## Sheet of exercises 3 about chapters 1, 2, $3 \& 4$

## 1. Lebesgue spaces

Exercise 1.1. Consider two sequences $\left(u_{n}\right)$ in $L^{1}(E),\left(v_{n}\right)$ in $L^{\infty}(E)$.
(1) Asume $u_{n} \rightarrow u$ strongly in $L^{1}(E), v_{n} \rightarrow u$ a.e. in $E$ and uniformly bounded. Prove that $u_{n} v_{n} \rightarrow u v$ strongly in $L^{1}(E)$.

Hint. Use the reciprocal version of the dominated convergence theorem.
(2) Asume $u_{n} \rightharpoonup u$ weakly in $L^{1}(E), v_{n} \rightarrow u$ a.e. in $E$ and uniformly bounded. Prove that $u_{n} v_{n} \rightarrow u v$ strongly in $L^{1}(E)$,

Hint. Use the Egorov theorem and (1).

Exercise 1.2. Consider $u$ such that $u \in L^{p}$ for any $p \in(1, \infty)$.
(1) If $\sup _{p>1}\|u\|_{L^{p}}<\infty$, prove that $u \in L^{1}$ and $\|u\|_{L^{1}} \leq \lim \inf \|u\|_{L^{p}}$ in the limit $p \rightarrow 1$.
(1) If $\sup _{p<\infty}\|u\|_{L^{p}}<\infty$, prove that $u \in L^{\infty}$ and $\|u\|_{L^{\infty}} \leq \lim \sup \|u\|_{L^{p}}$ in the limit $p \rightarrow \infty$.

## 2. Variational solutions (Chapter 1)

Exercise 2.1. Let $T>0$ be fixed. For a.e. $t \in[0, T]$, we are given a bilinear form $a(t ; \cdot, \cdot): V \times V \rightarrow \mathbb{R}$ such that for some constants $\alpha, M>0, \kappa \in \mathbb{R}$
(i) For every $f, g \in V$ the function $t \mapsto a(t ; f, g)$ is measurable;
(ii) $|a(t ; f, g)| \leq M\|f\|\|g\|$ for a.e. $t \in[0, T]$, for any $f, g \in V$;
(iii) $a(t ; f, f) \geq \alpha\|f\|^{2}-\kappa|f|^{2}$ for a.e. $t \in[0, T]$, for any $f \in V$.

Establish that for any $\mathfrak{F} \in L^{2}\left(0, T ; V^{\prime}\right)$ and $f_{0} \in H$, there exists a unique function $f \in X_{T}$ such that

$$
\left\langle\frac{d}{d t} f, g\right\rangle+a(t ; f, g)=\langle\mathfrak{F}, g\rangle, \text { a.e. on }[0, T]
$$

and $f(0)=f_{0}$.
Hint. For $f \in \mathscr{H}:=L^{2}(0, T ; V)$ and $\varphi \in \Phi:=C^{2}([0, T) ; V)$, define

$$
\mathscr{E}(f, \varphi):=\int_{0}^{T}\left\{a(t, f, g)+\kappa(f, g)_{H}-\left\langle f, g^{\prime}\right\rangle\right\} d t, \quad \ell(\varphi):=\int_{0}^{T}\left\langle\mathfrak{F}_{\kappa}, \varphi\right\rangle d t+\left(\varphi(0), f_{0}\right)_{H}
$$

with $\mathfrak{F}_{\kappa}:=\mathfrak{F} e^{-\kappa t}$, and apply the generalized version of the Lax-Milgram theorem.

