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Sheet of exercises 3 about chapters 1, 2, 3 & 4

1. Lebesgue spaces

Exercise 1.1. Consider two sequences (un) in L1(E), (vn) in L∞(E).

(1) Asume un → u strongly in L1(E), vn → u a.e. in E and uniformly bounded. Prove that unvn → uv
strongly in L1(E).

Hint. Use the reciprocal version of the dominated convergence theorem.

(2) Asume un⇀u weakly in L1(E), vn → u a.e. in E and uniformly bounded. Prove that unvn → uv
strongly in L1(E),

Hint. Use the Egorov theorem and (1).

Exercise 1.2. Consider u such that u ∈ Lp for any p ∈ (1,∞).

(1) If supp>1 ∥u∥Lp < ∞, prove that u ∈ L1 and ∥u∥L1 ≤ lim inf ∥u∥Lp in the limit p → 1.

(1) If supp<∞ ∥u∥Lp < ∞, prove that u ∈ L∞ and ∥u∥L∞ ≤ lim sup ∥u∥Lp in the limit p → ∞.

2. Variational solutions (Chapter 1)

Exercise 2.1. Let T > 0 be fixed. For a.e. t ∈ [0, T ], we are given a bilinear form a(t; ·, ·) : V × V → R
such that for some constants α,M > 0, κ ∈ R

(i) For every f, g ∈ V the function t 7→ a(t; f, g) is measurable;
(ii) |a(t; f, g)| ≤ M∥f∥∥g∥ for a.e. t ∈ [0, T ], for any f, g ∈ V ;
(iii) a(t; f, f) ≥ α∥f∥2 − κ|f |2 for a.e. t ∈ [0, T ], for any f ∈ V .

Establish that for any F ∈ L2(0, T ;V ′) and f0 ∈ H, there exists a unique function f ∈ XT such that〈 d

dt
f, g

〉
+ a(t; f, g) = ⟨F, g⟩, a.e. on [0, T ]

and f(0) = f0.

Hint. For f ∈ H := L2(0, T ;V ) and φ ∈ Φ := C2([0, T );V ), define

E (f, φ) :=

∫ T

0

{a(t, f, g) + κ(f, g)H − ⟨f, g′⟩}dt, ℓ(φ) :=

∫ T

0

⟨Fκ, φ⟩dt+ (φ(0), f0)H ,

with Fκ := Fe−κt, and apply the generalized version of the Lax-Milgram theorem.
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3. The Poincaré inequality (Chapter 3)

Exercise 3.1. Establish that exists a function W such that W ≥ 1 and there exist some constants
θ > 0, b, R ≥ 0 such that

(3.1) (L∗W )(x) := ∆W (x)−∇V · ∇W (x) ≤ −θW (x) + b1BR
(x), ∀x ∈ Rd,

where BR = B(0, R) denotes the centered ball of radius R, in the following situations:
(i) V (x) := ⟨x⟩α with α ≥ 1;
(ii) there exist α > 0 and R ≥ 0 such that

x · ∇V (x) ≥ α ∀x /∈ BR;

(iii) there exist a ∈ (0, 1), c > 0 and R ≥ 0 such that

a |∇V (x)|2 −∆V (x) ≥ c ∀x /∈ BR;

(iv) V is convex (or it is a compact supported perturbation of a convex function) and satisfies e−V ∈
L1(Rd).

Exercise 3.2. Generalize the Poincaré inequality to a general superlinear potential V (x) = ⟨x⟩α/α+V0,
α ≥ 1, in the following strong (weighted) formulation∫

|∇g|2 G ≥ κ

∫
|g − ⟨g⟩G |2 (1 + |∇V |2)G ∀ g ∈ D(Rd),

where we have defined G := e−V ∈ P(Rd) (for an appropriate choice of V0 ∈ R).

4. Transport equation (Chapter 4)

Exercise 4.1. Make explicit the construction and formulas in the three following cases:
(1) a(x) = a ∈ Rd is a constant vector. (Hint. One must find f(t, x) = f0(x− at)).
(2) a(x) = x. (Hint. One must find f(t, x) = f0(e

−tx)).
(3) a(x, v) = v, f0 = f0(x, v) ∈ C1(Rd ×Rd) and look for a solution f = f(t, x, v) ∈ C1((0,∞)×Rd ×

Rd). (Hint. One must find f(t, x, v) = f0(x− vt, v)).
(4) Assume that a = a(x) and prove that (St) is a group on C(Rd), where

(4.1) ∀ f0 ∈ C(Rd), ∀ t ∈ R, ∀x ∈ Rd (Stf0)(x) = f(t, x) := f0(Φ
−1
t (x)).

