Mardi 26 Mai, 14h - 16h Tous les documents sont autorisés

Problème 1: Chaos.

On considère la mesure $ds_N(x) = s_N(dx)$ uniforme sur la sphère de rayon \sqrt{N} de \mathbb{R}^N et la mesure gaussienne $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. L'objectif du problème est de montrer que s_N est γ -chaotique.

- a) Montrer que $(X_1^2 + ... + X_N^2)/N \to 1$ en loi, si les $(X_i)_{1 \le i \le N}$ sont des variables aléatoires indépendantes et de même loi γ .
- b) On définit $\mu_N(dr)$ la loi du rayon sous $\gamma^{\otimes N}$ et $s_{N,r}$ la mesure uniforme sur la sphère $S^{N-1}(r)$ de rayon r de \mathbb{R}^N , ce qui signifie simplement que pour toute fonction $\varphi \in C(\mathbb{R}^N)$ on a

(1)
$$\int_{\mathbb{R}^N} \varphi(x) \, \gamma^{\otimes N}(dx) = \int_0^\infty \left\{ \int_{S^{N-1}(r)} \varphi(x) \, s_{N,r}(dx) \right\} \mu_N(dr).$$

Montrer que pour tout $0 < a < 1 < b < \infty$, on a

(2)
$$\lim_{N \to \infty} \int_{\mathbb{R} \setminus [a\sqrt{N}, b\sqrt{N}]} \left\{ \int_{S^{N-1}(r)} s_{N,r}(dx) \right\} \mu_N(dr) = 0$$

et

(3)
$$\lim_{N \to \infty} \mu_N([a\sqrt{N}, b\sqrt{N}]) = 1.$$

c) - D'autre part, montrer que

$$\int_0^\infty \left\{ \int_{S^{N-1}(r)} \varphi(x) \, s_{N,r}(dx) \right\} \mu_N(dr) = \int_0^\infty \left\{ \int_{S^{N-1}(r)} \varphi\left(x \, \frac{r}{\sqrt{N}}\right) s_N(dx) \right\} \mu_N(dr).$$

En déduire que pour toute fonction $f \in C_c(\mathbb{R}^k)$ fixée, et en notant $f^N := f \otimes 1^{\otimes (N-k)}$ pour $N \geq k$, on a

(4)
$$\lim_{a \to 1^{-}, b \to 1^{+}} \sup_{N \ge k} \left| \int_{a\sqrt{N}}^{b\sqrt{N}} \left\{ \int_{S^{N-1}(r)} f^{N} ds_{N,r} \right\} \mu_{N}(dr) - \mu_{N}([a\sqrt{N}, b\sqrt{N}]) \langle s_{N}, f^{N} \rangle \right| = 0.$$

d) - Conclure en combinant (1), (2), (3) et (4).

Problème 2: McKean-Vlasov.

On rappelle que pour s > 1/2 on a injection continue $H^s(\mathbb{R}) \subset C_0(\mathbb{R})$ avec donc $||f||_{\infty} \leq C ||f||_{H^s}$ pour tout $f \in H^s(\mathbb{R})$.

- 1) Montrer que l'application $\mathbb{R}^N \to H^{-3}(\mathbb{R})$, $X \mapsto \hat{\mu}_X^N$ est de classe C^2 et calculer $\partial_i(\hat{\mu}_X^N)$ et $\partial_{ij}^2(\hat{\mu}_X^N)$.
 - 2) Soit $\Phi \in C^{2,1}(H^{-3};\mathbb{R})$, i.e. $\Phi \in C^2(H^{-3};\mathbb{R})$ telle qu'il existe une constante C telle que

$$\left| \Phi(v) - \Phi(u) - D\Phi(u)(v - u) - \frac{1}{2}D^2\Phi(u)(v - u)^{\otimes 2} \right| \le C \|v - u\|_{H^3}^3.$$

Calculer $\partial_i \Phi(\hat{\mu}_X^N)$ et $\partial_{ij}^2 \Phi(\hat{\mu}_X^N)$

3) - Pour $\phi \in C^2(\mathbb{R}^N)$ on définit

$$G^{N}\phi(X) = \frac{1}{2} \sum_{i=1}^{N} \partial_{ii}^{2} \phi - \sum_{i=1}^{N} F(x_{i}, \hat{\mu}_{X}^{N}) \partial_{i} \phi,$$

avec

$$F(x,m) := \int_{\mathbb{R}} b(x-y) \, m(dy).$$

Pour $\mu \in P(\mathbb{R})$, on définit également (au sens faible)

$$Q(\mu) := \frac{1}{2}\mu'' + (F(x, \mu)\mu)'.$$

Montrer que pour tout $\Phi \in C^{2,1}(H^{-3}(\mathbb{R}))$, on a

$$G^N\Phi(\hat{\mu}_X^N) = \langle Q(\hat{\mu}_X^N), D\Phi(\hat{\mu}_X^N) \rangle + \mathcal{O}\big(\frac{1}{N}\big).$$