## 3. The Poincaré inequality (Chapter 3)

Exercise 3.1. Establish that exists a function $W$ such that $W \geq 1$ and there exist some constants $\theta>0, b, R \geq 0$ such that

$$
\begin{equation*}
\left(L^{*} W\right)(x):=\Delta W(x)-\nabla V \cdot \nabla W(x) \leq-\theta W(x)+b \mathbf{1}_{B_{R}}(x), \quad \forall x \in \mathbb{R}^{d} \tag{3.1}
\end{equation*}
$$

where $B_{R}=B(0, R)$ denotes the centered ball of radius $R$, in the following situations:
(i) $V(x):=\langle x\rangle^{\alpha}$ with $\alpha \geq 1$;
(ii) there exist $\alpha>0$ and $R \geq 0$ such that

$$
x \cdot \nabla V(x) \geq \alpha \quad \forall x \notin B_{R}
$$

(iii) there exist $a \in(0,1), c>0$ and $R \geq 0$ such that

$$
a|\nabla V(x)|^{2}-\Delta V(x) \geq c \quad \forall x \notin B_{R}
$$

(iv) $V$ is convex (or it is a compact supported perturbation of a convex function) and satisfies $e^{-V} \in$ $L^{1}\left(\mathbb{R}^{d}\right)$.

Exercise 3.2. Generalize the Poincaré inequality to a general superlinear potential $V(x)=\langle x\rangle^{\alpha} / \alpha+V_{0}$, $\alpha \geq 1$, in the following strong (weighted) formulation

$$
\int|\nabla g|^{2} \mathcal{G} \geq \kappa \int\left|g-\langle g\rangle_{\mathcal{G}}\right|^{2}\left(1+|\nabla V|^{2}\right) \mathcal{G} \quad \forall g \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

where we have defined $\mathcal{G}:=e^{-V} \in \mathbf{P}\left(\mathbb{R}^{d}\right)$ (for an appropriate choice of $V_{0} \in \mathbb{R}$ ).

## 4. Transport EQuation (Chapter 4)

Exercise 4.1. Make explicit the construction and formulas in the three following cases:
(1) $a(x)=a \in \mathbb{R}^{d}$ is a constant vector. (Hint. One must find $f(t, x)=f_{0}(x-a t)$ ).
(2) $a(x)=x$. (Hint. One must find $f(t, x)=f_{0}\left(e^{-t} x\right)$ ).
(3) $a(x, v)=v, f_{0}=f_{0}(x, v) \in C^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and look for a solution $f=f(t, x, v) \in C^{1}\left((0, \infty) \times \mathbb{R}^{d} \times\right.$
$\left.\mathbb{R}^{d}\right)$. (Hint. One must find $f(t, x, v)=f_{0}(x-v t, v)$ ).
(4) Assume that $a=a(x)$ and prove that $\left(S_{t}\right)$ is a group on $C\left(\mathbb{R}^{d}\right)$, where

$$
\begin{equation*}
\forall f_{0} \in C\left(\mathbb{R}^{d}\right), \forall t \in \mathbb{R}, \forall x \in \mathbb{R}^{d} \quad\left(S_{t} f_{0}\right)(x)=f(t, x):=f_{0}\left(\Phi_{t}^{-1}(x)\right) \tag{4.1}
\end{equation*}
$$

Exercise 4.2. We consider the ODE

$$
\begin{equation*}
\dot{x}(t)=a(t, x(t)), \quad x(s)=x \in \mathbb{R}^{d}, \quad s \geq 0 \tag{4.2}
\end{equation*}
$$

associated to a vector field $a: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ which is $C^{1}$ and satisfies the globally Lipschitz estimate

$$
\begin{equation*}
|a(t, x)-a(t, y)| \leq L|x-y|, \quad \forall t \geq 0, x, y \in \mathbb{R}^{d} \tag{4.3}
\end{equation*}
$$

for some constant $L \in(0, \infty)$. From the Cauchy-Lipschitz theorem we know that this one admits a unique solution $t \mapsto x(t)=\Phi_{t, s}(x) \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$. Moreover, for any $s, t \geq 0$, the vectors valued function $\Phi_{t, s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a $C^{1}$-diffeomorphism which satisfies the semigroup properties $\Phi_{0,0}=\mathrm{Id}$, $\Phi_{t_{3}, t_{2}} \circ \Phi_{t_{2}, t_{1}}=\Phi_{t_{3}, t_{1}}$ for any $t_{3}, t_{2}, t_{1} \geq 0$. We denote $\Phi_{t}=\Phi_{t, 0}$.

