An introduction to evolution PDEs November 8, 2023

Exercises about chapter 1

1. ABOUT VARIATIONAL SOLUTIONS (CHAPTER 1)

Exercise 1.1. Consider f € L'(R?) such that divf € L'(R?). Show that

/ divfdx = 0.
Rd

Solution or Hint for Ezercise 1.1. That is true for f € C}(R?). For f € L'(RY) we introduce a mollifier
(pe), a truncation fiunction yas and p. * (fxar) € CL(R?).

Exercise 1.2. Consider the parabolic type equation
(1.1) Ouf = 0i(Aij 0; ) + bi Oif +cf
with time dependent coefficients
A, b, c€ L®((0,T) x RY),
and under uniformly elliptic condition
(1.2) Vte (0,T), Ve e RY, VEE R Ay(t,2) &6 > alé’, a>0.

1) For any initial datum fy € L?(R?), recover the second and generalized version of J.-L. Lions theorem
about existence of variational solutions f € Xp by using the first version.

(Hint. Define
tr

Ay = & At,)dt, i=1,...,n, tp:=kT/n,
T te—1

and a similar way by, c, and prove that there exists a unique variational solution gy € X, associated
to the Ay, by, ¢, and the initial condition go when k = 1, gi_1(T/n) when k > 2. Build next a solution
g™ € Xr to the equation (1.1) associated to the piecewise constant functions A™(t) = Ay if t € [tg, ti+1),
k=0,...,n—1, and b", " defined similarly. Conclude by passing to the limit n — o).

2) For the above problem, show that f > 0 if fy > 0 and G > 0. (Hint. Show that the sequence (g)
defined in step 2 of the proof of the existence part is such that g, > 0 for any k € N).

Exercise 1.3. Consider a parabolic equation where the operator £ incloses a kernel term

Lf = Af+b-Vi+ef +Kf (K@) = /]R k(2. y) F(y)dy
with coefficients satisfying
b,ce L®RY), ke L*(R? x RY).

and establish the existence of a variational solution in the usual X1 space.

Exercise 1.4. Consider the parabolic equation with coefficients b € L4 L% and ¢ € L\ _, ¢4 € L>®4L%/?

loc?
with d > 3. Establish the existence of a variational solution in the space X7 associated to H := L? and

V:={ge H'; \Jc_g € L*}. (Hint. Observe that f(|b|1yj>n + \/cx1c,>n) — 0 in L? when M — o).
Exercise 1.5. For b,c € L>®(R?), fo € LP(R?%), 1 < p < oo, we consider the linear parabolic equation
(1.3) of=Af=Af+b-Vf+cf, f(O)=fo

We introduce the usual notations H := L?, V := H' and Xr the associated space for some given T > 0.
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1) Consider a convex function 3 € C%(R) such that 5(0) = 5/(0) = 0 and 8" € L*°. Prove that any
variational solution f € Xp to the above linear parabolic equation satisfies

/Rd Blfe) do < /]R Blfo) de + / /R {ef B(f) — (dive) B(f)} duds,

for any t > 0.

2) Assuming moreover that 8 > 0 and there exists a constant K € (0, c0) such that 0 < s 8'(s) < Kj3(s)
for any s € R, deduce that for some constant C := C(b, ¢, K), there holds

B(f,) dx < eCt/ B(fo)dz, Yt>O0.
R4 Rd

3) Prove that for any p € [1,2], for some constant C := C(b,¢) and for any fy € L? N LP, there holds
1F@)lze < el follzr, VE=>0.

(Hint. Define 8 on Ry and extend it to R by symmetry. More precisely, define 8/(s) = 201,< + p(p —
1)sP72145,, with 20 = p(p — 1)aP~2 and then the primitives which vanish at the origin, which are thus
defined by 3, (s) = 20sls<q + (psP™' + p(p — 2)aP )10, Bals) = 05*1s<q + (sP + p(p — 2)aP~ s +
AaP)lesq, A =plp—1)/2 —1—p(p — 2). Observe that sf. (s) < 25,(s) because spl(s) < B.,(s) and
Ba(s) < Bls) because (s) < B(5)).

4) Prove that for any p € [2, 00] and for some constant C := C(a, ¢, p) there holds
1F@)llze < el follLe, ¥t20.

(Hint. Define B%(s) = p(p — 1)sP"215<p + 2014- g, with 20 = p(p — 1)RP~2, and then the primitives
which vanish in the origin and which are thus defined by 8%(s) = psP ' 1,<r + (pRP~! +20(s — R)) 14> g,
Br(s) = sPls<r + (R? + pRP™(s — R) 4+ 0(s — R)*)15-p. Observe that sBx(s) < pBr(s) because
sB%(s) < (p— 1)BR(s) and Br(s) < B(s) because B%(s) < B”(s). Pass to the limit p — oo in order to
deal with the case p = 00).

5) Prove that for any fy € LP(R?), 1 < p < oo, there exists at least one weak (in the sense of
distributions) solution to the linear parabolic equation (1.3). (Hint: Consider fo, € L' N L* such that
fon = foin LP,; 1 < p < oo, and prove that the associate variational solution f,, € Xp is a Cauchy
sequence in C([0,T]; L?). Conclude the proof by passing to the limit p — 00).

6) Prove that if 0 < fo € LP(R?), p € (1, 00), there exists a weak solution f € C([0,T]; LP(R)) such
that f(t,-) >0 for any ¢ € (0,T).

7) Prove the existence of a weak solution to the McKean-Vlasov equation for any initial datum fy €
LY(RY).

Exercise 1.6. (McKean-Vlasove equation) Consider the linear parabolic equation

(1.4) Onf = Lyf = Af +div(agf), f(0) = fo,
with
(1.5) ag:=axg, a€c LR

associated to the nonlinear McKean-Vlasov equation.

1) Defining F := f(x)2*, establish that F is a solution to the linear parabolic equation
(1.6) O F = MyF = Af +div(agf) +b- VF 4 ¢,F,
with b and ¢, to be determined. (Hint. b:= —4kz/{z)?, ¢, := (2)**Alz)~2* —a, - b)

2) Establish that for any Fy € L? and g € L*(0,T; L"), there exists a unique variational solution
F € X7 to the parabolic equation (1.6).

3) Establish that for f € L? and g € L>(0,T; L"), there exists a unique variational solution f € Yp
to the parabolic equation (1.4) with Y7 = C([0,7]; H) N L*(0,T; V)N HY(0,T; V'), H :== L2, V := H}.



Exercise 1.7. (Aubin-Lions Lemma) Prove that in the Aubin-Lions Lemma we may assume
(Fy), (Gp) are bounded in L'((0,T) x Bg), VR > 0,

and obtain the same conclusion.



