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1 Introduction (June 25th, 26th and 27th, 2013)

We consider the evolution PDE (transport equation)

(1.1) ∂tf = Λ f = −a(x) · ∇f(x) in (0,∞)× Rd,

that we complement by an initial condition

f(0, x) = f0(x) in Rd.

We assume that the drift force field satisfies

a ∈ C1(Rd) ∩W 1,∞(Rd)

(a globally Lipschitz would be suitable) and that the initial datum satisfies

(1.2) f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞.

We prove that there exists a unique solution in the renormalization sense to the transport equation
(1.1) associated to the initial datum f0.

2 Characteristics method and existence of solutions

2.1 Smooth initial datum.

As a first step we consider f0 ∈ C1
c (Rd;R).

Thanks to the Cauchy-Lipschitz theorem on ODE, we know that for any x ∈ Rd the equation

ẋ(t) = a(x(t)), x(0) = x,

admits a unique solution t 7→ x(t) = Φt(x) ∈ C1(R;Rd). Moreover, for any t ≥ 0, the vectors valued
function Φt : Rd → Rd is a C1-diffeomorphism and the application R+ × Rd → Rd, (t, x) 7→ Φt(x)
is globally Lipschitz.

The characteristics method makes possible to build a solution to the transport equation (1.1)
thanks to the solutions (characteristics) of the above ODE problem.

We start with a simple case. Assuming f0 ∈ C1(Rd;R), we define the function f ∈ C1(R× Rd;R)

(2.1) ∀ t ≥ 0, ∀x ∈ Rd f(t, x) := f0(Φ−1
t (x)).
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From the associated implicit equation f(t,Φt(x)) = f0(x), we deduce

0 =
d

dt
[f(t,Φt(x)] = (∂tf)(t,Φt(x)) + Φ̇t(x) · (∇xf)(t,Φt(x))

= (∂tf + a(x) · ∇xf)(t,Φt(x)).

The above equation holding true for any t > 0 and x ∈ Rd and the function Φt mapping Rd onto
Rd, we deduce that f ∈ C1((0, T ) × Rd) satisfies the transport equation (1.1) in the sense of the
classical differential calculus.

If furtheremore f0 ∈ C1
c (Rd), by using that |Φt(x) − x| ≤ L t for any x ∈ Rd, t ≥ 0 we deduce

that f(t) ∈ C1
c (Rd) for any t ≥ 0, with supp f(t) ⊂ supp f0 + B(0, L t). In other words, transport

occurs with finite speed : that makes a great difference with the instantaneous positivity of solution
(related of a “infinite speed” of propagation of particles) known for the heat equation and more
generally for parabolic equations.

Exercise 2.1 Make explicit the construction and formulas in the three following cases :
(1) a(x) = a ∈ Rd is a constant vector.
(2) a(x) = x
(3) a(x) = v, f0 = f0(x, v) ∈ C1(Rd × Rd) and we look for a solution f = f(t, x, v) ∈ C1((0,∞)×
Rd × Rd).

(4) Prove that (St) is a group on C(Rd), where

(2.2) ∀ f0 ∈ C(Rd), ∀ t ∈ R, ∀x ∈ Rd (Stf0)(x) = f(t, x) := f0(Φ−1
t (x)).

(5) Repeat a similar construction in the case of a time depending drift force field a = a(t, x) ∈
C1([0, T ]×Rd) and for the transport equation with a gain source term added at the RHS of (1.1).

2.2 Lp initial datum.

As a second step we want to generalize the construction of solutions to more general initial data as
announced in (1.2). We observe that at least formally the following computation holds for a given
positive solution f of the transport equation (1.1) :

d

dt

∫
Rd
fp dx =

∫
Rd
∂tf

p dx =

∫
Rd
pfp−1 ∂tf dx

=

∫
Rd
pfp−1 a · ∇x dx =

∫
Rd
a(x) · ∇xfp dx

=

∫
Rd

(−divxa)fp dx ≤ ‖divxa‖L∞
∫
Rd
fp dx.

With the help of the Gronwall lemma, we learn from that differential inequality that the following
(still formal) estimate holds

(2.3) ‖f(t)‖Lp ≤ ebt/p ‖f0‖Lp ∀ t ≥ 0,

with b := ‖diva‖L∞ . As a consequence, we may propose the following natural definition of solution.

Definition 2.2 We say that f = f(t, x) is a weak solution to the transport equation (1.1) associated
to the initial datum f0 ∈ Lp(Rd) if it satisfies the bound

f ∈ L∞(0, T ;Lp(Rd))

and it satisfies the equation in the following weak sense :∫ T

0

∫
Rd
f
{
∂tϕ+ divx(aϕ)

}
dxdt+

∫
Rd
f0 ϕ(0, .) dx = 0

for any ϕ ∈ C1
c ([0, T )× Rd).
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Exercise 2.3 1. Prove that a classical solution is a weak solution.

