, \quad(\mathcal{K} f)(x):=\int_{\mathbb{R}^{d}} k(x, y) f(y) d y
$$

with coefficients satisfying

$$
b, c \in L^{\infty}\left(\mathbb{R}^{d}\right), \quad k \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)
$$

and establish the existence of a variational solution in the usual X_{T} space.
Exercise 1.4. Consider the parabolic equation with coefficients $b \in L^{\infty}+L^{d}$ and $c \in L_{\mathrm{loc}}^{1}, c_{+} \in L^{\infty}+L^{d / 2}$ with $d \geq 3$. Establish the existence of a variational solution in the space X_{T} associated to $H:=L^{2}$ and $V:=\left\{g \in H^{1} ; \sqrt{c_{-}} g \in L^{2}\right\}$. (Hint. Observe that $f\left(|b| \mathbf{1}_{|b|>M}+\sqrt{c_{+}} \mathbf{1}_{c_{+}>M}\right) \rightarrow 0$ in L^{2} when $\left.M \rightarrow \infty\right)$.

Exercise 1.5. For $b, c \in L^{\infty}\left(\mathbb{R}^{d}\right), f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, we consider the linear parabolic equation

$$
\begin{equation*}
\partial_{t} f=\Lambda f:=\Delta f+b \cdot \nabla f+c f, \quad f(0)=f_{0} \tag{1.3}
\end{equation*}
$$

We introduce the usual notations $H:=L^{2}, V:=H^{1}$ and X_{T} the associated space for some given $T>0$.

1) Consider a convex function $\beta \in C^{2}(\mathbb{R})$ such that $\beta(0)=\beta^{\prime}(0)=0$ and $\beta^{\prime \prime} \in L^{\infty}$. Prove that any variational solution $f \in X_{T}$ to the above linear parabolic equation satisfies

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x+\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\{c f \beta^{\prime}(f)-(\operatorname{div} b) \beta(f)\right\} d x d s
$$

for any $t \geq 0$.
2) Assuming moreover that $\beta \geq 0$ and there exists a constant $K \in(0, \infty)$ such that $0 \leq s \beta^{\prime}(s) \leq K \beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant $C:=C(b, c, K)$, there holds

$$
\int_{\mathbb{R}^{d}} \beta\left(f_{t}\right) d x \leq e^{C t} \int_{\mathbb{R}^{d}} \beta\left(f_{0}\right) d x, \quad \forall t \geq 0
$$

3) Prove that for any $p \in[1,2]$, for some constant $C:=C(b, c)$ and for any $f_{0} \in L^{2} \cap L^{p}$, there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define β on \mathbb{R}_{+}and extend it to \mathbb{R} by symmetry. More precisely, define $\beta_{\alpha}^{\prime \prime}(s)=2 \theta \mathbf{1}_{s \leq \alpha}+p(p-$ 1) $s^{p-2} \mathbf{1}_{s>\alpha}$, with $2 \theta=p(p-1) \alpha^{p-2}$ and then the primitives which vanish at the origin, which are thus defined by $\beta_{\alpha}^{\prime}(s)=2 \theta s \mathbf{1}_{s \leq \alpha}+\left(p s^{p-1}+p(p-2) \alpha^{p-1}\right) \mathbf{1}_{s>\alpha}, \beta_{\alpha}(s)=\theta s^{2} \mathbf{1}_{s \leq \alpha}+\left(s^{p}+p(p-2) \alpha^{p-1} s+\right.$ $\left.A \alpha^{p}\right) \mathbf{1}_{s>\alpha}, A:=p(p-1) / 2-1-p(p-2)$. Observe that $s \beta_{\alpha}^{\prime}(s) \leq 2 \beta_{\alpha}(s)$ because $s \beta_{\alpha}^{\prime \prime}(s) \leq \beta_{\alpha}^{\prime}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\left.\beta_{\alpha}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)\right)$.
4) Prove that for any $p \in[2, \infty]$ and for some constant $C:=C(a, c, p)$ there holds

$$
\|f(t)\|_{L^{p}} \leq e^{C t}\left\|f_{0}\right\|_{L^{p}}, \quad \forall t \geq 0
$$