Exercise 4.2. We consider the ODE

(4.2) ẋ(t) = a(t, x(t)), x(s) = x ∈ Rd, s ≥ 0,

associated to a vector field a : R+ × Rd → Rd which is C1 and satisfies the globally Lipschitz estimate

(4.3) |a(t, x)− a(t, y)| ≤ L |x− y|, ∀ t ≥ 0, x, y ∈ Rd,

for some constant L ∈ (0,∞). From the Cauchy-Lipschitz theorem we know that this one admits a
unique solution t 7→ x(t) = Φt,s(x) ∈ C1(R+;Rd). Moreover, for any s, t ≥ 0, the vectors valued
function Φt,s : Rd → Rd is a C1-diffeomorphism which satisfies the semigroup properties Φ0,0 = Id,
Φt3,t2 ◦ Φt2,t1 = Φt3,t1 for any t3, t2, t1 ≥ 0. We denote Φt = Φt,0.

1) Establish that |Φt(y)−Φt(x)| ≤ eLt|x− y| for any t ≥ 0, x, y ∈ Rd (Hint. Use the Gronwall lemma)
and similarly |Φt(y) − Φt(x)| ≥ e−Lt|x − y| for any t ≥ 0, x, y ∈ Rd. Deduce that ∥DΦt∥∞ ≤ eLt and
∥(detDΦ−1

t )−1∥∞ ≤ eLt.
2) Establish that |Φt(x)| ≤ (|x| + B(t))etL, with B(t) :=

∫ t

0
|a(s, 0)| ds, for any t ≥ 0, x ∈ Rd, and

similarly |Φ−1
t (x)| ≤ (|x|+B(t))etL, for any t ≥ 0, x ∈ Rd.

3) Prove that for any R > 0, there exists Rt such that Φt(BR) ⊂ BRt and deduce that if supp f0 ⊂ BR

then the function f(t, x) := f0(Φ
−1
t (x)) is such that supp f(t, ·) ⊂ BRt . (Hint. Observe that BR ⊂

Φ−1
t (BRt)).
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Solution or Hint for Exercise 4.2. 1) Using (4.3), we have

−2L|yt − xt|2 ≤ 2(a(yt)− a(xt)) · (yt − xt) =
d

dt
|yt − xt|2 ≤ 2L|yt − xt|2

from what we deduce

e−L(t−s)|xs − ys|2 ≤ |xt − yt|2 ≤ eL(t−s)|xs − ys|2, ∀ s, t ∈ (0, T ), s < t.

We deduce the two first estimates.
We next write DΦt(x)h := lims→0(Φt(x+ sh)− Φt(x))/s and we deduce the third estimate from the

first one.
We finally write detDΦ−1

t detDΦt = 1, so that (detDΦ−1
t )−1 = detDΦt and we bound the last term.

2) Write xt := Φt(x) and use the Gronwall lemma applied to the inequality

|xt| ≤ |x|+
∫ t

0

|a(s, xs)− a(s, 0)| ds+
∫ t

0

|a(s, 0)| ds ≤ |x|+ L

∫ t

0

|xs| ds+B(t).

For the second estimate, we consider the backward problem. With the same notations, we have

|xs| ≤ |xt|+
∫ t

s

L|xτ |dτ +

∫ t

s

|a(τ, 0)|dτ = u(s).

We compute

u′(s) = −L|xs| − |a(s, 0)| ≥ −Lu(s)− |a(s, 0)| and
d

ds

(
u(s)eLs

)
≥ −|a(s, 0)|eLs,

so that

x0 = u(0) ≤ u(t)eLt +

∫ t

0

|a(s, 0)|eLs ds ≤ (|xt|+B(t))etL.

3) We observe successively that Φ−1
t (BR) ⊂ BRt

, BR ⊂ Φ−1
t (BRt

) and Φ−1
t (Bc

Rt
) ⊂ Bc

R.

Exercise 4.3. (1) Show that for any characteristics solution f to the transport equation associated to an
initial datum f0 ∈ C1

c (Rd), for any times T > 0 and radius R, there exists some constants CT , RT ∈ (0,∞)
such that

sup
t∈[0,T ]

∫
BR

|f(t, x)| dx ≤ CT

∫
BRT

|f0(x)| dx.