2. Prove that a weak solution f is weakly continuous (after modification of f(t) on a time set of
measure zero) in the following sense :

(i) f ∈ C([0, T ];D′(Rd) in general (and even f ∈ Lip([0, T ];w ∗ −(C1
c (Rd))′)) ;

(ii) f ∈ C([0, T ];w ∗ −(Cc(Rd))′) when p = 1 (for the weak topology ∗σ(M1, Cc)) ;
(ii) f ∈ C([0, T ];w − Lp(Rd)) when p ∈ (1,∞) (for the weak topology σ(Lp, Lp

′
)) ;

(ii) f ∈ C([0, T ];w − Lploc(Rd)) for any p ∈ [1,∞) when p =∞.

Theorem 2.4 (Existence) For any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists a global (defined for
any T > 0) weak solution to the transport equation (1.1) which furthermore satisfies

f ∈ C([0,∞);Lp(Rd)) when p ∈ [1,∞); f ∈ C([0,∞);L1
loc(Rd)) when p =∞.

If moreover f0 ≥ 0 then f(t, .) ≥ 0 for any t ≥ 0.

Step 1. Rigorous a priori bounds. Take f0 ∈ C1
c (Rd). For any smooth (renormalizing)

function β : R→ R+, β(0) = 0, which are C1 and globally Lipschitz we clearly have that β(f(t, x))
is a solution to the same equation associated to the initial datum β(f0) and β(f(t, .)) ∈ C1

c (Rd)
for any t ≥ 0. The function

(0, T )→ R+, t 7→
∫
Rd
β(f(t, x)) dx

is clearly C1 (that is an exercise using the Lebesgue’s dominated convergence Theorem) and

d

dt

∫
Rd
β(f(t, x)) dx =

∫
Rd
∂tβ(f(t, x)) dx =

∫
Rd
β′(f(t, x))∂tf(t, x) dx

=

∫
Rd
β′(f(t, x)) a(x) · ∇xf(t, x) dx =

∫
Rd
a(x) · ∇xβ(f(t, x)) dx

=

∫
Rd

(−divxa)(x)β(f(t, x)) dx.

We deduce from that identity the differential inequality

d

dt

∫
Rd
β(f(t, x)) dx ≤ b

∫
Rd
β(f(t, x)) dx,

with b := ‖divxa‖L∞ , and then thanks to the Gronwall lemma∫
Rd
β(f(t, x)) dx ≤ ebt

∫
Rd
β(f0(x)) dx.

Since f0 ∈ L1(Rd) ∩ L∞(Rd) by assumption, for any 1 ≤ p < ∞, we can define a sequence of
renormalized functions (βn) such that 0 ≤ βn(s)↗ |s|p for any s ∈ R and we can pass to the limit
in the preceding inequality using the monotonous Lebesgue Theorem at the RHS and the Fatou
Lemma at the LHS in order to get∫

Rd
|f(t, x)|p dx ≤ ebt

∫
Rd
|f0(x)|p dx,

or in other words
‖f(t, .)‖Lp ≤ ebt/p ‖f0‖Lp ∀ t ≥ 0.

Passing to the limit p→∞ in the above equation we obtain (maximum principle)

‖f(t, .)‖L∞ ≤ ‖f0‖L∞ ∀ t ≥ 0.

Moreover, f ∈ C([0, T ];Lp(Rd) for any p ∈ [1,∞).
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Step 2. Existence in the case p ∈ [1,∞). For any function f0 ∈ Lp(Rd), 1 ≤ p < ∞, we
may define a sequence of functions f0,n ∈ C1

c (Rd) (take for instance f0,n := (χn f0) ∗ ρn such that
f0,n → f0 in Lp(Rd) : here comes the restriction p < ∞). Because of the first step we may define
fn(t) a solution to the transport equation. Moreover, thanks to the first step and because the
equation is linear we have

sup
t∈[0,T ]

‖fn(t, .)− fm(t, .)‖Lp ≤ ebt/p ‖f0,n − f0,m‖Lp → 0 ∀T ≥ 0.