1) Establish that $\left|\Phi_{t}(y)-\Phi_{t}(x)\right| \leq e^{L t}|x-y|$ for any $t \geq 0, x, y \in \mathbb{R}^{d}$ (Hint. Use the Gronwall lemma) and similarly $\left|\Phi_{t}(y)-\Phi_{t}(x)\right| \geq e^{-L t}|x-y|$ for any $t \geq 0, x, y \in \mathbb{R}^{d}$. Deduce that $\left\|D \Phi_{t}\right\|_{\infty} \leq e^{L t}$ and $\left\|\left(\operatorname{det} D \Phi_{t}^{-1}\right)^{-1}\right\|_{\infty} \leq e^{L t}$.
2) Establish that $\left|\Phi_{t}(x)\right| \leq(|x|+B(t)) e^{t L}$, with $B(t):=\int_{0}^{t}|a(s, 0)| d s$, for any $t \geq 0, x \in \mathbb{R}^{d}$, and similarly $\left|\Phi_{t}^{-1}(x)\right| \leq(|x|+B(t)) e^{t L}$, for any $t \geq 0, x \in \mathbb{R}^{d}$.
3) Prove that for any $R>0$, there exists $R_{t}$ such that $\Phi_{t}\left(B_{R}\right) \subset B_{R_{t}}$ and deduce that if supp $f_{0} \subset B_{R}$ then the function $f(t, x):=f_{0}\left(\Phi_{t}^{-1}(x)\right)$ is such that $\operatorname{supp} f(t, \cdot) \subset B_{R_{t}}$. (Hint. Observe that $B_{R} \subset$ $\left.\Phi_{t}^{-1}\left(B_{R_{t}}\right)\right)$.

Solution or Hint for Exercise 4.2. 1) Using (4.3), we have

$$
-2 L\left|y_{t}-x_{t}\right|^{2} \leq 2\left(a\left(y_{t}\right)-a\left(x_{t}\right)\right) \cdot\left(y_{t}-x_{t}\right)=\frac{d}{d t}\left|y_{t}-x_{t}\right|^{2} \leq 2 L\left|y_{t}-x_{t}\right|^{2}
$$

from what we deduce

$$
e^{-L(t-s)}\left|x_{s}-y_{s}\right|^{2} \leq\left|x_{t}-y_{t}\right|^{2} \leq e^{L(t-s)}\left|x_{s}-y_{s}\right|^{2}, \quad \forall s, t \in(0, T), s<t
$$

We deduce the two first estimates.
We next write $D \Phi_{t}(x) h:=\lim _{s \rightarrow 0}\left(\Phi_{t}(x+s h)-\Phi_{t}(x)\right) / s$ and we deduce the third estimate from the first one.

We finally write $\operatorname{det} D \Phi_{t}^{-1} \operatorname{det} D \Phi_{t}=1$, so that $\left(\operatorname{det} D \Phi_{t}^{-1}\right)^{-1}=\operatorname{det} D \Phi_{t}$ and we bound the last term.
2) Write $x_{t}:=\Phi_{t}(x)$ and use the Gronwall lemma applied to the inequality

$$
\left|x_{t}\right| \leq|x|+\int_{0}^{t}\left|a\left(s, x_{s}\right)-a(s, 0)\right| d s+\int_{0}^{t}|a(s, 0)| d s \leq|x|+L \int_{0}^{t}\left|x_{s}\right| d s+B(t)
$$

For the second estimate, we consider the backward problem. With the same notations, we have

$$
\left|x_{s}\right| \leq\left|x_{t}\right|+\int_{s}^{t} L\left|x_{\tau}\right| d \tau+\int_{s}^{t}|a(\tau, 0)| d \tau=u(s)
$$

