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Exercises about chapter 1

1. About variational solutions (Chapter 1)

Exercise 1.1. Consider f ∈ L1(Rd) such that divf ∈ L1(Rd). Show that∫
Rd

divf dx = 0.

Solution or Hint for Exercise 1.1. That is true for f ∈ C1
c (Rd). For f ∈ L1(Rd) we introduce a mollifier

(ρε), a truncation fiunction χM and ρε ∗ (fχM ) ∈ C1
c (Rd).

Exercise 1.2. Consider the parabolic type equation

(1.1) ∂tf = ∂i(Aij ∂jf) + bi ∂if + cf

with time dependent coefficients
A, b, c ∈ L∞((0, T )× Rd),

and under uniformly elliptic condition

(1.2) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd Aij(t, x) ξiξj ≥ α |ξ|2, α > 0.

1) For any initial datum f0 ∈ L2(Rd), recover the second and generalized version of J.-L. Lions theorem
about existence of variational solutions f ∈ XT by using the first version.

(Hint. Define

Ak :=
n

T

∫ tk

tk−1

A(t, ·) dt, i = 1, . . . , n, tk := kT/n,

and a similar way bk, ck, and prove that there exists a unique variational solution gk ∈ XT/n associated
to the Ak, bk, ck and the initial condition g0 when k = 1, gk−1(T/n) when k ≥ 2. Build next a solution
gn ∈ XT to the equation (1.1) associated to the piecewise constant functions An(t) = Ak if t ∈ [tk, tk+1),
k = 0, . . . , n− 1, and bn, cn defined similarly. Conclude by passing to the limit n → ∞).

2) For the above problem, show that f ≥ 0 if f0 ≥ 0 and G ≥ 0. (Hint. Show that the sequence (gk)
defined in step 2 of the proof of the existence part is such that gk ≥ 0 for any k ∈ N).

Exercise 1.3. Consider a parabolic equation where the operator L incloses a kernel term

Lf := ∆f + b · ∇f + cf +Kf, (Kf)(x) :=

∫
Rd

k(x, y)f(y)dy

with coefficients satisfying
b, c ∈ L∞(Rd), k ∈ L2(Rd × Rd).

and establish the existence of a variational solution in the usual XT space.

Exercise 1.4. Consider the parabolic equation with coefficients b ∈ L∞+Ld and c ∈ L1
loc, c+ ∈ L∞+Ld/2

with d ≥ 3. Establish the existence of a variational solution in the space XT associated to H := L2 and
V := {g ∈ H1;

√
c−g ∈ L2}. (Hint. Observe that f(|b|1|b|>M +

√
c+1c+>M ) → 0 in L2 when M → ∞).

Exercise 1.5. For b, c ∈ L∞(Rd), f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, we consider the linear parabolic equation

(1.3) ∂tf = Λf := ∆f + b · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space for some given T > 0.
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1) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞. Prove that any
variational solution f ∈ XT to the above linear parabolic equation satisfies∫

Rd

β(ft) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c f β′(f)− (div b)β(f)} dxds,

for any t ≥ 0.
2) Assuming moreover that β ≥ 0 and there exists a constant K ∈ (0,∞) such that 0 ≤ s β′(s) ≤ Kβ(s)

for any s ∈ R, deduce that for some constant C := C(b, c,K), there holds∫
Rd

β(ft) dx ≤ eCt

∫
Rd

β(f0) dx, ∀ t ≥ 0.

3) Prove that for any p ∈ [1, 2], for some constant C := C(b, c) and for any f0 ∈ L2 ∩ Lp, there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

(Hint. Define β on R+ and extend it to R by symmetry. More precisely, define β′′
α(s) = 2θ1s≤α + p(p−

1)sp−21s>α, with 2θ = p(p − 1)αp−2 and then the primitives which vanish at the origin, which are thus
defined by β′

α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) = θs21s≤α + (sp + p(p − 2)αp−1s +
Aαp)1s>α, A := p(p − 1)/2 − 1 − p(p − 2). Observe that sβ′

α(s) ≤ 2βα(s) because sβ′′
α(s) ≤ β′

α(s) and
βα(s) ≤ β(s) because β′′

α(s) ≤ β′′(s)).
4) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

(Hint. Define β′′
R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2, and then the primitives

which vanish in the origin and which are thus defined by β′
R(s) = psp−11s≤R+(pRp−1+2θ(s−R))1s>R,

βR(s) = sp1s≤R + (Rp + pRp−1(s − R) + θ(s − R)2)1s>R. Observe that sβ′
R(s) ≤ pβR(s) because

sβ′′
R(s) ≤ (p − 1)β′

R(s) and βR(s) ≤ β(s) because β′′
R(s) ≤ β′′(s). Pass to the limit p → ∞ in order to

deal with the case p = ∞).
5) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the sense of

distributions) solution to the linear parabolic equation (1.3). (Hint: Consider f0,n ∈ L1 ∩ L∞ such that
f0,n → f0 in Lp, 1 ≤ p < ∞, and prove that the associate variational solution fn ∈ XT is a Cauchy
sequence in C([0, T ];Lp). Conclude the proof by passing to the limit p → ∞).

6) Prove that if 0 ≤ f0 ∈ Lp(Rd), p ∈ (1,∞), there exists a weak solution f ∈ C([0, T ];Lp(Rd)) such
that f(t, ·) ≥ 0 for any t ∈ (0, T ).

7) Prove the existence of a weak solution to the McKean-Vlasov equation for any initial datum f0 ∈
L1(Rd).

Exercise 1.6. (McKean-Vlasove equation) Consider the linear parabolic equation

(1.4) ∂tf = Lgf := ∆f + div(agf), f(0) = f0,

with

(1.5) ag := a ∗ g, a ∈ L∞(Rd)d,

associated to the nonlinear McKean-Vlasov equation.
1) Defining F := f⟨x⟩2k, establish that F is a solution to the linear parabolic equation

(1.6) ∂tF = MgF := ∆f + div(agf) + b · ∇F + cgF,

with b and cg to be determined. (Hint. b := −4kx/⟨x⟩2, cg := ⟨x⟩2k∆⟨x⟩−2k − ag · b)
2) Establish that for any F0 ∈ L2 and g ∈ L∞(0, T ;L1), there exists a unique variational solution

F ∈ XT to the parabolic equation (1.6).
3) Establish that for f ∈ L2

k and g ∈ L∞(0, T ;L1), there exists a unique variational solution f ∈ YT

to the parabolic equation (1.4) with YT = C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′), H := L2
k, V := H1

k .
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Exercise 1.7. (Aubin-Lions Lemma) Prove that in the Aubin-Lions Lemma we may assume

(Fn), (Gn) are bounded in L1((0, T )×BR), ∀R > 0,

and obtain the same conclusion.