The sequence (fn) being a Cauchy sequence, there exists f ∈ C([0, T ];Lp(Rd)) such that fn → f
in C([0, T ];Lp(Rd)) as n→∞. Now, writing

0 = −
∫ T

0

∫
Rd
ϕ
{
∂tfn + a · ∇fn

}
dxdt

=

∫ T

0

∫
Rd
fn

{
∂tϕ+ divx(aϕ)

}
dxdt+

∫
Rd
f0,n ϕ(0, .) dx,

we may pass to the limit in the above equation and we get that f is a solution in the convenient
sense.
If moreover f0 ≥ 0 then the same holds for f0,n, then for fn and finally for f . ut

Exercise 2.5 (1) Show that for any solution f to the transport equation associated to an initial
datum f0 ∈ C1

c (Rd) built by the characterictics method, for any times T > 0 and radius R there
exists some constants CT , RT ∈ (0,∞) such that

sup
t∈[0,T ]

∫
BR

|f(t, x)| dx ≤ CT
∫
BRT

|f0(x)| dx.

(Hint. Use the proprty of finite speed propagation of the transport equation).

(2) Adapt the proof of existence to the case f0 ∈ L∞.

3 Weak solutions are renormalized solutions

Definition 3.1 Let Ω ⊂ Rd and assume here a ∈W 1,∞((0, T )×Ω). We say that g ∈ L1
loc([0, T ]×Ω)

is a weak solution to the PDE evolution equation

(3.1) Lg := ∂tg − Λg := ∂tg + a · ∇xg − ν∆xg = G, g(0, .) = g0,

with G ∈ L1
loc([0, T ]× Ω), ν ∈ R+, g0 ∈ L1

loc(Ω), if for any ϕ ∈ C2
c ([0, T )× Ω) there holds∫ T

0

∫
Ω

g L∗ϕ =

∫
Ω

g0ϕ(0, .) +

∫ T

0

∫
Ω

ϕG

where L∗ is the dual operator

L∗ϕ := −∂tϕ− divx(aϕ)− ν∆xϕ.

In order to simplify the presentation, from now on, we may assume Ω = Rd, a ∈W 1,∞(Ω).

Remarks 3.2 (1) In the above definition of weak solution, we do note need that a ∈ W 1,∞, but
just that a, divxa ∈ L∞loc. However, that additional information will be necessary in order to prove
the renomalization result.
(2) One can take equivalently ϕ ∈ D([0, T )×Rd) in the definition : we usually call such a solution
a “solution in the distributional sense”. We do not make the difference here between the different
notions of weak solutions which are all equivalent in our framework.
(3) Any weak solution satisfies f ∈ C([0, T ];D′(Rd)) in the sense that for any given test function
ϕ ∈ C2

c (Rd) the following quantity

t 7→
∫
Rd
f(t, x)ϕ(x) dx

is continuous.
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For any g ∈ C2 classical solution of (3.1) and β ∈ C2(R;R), there holds

∂tβ(g) + a · ∇x(β(g))−∆β(g) =

= β′(g)∂tg + β′(g)a · ∇xg − div(β′(g)∇xg)

= β′(g)G− β′′(g) |∇g|2.

Definition 3.3 We say that g ∈ L1
loc([0, T ]×Ω) is a renormalized solution to the PDEs evolution

equation (3.1) with G ∈ L1
loc([0, T ]× Ω), ν ∈ R+, g0 ∈ L1

loc(Ω) if g satisfies the additionnal bound
ν∇xg ∈ L2

loc([0, T ]× Ω) as well as the equations

(3.2)

∫ T

0

∫
Ω

β(g)L∗ϕ =

∫
Ω

β(g0)ϕ(0, .) +

∫ T

0

∫
Ω

ϕ {β′(g)G− β′′(g) |∇g|2}

for any test function ϕ ∈ C2
c ([0, T ) × Ω) and any renormalizing function β ∈ C2(R) such that

β′′ ∈ Cc(R).

Theorem 3.4 With the above notations and assumptions, any weak solution g ∈ C([0, T ];L1
loc(Ω))

to the equation (3.1) such that ν∇g ∈ L2
loc is a renormalized solution.

For the sake of simplicity, we only deal with the case Ω = Rd. We start with two elementary but
fundamental lemmas.

Lemma 3.5 Given G ∈ L1
loc([0, T ]× Rd), let g ∈ L1

loc([0, T ]× Rd) be a weak solution to the PDE

Λg = G on (0, T )× Rd.

For a mollifer sequence

ρε(t, x) :=
1

εd+1
ρ(
t

ε
,
x

ε
), 0 ≤ ρ ∈ D(Rd+1), suppρ ⊂ (−1, 0)×B(0, 1),

∫
Rd+1

ρ = 1,

and for τ ∈ (0, T ), ε ∈ (0, τ), we define the function

gε := (ρε ∗t,x g)(t, x) :=

∫ T

0

∫
Rd
g(s, y) ρ(t− s, x− y) dsdy.