(Hint. Define $\beta_{R}^{\prime \prime}(s)=p(p-1) s^{p-2} \mathbf{1}_{s \leq R}+2 \theta \mathbf{1}_{s>R}$, with $2 \theta=p(p-1) R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta_{R}^{\prime}(s)=p s^{p-1} \mathbf{1}_{s \leq R}+\left(p R^{p-1}+2 \theta(s-R)\right) \mathbf{1}_{s>R}$, $\beta_{R}(s)=s^{p} \mathbf{1}_{s \leq R}+\left(R^{p}+p R^{p-1}(s-R)+\theta(s-R)^{2}\right) \mathbf{1}_{s>R}$. Observe that $s \beta_{R}^{\prime}(s) \leq p \beta_{R}(s)$ because $s \beta_{R}^{\prime \prime}(s) \leq(p-1) \beta_{R}^{\prime}(s)$ and $\beta_{R}(s) \leq \beta(s)$ because $\beta_{R}^{\prime \prime}(s) \leq \beta^{\prime \prime}(s)$. Pass to the limit $p \rightarrow \infty$ in order to deal with the case $p=\infty$).
5) Prove that for any $f_{0} \in L^{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (1.3). (Hint: Consider $f_{0, n} \in L^{1} \cap L^{\infty}$ such that $f_{0, n} \rightarrow f_{0}$ in $L^{p}, 1 \leq p<\infty$, and prove that the associate variational solution $f_{n} \in X_{T}$ is a Cauchy sequence in $C\left([0, T] ; L^{p}\right)$. Conclude the proof by passing to the limit $\left.p \rightarrow \infty\right)$.
6) Prove that if $0 \leq f_{0} \in L^{p}\left(\mathbb{R}^{d}\right)$, $p \in(1, \infty)$, there exists a weak solution $f \in C\left([0, T] ; L^{p}\left(\mathbb{R}^{d}\right)\right)$ such that $f(t, \cdot) \geq 0$ for any $t \in(0, T)$.
7) Prove the existence of a weak solution to the McKean-Vlasov equation for any initial datum $f_{0} \in$ $L^{1}\left(\mathbb{R}^{d}\right)$.

Exercise 1.6. (McKean-Vlasove equation) Consider the linear parabolic equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L}_{g} f:=\Delta f+\operatorname{div}\left(a_{g} f\right), \quad f(0)=f_{0} \tag{1.4}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{g}:=a * g, \quad a \in L^{\infty}\left(\mathbb{R}^{d}\right)^{d} \tag{1.5}
\end{equation*}
$$

associated to the nonlinear McKean-Vlasov equation.

1) Defining $F:=f\langle x\rangle^{2 k}$, establish that F is a solution to the linear parabolic equation

$$
\begin{equation*}
\partial_{t} F=\mathcal{M}_{g} F:=\Delta f+\operatorname{div}\left(a_{g} f\right)+b \cdot \nabla F+c_{g} F \tag{1.6}
\end{equation*}
$$

with b and c_{g} to be determined. (Hint. $b:=-4 k x /\langle x\rangle^{2}, c_{g}:=\langle x\rangle^{2 k} \Delta\langle x\rangle^{-2 k}-a_{g} \cdot b$)
2) Establish that for any $F_{0} \in L^{2}$ and $g \in L^{\infty}\left(0, T ; L^{1}\right)$, there exists a unique variational solution $F \in X_{T}$ to the parabolic equation (1.6).
3) Establish that for $f \in L_{k}^{2}$ and $g \in L^{\infty}\left(0, T ; L^{1}\right)$, there exists a unique variational solution $f \in Y_{T}$ to the parabolic equation (1.4) with $Y_{T}=C([0, T] ; H) \cap L^{2}(0, T ; V) \cap H^{1}\left(0, T ; V^{\prime}\right), H:=L_{k}^{2}, V:=H_{k}^{1}$.

Exercise 1.7. (Aubin-Lions Lemma) Prove that in the Aubin-Lions Lemma we may assume $\left(F_{n}\right),\left(G_{n}\right)$ are bounded in $L^{1}\left((0, T) \times B_{R}\right), \forall R>0$, and obtain the same conclusion.