We compute

$$
u^{\prime}(s)=-L\left|x_{s}\right|-|a(s, 0)| \geq-L u(s)-|a(s, 0)| \text { and } \frac{d}{d s}\left(u(s) e^{L s}\right) \geq-|a(s, 0)| e^{L s}
$$

so that

$$
x_{0}=u(0) \leq u(t) e^{L t}+\int_{0}^{t}|a(s, 0)| e^{L s} d s \leq\left(\left|x_{t}\right|+B(t)\right) e^{t L}
$$

3) We observe successively that $\Phi_{t}^{-1}\left(B_{R}\right) \subset B_{R_{t}}, B_{R} \subset \Phi_{t}^{-1}\left(B_{R_{t}}\right)$ and $\Phi_{t}^{-1}\left(B_{R_{t}}^{c}\right) \subset B_{R}^{c}$.

Exercise 4.3. (1) Show that for any characteristics solution $f$ to the transport equation associated to an initial datum $f_{0} \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, for any times $T>0$ and radius $R$, there exists some constants $C_{T}, R_{T} \in(0, \infty)$ such that

$$
\sup _{t \in[0, T]} \int_{B_{R}}|f(t, x)| d x \leq C_{T} \int_{B_{R_{T}}}\left|f_{0}(x)\right| d x
$$

(Hint. Use the change of variable $x \mapsto y:=\Phi_{t}^{-1}(x)$ in the characteristics formulation of the solution to the transport equation and use the property of finite speed propagation)
(2) Adapt the proof of existence and uniqueness to the case $f_{0} \in L^{\infty}$.
(Hint. For the existence, use (1) and the $L^{\infty}$ a priori estimate. For the uniqueness, observe that for the equation

$$
\begin{equation*}
\partial_{t} f+a \cdot \nabla f+c f=G, \quad f(0)=f_{0} \tag{4.4}
\end{equation*}
$$

with $a=a(t, x), c=c(t, x)$ and $G=G(t, x)$ smooth functions, the solution is given through the explicit formula

$$
\begin{equation*}
f(t, x):=f_{0}\left(\Phi_{0, t}(x)\right) e^{-\int_{0}^{t} c\left(\tau, \Phi_{\tau, t}(x)\right) d \tau}+\int_{0}^{t} G\left(s, \Phi_{s, t}(x)\right) e^{-\int_{s}^{t} c\left(\tau, \Phi_{\tau, t}(x)\right) d \tau} d s \tag{4.5}
\end{equation*}
$$

and use a duality argument).
(3) Prove that for any $f_{0} \in C_{0}\left(\mathbb{R}^{d}\right)$ there exists a global weak solution $f$ to the transport equation which furthermore satisfies $f \in C\left([0, T] ; C_{0}\left(\mathbb{R}^{d}\right)\right)$.

Solution or Hint for Exercise 4.3. We consider the transport equation

$$
\begin{equation*}
\partial_{t} f+a \cdot \nabla f+c f=G, \quad f(0)=f_{0} \tag{4.6}
\end{equation*}
$$

with $a=a(t, x), c=c(t, x)$ and $G=G(t, x)$ smooth functions. With the usual notations for the flow associated to the associated ODE (4.2), if a smooth solution $f$ to the transport equation does exist, we must have

$$
\frac{d}{d t}\left[f\left(t, \Phi_{t}(x)\right) e^{\int_{0}^{t} c\left(s, \Phi_{s}(x)\right) d s}\right]=G\left(t, \Phi_{t}(x)\right) e^{\int_{0}^{t} c\left(s, \Phi_{s}(x)\right) d s}
$$

from which we deduce

$$
f\left(t, \Phi_{t}(x)\right)=f_{0}(x) e^{-\int_{0}^{t} c\left(\tau, \Phi_{\tau}(x)\right) d \tau}+\int_{0}^{t} G\left(s, \Phi_{s}(x)\right) e^{-\int_{s}^{t} c\left(\tau, \Phi_{\tau}(x)\right) d \tau} d s
$$

Using that $\Phi_{t}^{-1}=\Phi_{0, t}$ and the semigroup property of $\Phi_{s, t}$, we conclude.
Exercise 4.4. Consider a solution $g \in C\left([0, T] ; L^{p}\left(\mathbb{R}^{d}\right)\right), 1 \leq p<\infty$, to the transport equation. Prove that $g(t,) \geq$.0 for any $t \geq 0$ if If $g_{0} \geq 0$.

