## Sheet of exercises 4 about chapters 1 to 6

## 1. Evolution equation and semigroup (Chapter 5)

Exercise 1.1. For $h \in E_{T}:=C([0, T] ; D(\Lambda)) \cap C^{1}([0, T] ; X)$ prove that $S_{\Lambda} h \in E_{T}$ and

$$
\frac{d}{d t}\left[S_{\Lambda}(t) h(t)\right]=S_{\Lambda}(t) \Lambda h(t)+S_{\Lambda}(t) h^{\prime}(t)
$$

(Hint. Write

$$
\begin{aligned}
\frac{S_{\Lambda}(t+s) h(t+s)-S_{\Lambda}(t) h(t)}{s}= & \frac{S_{\Lambda}(t+s)-S_{\Lambda}(t)}{s} h(t)+S_{\Lambda}(t+s) h^{\prime}(t) \\
& +S_{\Lambda}(t+s)\left(\frac{h(t+s)-h(t)}{s}-h^{\prime}(t)\right)
\end{aligned}
$$

and pass to the limit $s \rightarrow 0$ ).

## 2. Problem I - Local in time estimates (2017-2018)

Consider a smooth and fast decaying initial datum $f_{0}$, the associated solution $f=f(t, x), t \geq 0$, $x \in \mathbb{R}^{d}$, to heat equation

$$
\partial_{t} f=\frac{1}{2} \Delta f, \quad f(0, .)=f_{0}
$$

and for a given $\alpha \in \mathbb{R}^{d}$, define

$$
g:=f e^{\psi}, \quad \psi(x):=\alpha \cdot x .
$$

(1) Establish that

$$
\partial_{t} g=\frac{1}{2} \Delta g-\alpha \cdot \nabla g+\frac{1}{2}|\alpha|^{2} g .
$$

(2) Establish that $\|g(t, .)\|_{L^{1}} \leq e^{\alpha^{2} t / 2}\left\|g_{0}\right\|_{L^{1}}$ for any $t \geq 0$.
(3) Establish that

$$
\|g(t)\|_{L^{2}}^{2} e^{-\alpha^{2} t} \leq \frac{\left\|g_{0}\right\|_{L^{1}}^{2}}{\left(2 / d C_{N} t\right)^{d / 2}}, \quad \forall t>0
$$

(4) Denoting by $T(t)$ the semigroup associated to the parabolic equation satisfies by $g$, prove successively that

$$
T(t): L^{1} \rightarrow L^{2}, \quad L^{2} \rightarrow L^{\infty}, \quad L^{1} \rightarrow L^{\infty}
$$

for some constants $C t^{-d / 4} e^{\alpha^{2} t / 2}, C t^{-d / 4} e^{\alpha^{2} t / 2}$ and $C t^{-d / 2} e^{\alpha^{2} t / 2}$.
(5) Denoting by $S$ the heat semigroup and by $F(t, x, y):=\left(S(t) \delta_{x}\right)(y)$ the fundamental solution associated to the heat equation when starting from the Dirac function in $x \in \mathbb{R}^{d}$, deduce

$$
F(t, x, y) \leq \frac{C}{t^{d / 2}} e^{\alpha \cdot(x-y)+\alpha^{2} t / 2}, \quad \forall t>0, \forall x, y, \alpha \in \mathbb{R}^{d}
$$

and then

$$
F(t, x, y) \leq \frac{C}{t^{d / 2}} e^{-\frac{|x-y|^{2}}{2 t}}, \quad \forall t>0, \forall x, y \in \mathbb{R}^{d}
$$

(6) May we prove a similar result for the parabolic equation

$$
\partial_{t} f=\operatorname{div}_{x}\left(A(x) \nabla_{x} f\right), \quad 0<\nu \leq A \in L^{\infty} ?
$$

## 3. Problem III (2016-2017)

We consider the relaxation equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=-v \cdot \nabla f+\rho_{f} M-f \quad \text { in } \quad(0, \infty) \times \mathbb{R}^{2 d} \tag{3.1}
\end{equation*}
$$

on the unknown $f=f(t, x, v), t \geq 0, x, v \in \mathbb{R}^{d}$, with

$$
\rho_{f}(t, x)=\int_{\mathbb{R}^{d}} f(t, x, v) d v, \quad M(v):=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-|v|^{2} / 2\right) .
$$

We complement the equation with an initial condition

$$
\begin{equation*}
f(0, x, v)=f_{0}(x, v) \quad \text { in } \quad \mathbb{R}^{2 d} \tag{3.2}
\end{equation*}
$$