(Hint. Use the change of variable x 7→ y := Φ−1
t (x) in the characteristics formulation of the solution to

the transport equation and use the property of finite speed propagation)
(2) Adapt the proof of existence and uniqueness to the case f0 ∈ L∞.
(Hint. For the existence, use (1) and the L∞ a priori estimate. For the uniqueness, observe that for

the equation

(4.4) ∂tf + a · ∇f + c f = G, f(0) = f0,

with a = a(t, x), c = c(t, x) and G = G(t, x) smooth functions, the solution is given through the explicit
formula

(4.5) f(t, x) := f0(Φ0,t(x)) e
−

∫ t
0
c(τ,Φτ,t(x)) dτ +

∫ t

0

G(s,Φs,t(x)) e
−

∫ t
s
c(τ,Φτ,t(x)) dτ ds.

and use a duality argument).
(3) Prove that for any f0 ∈ C0(Rd) there exists a global weak solution f to the transport equation

which furthermore satisfies f ∈ C([0, T ];C0(Rd)).

Solution or Hint for Exercise 4.3. We consider the transport equation

(4.6) ∂tf + a · ∇f + c f = G, f(0) = f0,
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with a = a(t, x), c = c(t, x) and G = G(t, x) smooth functions. With the usual notations for the flow
associated to the associated ODE (4.2), if a smooth solution f to the transport equation does exist, we
must have

d

dt

[
f(t,Φt(x)) e

∫ t
0
c(s,Φs(x)) ds

]
= G(t,Φt(x)) e

∫ t
0
c(s,Φs(x)) ds,

from which we deduce

f(t,Φt(x)) = f0(x) e
−

∫ t
0
c(τ,Φτ (x)) dτ +

∫ t

0

G(s,Φs(x)) e
−

∫ t
s
c(τ,Φτ (x)) dτ ds.

Using that Φ−1
t = Φ0,t and the semigroup property of Φs,t, we conclude.

Exercise 4.4. Consider a solution g ∈ C([0, T ];Lp(Rd)), 1 ≤ p < ∞, to the transport equation. Prove
that g(t, .) ≥ 0 for any t ≥ 0 if If g0 ≥ 0.

Exercise 4.5. Consider the relaxation equation

∂tf + v · ∇xf = M(v)ρf − f

on the function f = f(t, x, v), t ≥ 0, x, v ∈ Rd, where we denote

ρf :=

∫
Rd

f dv, M(v) := (2π)−d/2 exp(−|v|2/2).

Prove the existence and uniqueness of a solution f ∈ C(R+;L
1(Rd × Rd)) to the relaxation equation for

any initial datum f0 ∈ L1(Rd × Rd).

Exercise 4.6. 1) Consider the transport equation with boundary condition

(4.7)
{

∂tf + ∂xf + af = 0
f(t, 0) = b(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0. Assume a ∈ L∞(R+), f0 ∈ L1(R+) and b ∈ L1([0, T ]).
(a) Establish the a priori estimate

sup
[0,T ]

∥f(t, ·)∥L1 ≤ (∥b∥L1(0,T ) + ∥f0∥L1)et∥a∥L∞ , ∀ t ≥ 0.

(Hint. Use the Gronwall lemma).
(b) When f0 ∈ C1

c (]0,∞[) and b ∈ C1
c (]0, T [), show that the characteristics method provides a unique

smooth solution f given by f = f̄ , with

f̄(t, x) := eA(x−t)−A(x)f0(x− t)1x>t + e−A(x)b(t− x)1t>x, A(x) :=

∫ x

0

a(u) du.

(Hint. When f ∈ C1([0, T ]× R+), observe that both
d

dt
(eA(t+x)f(t, t+ x)) = 0,

d

dx
(eA(x)f(t+ x, x)) = 0, A(x) :=

∫ x

0

a(u) du,

and then f = f̄ . Also observe that f̄ ∈ C1([0, T ]× R+) in that case and conclude).
(c) Establish the existence and uniqueness of a weak solution f ∈ C([0, T ];L1(R+)) to equation (4.7).

(Hint. For the existence use an approximation argument. For the uniqueness use a renormalization or a
duality technique).

2) Consider the renewal equation

(4.8)
{

∂tf + ∂xf + af = 0
f(t, 0) = ρf(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, and

ρg :=

∫ ∞

0

g(y) a(y) dy.

Assume a ∈ L∞(R+). Establish that there exists a unique weak solution f ∈ C([0, T ];L1(R+)) associated
to equation (4.8) for any f0 ∈ L1(R+). (Hint. Use the contraction mapping fixed point theorem).


