November 8, 2023

Exercises about chapter 1

1. About variational solutions (Chapter 1)

Exercise 1.1. Consider $f \in L^1(\mathbb{R}^d)$ such that $\operatorname{div} f \in L^1(\mathbb{R}^d)$. Show that

$$\int_{\mathbb{R}^d} \operatorname{div} f \, dx = 0.$$

Solution or Hint for Exercise 1.1. That is true for $f \in C_c^1(\mathbb{R}^d)$. For $f \in L^1(\mathbb{R}^d)$ we introduce a mollifier (ρ_{ε}) , a truncation function χ_M and $\rho_{\varepsilon} * (f\chi_M) \in C_c^1(\mathbb{R}^d)$.

Exercise 1.2. Consider the parabolic type equation

(1.1)
$$\partial_t f = \partial_i (A_{ij} \,\partial_j f) + b_i \,\partial_i f + c f$$

with time dependent coefficients

$$A, b, c \in L^{\infty}((0,T) \times \mathbb{R}^d),$$

and under uniformly elliptic condition

(1.2)
$$\forall t \in (0,T), \ \forall x \in \mathbb{R}^d, \ \forall \xi \in \mathbb{R}^d \quad A_{ij}(t,x) \,\xi_i \xi_j \ge \alpha \, |\xi|^2, \quad \alpha > 0.$$

1) For any initial datum $f_0 \in L^2(\mathbb{R}^d)$, recover the second and generalized version of J.-L. Lions theorem about existence of variational solutions $f \in X_T$ by using the first version.

(Hint. Define

$$A_k := \frac{n}{T} \int_{t_{k-1}}^{t_k} A(t, \cdot) \, dt, \quad i = 1, \dots, n, \quad t_k := kT/n,$$

and a similar way b_k, c_k , and prove that there exists a unique variational solution $g_k \in X_{T/n}$ associated to the A_k, b_k, c_k and the initial condition g_0 when k = 1, $g_{k-1}(T/n)$ when $k \ge 2$. Build next a solution $g^n \in X_T$ to the equation (1.1) associated to the piecewise constant functions $A^n(t) = A_k$ if $t \in [t_k, t_{k+1})$, $k = 0, \ldots, n-1$, and b^n, c^n defined similarly. Conclude by passing to the limit $n \to \infty$).

2) For the above problem, show that $f \ge 0$ if $f_0 \ge 0$ and $G \ge 0$. (Hint. Show that the sequence (g_k) defined in step 2 of the proof of the existence part is such that $g_k \ge 0$ for any $k \in \mathbb{N}$).

Exercise 1.3. Consider a parabolic equation where the operator \mathcal{L} incloses a kernel term

$$\mathcal{L}f := \Delta f + b \cdot \nabla f + cf + \mathcal{K}f, \quad (\mathcal{K}f)(x) := \int_{\mathbb{R}^d} k(x, y) f(y) dy$$

with coefficients satisfying

$$b, c \in L^{\infty}(\mathbb{R}^d), \quad k \in L^2(\mathbb{R}^d \times \mathbb{R}^d).$$

and establish the existence of a variational solution in the usual X_T space.

Exercise 1.4. Consider the parabolic equation with coefficients $b \in L^{\infty} + L^d$ and $c \in L^1_{\text{loc}}$, $c_+ \in L^{\infty} + L^{d/2}$ with $d \geq 3$. Establish the existence of a variational solution in the space X_T associated to $H := L^2$ and $V := \{g \in H^1; \sqrt{c_-}g \in L^2\}$. (Hint. Observe that $f(|b|\mathbf{1}_{|b|>M} + \sqrt{c_+}\mathbf{1}_{c_+>M}) \to 0$ in L^2 when $M \to \infty$).

Exercise 1.5. For $b, c \in L^{\infty}(\mathbb{R}^d)$, $f_0 \in L^p(\mathbb{R}^d)$, $1 \le p \le \infty$, we consider the linear parabolic equation

(1.3)
$$\partial_t f = \Lambda f := \Delta f + b \cdot \nabla f + cf, \quad f(0) = f_0.$$

We introduce the usual notations $H := L^2$, $V := H^1$ and X_T the associated space for some given T > 0.

1) Consider a convex function $\beta \in C^2(\mathbb{R})$ such that $\beta(0) = \beta'(0) = 0$ and $\beta'' \in L^{\infty}$. Prove that any variational solution $f \in X_T$ to the above linear parabolic equation satisfies

$$\int_{\mathbb{R}^d} \beta(f_t) \, dx \le \int_{\mathbb{R}^d} \beta(f_0) \, dx + \int_0^t \int_{\mathbb{R}^d} \{ c f \, \beta'(f) - (\operatorname{div} b) \, \beta(f) \} \, dx ds,$$

for any $t \geq 0$.