Question 1. A priori estimates and associated semigroup. We denote by $f$ a nice solution to the relaxation equation (3.1)-(3.2).
(a) Prove that $f$ is mass conserving.
(b) Prove that

$$
\left|\rho_{g}\right| \leq\|g\|_{L_{v}^{2}\left(M^{-1 / 2}\right)}, \quad \forall g=g(v) \in L_{v}^{2}\left(M^{-1 / 2}\right)
$$

and deduce that

$$
\|f(t, \cdot)\|_{L_{x v}^{2}\left(M^{-1 / 2}\right)} \leq\left\|f_{0}\right\|_{L_{x v}^{2}\left(M^{-1 / 2}\right)}
$$

(c) Consider $m=\langle v\rangle^{k}, k>d / 2$. Prove that there exists a constant $C \in(0, \infty)$ such that

$$
\left|\rho_{g}\right| \leq C\|g\|_{L_{v}^{p}(m)}, \quad \forall g=g(v) \in L_{v}^{p}(m), \quad p=1,2
$$

and deduce that

$$
\|f(t, \cdot)\|_{L_{x v}^{p}(m)} \leq e^{\lambda t}\left\|f_{0}\right\|_{L_{x v}^{p}(m)}
$$

for a constant $\lambda \in[0, \infty)$ that we will express in function of $C$.
(d) What strategy can be used in order to exhibit a semigroup $S(t)$ in $L_{x v}^{p}(m), p=2, p=1$, which provides solutions to (3.1) for initial date in $L_{x v}^{p}(m)$ ? Is the semigroup positive? mass conservative? a contraction in some spaces?

The aim of the problem is to prove that the associated semigroup $S_{\mathcal{L}}$ to (3.1) is bounded in $L^{p}(m), p=1,2$, without using the estimate proved in question (1b).

In the sequel we will not try to justify rigorously the a priori estimates we will establish, but we will carry on the proofs just as if there do exist nice (smooth and fast decaying) solutions.

We define

$$
f:=\rho_{f} M, \quad \mathcal{B} f=\mathcal{L} f-f
$$

Question 2. Prove that $S_{\mathcal{B}}$ satisfies a growth estimate $\mathcal{O}\left(e^{-t}\right)$ in any $L_{x v}^{p}(m)$ space. Using the Duhamel formula

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} * S_{\mathcal{L}}
$$

prove that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{1}(m)$.
Question 3. Establish that : $L_{x v}^{1}(m) \rightarrow L_{x}^{1} L_{v}^{\infty}(m)$ where

$$
\|g\|_{L_{x}^{1} L_{v}^{p}(m)}:=\int_{\mathbb{R}^{d}}\|g(x,)\|_{L^{p}(m)} d x
$$

Prove that

$$
\frac{d}{d t} \int\left(\int f^{p} d x\right)^{1 / p} d v=\int\left(\int\left(\partial_{t} f\right) f^{p-1} d x\right)\left(\int f^{p} d x\right)^{1 / p-1} d v
$$

Deduce that $S_{\mathcal{B}}$ satisfies a growth estimate $\mathcal{O}\left(e^{-t}\right)$ in any $L_{x}^{1} L_{v}^{p}(m)$ space for $p \in(1, \infty)$, and then in $L_{x}^{1} L_{v}^{\infty}(m)$. Finally prove that $S_{\mathcal{B}}(t)$ is appropriately bounded in $\mathscr{B}\left(L^{1}, L_{x}^{1} L_{v}^{\infty}(m)\right)$ and that $S_{\mathcal{L}}$ is bounded in $L_{x}^{1} L_{v}^{\infty}(m)$.

Question 4. We define $u(t):=S_{\mathcal{B}}(t)$. Establish that

$$
\left(u(t) f_{0}\right)(x, v)=M(v) e^{-t} \int_{\mathbb{R}^{d}} f_{0}\left(x-v_{*} t, v_{*}\right) d v_{*}
$$

Deduce that

$$
\left\|u(t) f_{0}\right\|_{L_{x v}^{\infty}(m)} \leq C \frac{e^{-t}}{t^{d}}\left\|f_{0}\right\|_{L_{x}^{1} L_{v}^{\infty}(m)} .
$$

Question 5. Establish that there exists some constants $n \geq 1$ and $C \in[1, \infty)$ such that

$$
\left\|u^{(* n)}(t)\right\|_{L_{x v}^{1}(m) \rightarrow L_{x v}^{\infty}(m)} \leq C e^{-t / 2} .
$$

Deduce that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{\infty}(m)$.
Question 6. How to prove that $S_{\mathcal{L}}$ is bounded in $L_{x v}^{2}(m)$ in a similar way? How to shorten the proof of that last result by using question (1b)? Same question for the space $L_{x v}^{\infty}(m)$.