Exercise 4.5. Consider the relaxation equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=M(v) \rho_{f}-f
$$

on the function $f=f(t, x, v), t \geq 0, x, v \in \mathbb{R}^{d}$, where we denote

$$
\rho_{f}:=\int_{\mathbb{R}^{d}} f d v, \quad M(v):=(2 \pi)^{-d / 2} \exp \left(-|v|^{2} / 2\right)
$$

Prove the existence and uniqueness of a solution $f \in C\left(\mathbb{R}_{+} ; L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)\right)$ to the relaxation equation for any initial datum $f_{0} \in L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

Exercise 4.6. 1) Consider the transport equation with boundary condition

$$
\left\{\begin{array}{l}
\partial_{t} f+\partial_{x} f+a f=0  \tag{4.7}\\
f(t, 0)=b(t), \quad f(0, x)=f_{0}(x)
\end{array}\right.
$$

where $f=f(t, x), t \geq 0, x \geq 0$. Assume $a \in L^{\infty}\left(\mathbb{R}_{+}\right), f_{0} \in L^{1}\left(\mathbb{R}_{+}\right)$and $b \in L^{1}([0, T])$.
(a) Establish the a priori estimate

$$
\sup _{[0, T]}\|f(t, \cdot)\|_{L^{1}} \leq\left(\|b\|_{L^{1}(0, T)}+\left\|f_{0}\right\|_{L^{1}}\right) e^{t\|a\|_{L^{\infty}}}, \quad \forall t \geq 0 .
$$

(Hint. Use the Gronwall lemma).
(b) When $f_{0} \in C_{c}^{1}(] 0, \infty[)$ and $b \in C_{c}^{1}(] 0, T[)$, show that the characteristics method provides a unique smooth solution $f$ given by $f=\bar{f}$, with

$$
\bar{f}(t, x):=e^{A(x-t)-A(x)} f_{0}(x-t) \mathbf{1}_{x>t}+e^{-A(x)} b(t-x) \mathbf{1}_{t>x}, \quad A(x):=\int_{0}^{x} a(u) d u
$$

(Hint. When $f \in C^{1}\left([0, T] \times \mathbb{R}_{+}\right)$, observe that both

$$
\frac{d}{d t}\left(e^{A(t+x)} f(t, t+x)\right)=0, \quad \frac{d}{d x}\left(e^{A(x)} f(t+x, x)\right)=0, \quad A(x):=\int_{0}^{x} a(u) d u
$$

and then $f=\bar{f}$. Also observe that $\bar{f} \in C^{1}\left([0, T] \times \mathbb{R}_{+}\right)$in that case and conclude $)$.
(c) Establish the existence and uniqueness of a weak solution $f \in C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right)$to equation (4.7). (Hint. For the existence use an approximation argument. For the uniqueness use a renormalization or a duality technique).
2) Consider the renewal equation

$$
\left\{\begin{array}{l}
\partial_{t} f+\partial_{x} f+a f=0  \tag{4.8}\\
f(t, 0)=\rho_{f(t)}, \quad f(0, x)=f_{0}(x)
\end{array}\right.
$$

where $f=f(t, x), t \geq 0, x \geq 0$, and

$$
\rho_{g}:=\int_{0}^{\infty} g(y) a(y) d y
$$

Assume $a \in L^{\infty}\left(\mathbb{R}_{+}\right)$. Establish that there exists a unique weak solution $f \in C\left([0, T] ; L^{1}\left(\mathbb{R}_{+}\right)\right)$associated to equation (4.8) for any $f_{0} \in L^{1}\left(\mathbb{R}_{+}\right)$. (Hint. Use the contraction mapping fixed point theorem).