2) Assuming moreover that $\beta \ge 0$ and there exists a constant $K \in (0, \infty)$ such that $0 \le s \beta'(s) \le K\beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant C := C(b, c, K), there holds

$$\int_{\mathbb{R}^d} \beta(f_t) \, dx \le e^{Ct} \int_{\mathbb{R}^d} \beta(f_0) \, dx, \quad \forall t \ge 0$$

3) Prove that for any $p \in [1,2]$, for some constant C := C(b,c) and for any $f_0 \in L^2 \cap L^p$, there holds

$$||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.$$

(Hint. Define β on \mathbb{R}_+ and extend it to \mathbb{R} by symmetry. More precisely, define $\beta''_{\alpha}(s) = 2\theta \mathbf{1}_{s \leq \alpha} + p(p-1)s^{p-2}\mathbf{1}_{s > \alpha}$, with $2\theta = p(p-1)\alpha^{p-2}$ and then the primitives which vanish at the origin, which are thus defined by $\beta'_{\alpha}(s) = 2\theta s \mathbf{1}_{s \leq \alpha} + (ps^{p-1} + p(p-2)\alpha^{p-1})\mathbf{1}_{s > \alpha}$, $\beta_{\alpha}(s) = \theta s^2 \mathbf{1}_{s \leq \alpha} + (s^p + p(p-2)\alpha^{p-1}s + A\alpha^p)\mathbf{1}_{s > \alpha}$, A := p(p-1)/2 - 1 - p(p-2). Observe that $s\beta'_{\alpha}(s) \leq 2\beta_{\alpha}(s)$ because $s\beta''_{\alpha}(s) \leq \beta'_{\alpha}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\beta''_{\alpha}(s) \leq \beta''(s)$).

4) Prove that for any $p \in [2, \infty]$ and for some constant C := C(a, c, p) there holds

$$||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.$$

(Hint. Define $\beta_R''(s) = p(p-1)s^{p-2}\mathbf{1}_{s\leq R} + 2\theta\mathbf{1}_{s>R}$, with $2\theta = p(p-1)R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta_R'(s) = ps^{p-1}\mathbf{1}_{s\leq R} + (pR^{p-1} + 2\theta(s-R))\mathbf{1}_{s>R}$, $\beta_R(s) = s^p\mathbf{1}_{s\leq R} + (R^p + pR^{p-1}(s-R) + \theta(s-R)^2)\mathbf{1}_{s>R}$. Observe that $s\beta_R'(s) \leq p\beta_R(s)$ because $s\beta_R''(s) \leq (p-1)\beta_R'(s)$ and $\beta_R(s) \leq \beta(s)$ because $\beta_R''(s) \leq \beta''(s)$. Pass to the limit $p \to \infty$ in order to deal with the case $p = \infty$).

5) Prove that for any $f_0 \in L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (1.3). (Hint: Consider $f_{0,n} \in L^1 \cap L^\infty$ such that $f_{0,n} \to f_0$ in L^p , $1 \leq p < \infty$, and prove that the associate variational solution $f_n \in X_T$ is a Cauchy sequence in $C([0,T]; L^p)$. Conclude the proof by passing to the limit $p \to \infty$).

6) Prove that if $0 \leq f_0 \in L^p(\mathbb{R}^d)$, $p \in (1, \infty)$, there exists a weak solution $f \in C([0, T]; L^p(\mathbb{R}^d))$ such that $f(t, \cdot) \geq 0$ for any $t \in (0, T)$.

7) Prove the existence of a weak solution to the McKean-Vlasov equation for any initial datum $f_0 \in L^1(\mathbb{R}^d)$.

Exercise 1.6. (McKean-Vlasove equation) Consider the linear parabolic equation

(1.4)
$$\partial_t f = \mathcal{L}_g f := \Delta f + \operatorname{div}(a_g f), \quad f(0) = f_0,$$

with

(1.5)
$$a_g := a * g, \quad a \in L^{\infty}(\mathbb{R}^d)^d,$$

associated to the nonlinear McKean-Vlasov equation.

1) Defining $F := f\langle x \rangle^{2k}$, establish that F is a solution to the linear parabolic equation

(1.6)
$$\partial_t F = \mathcal{M}_g F := \Delta f + \operatorname{div}(a_g f) + b \cdot \nabla F + c_g F_g$$

with b and c_g to be determined. (*Hint.* $b := -4kx/\langle x \rangle^2$, $c_g := \langle x \rangle^{2k} \Delta \langle x \rangle^{-2k} - a_g \cdot b$)

2) Establish that for any $F_0 \in L^2$ and $g \in L^{\infty}(0,T;L^1)$, there exists a unique variational solution $F \in X_T$ to the parabolic equation (1.6).

3) Establish that for $f \in L^2_k$ and $g \in L^{\infty}(0,T;L^1)$, there exists a unique variational solution $f \in Y_T$ to the parabolic equation (1.4) with $Y_T = C([0,T];H) \cap L^2(0,T;V) \cap H^1(0,T;V')$, $H := L^2_k$, $V := H^1_k$.

and obtain the same conclusion.