Then gε ∈ C∞([0, T − τ)× Rd) and it satisfies the equation

Lgε = Gε + rε

in the classical differential calculus sense on [0, T − τ)× Rd, with

Gε := ρε ∗t,x G, rε := a · ∇xgε − (a · ∇g) ∗ ρε.

It is worth emphasizing that in the above formula the “commutator” rε is defined in a weak sense,
namely

rε(t, x) :=

∫
Rd+1

g(s, y)
{
a(x) · ∇xρε(t− s, x− y) + divy

[
a(y) ρε(t− s, x− y)

]}
dyds.

Proof of Lemma 3.5. Define O := [0, T − τ) × Rd. For any (t, x) ∈ O fixed and any ε ∈ (0, τ), we
define

(s, y) 7→ ϕ(s, y) = ϕt,xε (s, y) := ρε(t− s, x− y) ∈ D((0, T )× Rd).
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We then just write the weak formulation of equation (3.1) for that test function, and we get

0 =

∫ T

0

∫
Rd
gΛ∗ϕ−

∫ T

0

∫
Rd
Gϕ

=

∫ T

0

∫
Rd
g(s, y) { − ∂sϕt,x(s, y)−∇y(a(y)ϕt,x(s, y))−∆yϕ

t,x(s, y)}

−
∫ T

0

∫
Rd
G(s, y)ϕt,x(s, y)

=

∫ T

0

∫
Rd
g(s, y) {∂tϕt,x(s, y) + a(x) · ∇xϕt,x(s, y)−∆xϕ

t,x(s, y)}

+

∫ T

0

∫
Rd
g(s, y) {a(y) · ∇yϕt,x(s, y)− a(x) · ∇xϕt,x(s, y)} −

∫ T

0

∫
Rd
G(s, y)ϕt,x(s, y)

= ∂tgε(t, x) + a · ∇xgε(t, x)−∆xgε(t, x)− rε(t, x)−Gε(t, x),

which is the anounced equation. ut

Lemma 3.6 Under the assumptions B ∈ W 1,q
loc (Rd) and g ∈ Lploc(Rd) with 1/r = 1/p + 1/q ≤ 1,

then
Rε := (B · ∇g) ∗ ρε −B · ∇(g ∗ ρε)→ 0 Lrloc,

for any mollifer sequence (ρε).

Remark 3.7 For a time dependent field vector a(t, x) satisfying the boundedness conditions of
Theorem 3.4 the same result (with the same proof) holds, so that the commutator rε defined in
Lemma 3.5 satisfies rε → 0 in L1

loc([0, T )× Rd).

Proof of Lemma 3.6. We only consider the case p = 1, q =∞ and r = 1. We start writting

Rε(x) = −
∫
g(y)

{
divy

(
B(y) ρε(x− y)

)
+B(x) · ∇x

(
ρε(x− y)

)}
dy

=

∫
g(y)

{(
B(y)−B(x)

)
· ∇x(ρε(x− y))

}
dy − ((g divB) ∗ ρε)(x)

=: R1
ε(x) +R2

ε(x).

For the first term, we remark that

|R1
ε(x)| ≤

∫
|g(y)|

∣∣∣B(y)−B(x)

ε

∣∣∣ |(∇ρ)ε(x− y)| dy

≤ ‖∇B‖L∞
∫
|x−y|≤1

|g(y)| |(∇ρ)ε(x− y)| dy,

so that

(3.3)

∫
BR

|R1
ε(x)| dx ≤ ‖∇B‖L∞ ‖∇ρ‖L1 ‖g‖L1(BR+1).

On the other hand, if g is a smooth (say C1) function

R1
ε(x) = ∇x((gB) ∗ ρε)−B · ∇x(g ∗ ρε)

−→ ∇x(gB)−B · ∇xg = (divB) g.

Since every things make sense at the limit with the sole assumption divB ∈ L∞ and g ∈ L1,
with the help of (3.3) we can use a density argument in order to get the same result without the
additional smoothness hypothesis on g. More precisely, for a sequence gα in C1 such that gα → g
in L1

loc, we have
R1
ε[gα]→ (divB) g in L1

loc, ‖R1
ε[h]‖L1 ≤ C ‖h‖L1 ∀h,

6



so that

R1
ε[g]− (divB) g = {R1

ε[g]−R1
ε[gα]}+ {R1

ε[gα]− (divB) gα)}+ {(divB) gα − (divB) g)} → 0

in L1
loc as ε→ 0. For the second term, we clearly have

R2
ε = (g divB) ∗ ρε → g divB

and we conclude by putting all the terms together. ut

Proof of Theorem 3.4. Step 1. We consider a weak solution g ∈ L1
loc to the PDE

Lg = G in [0, T )× Rd.

By mollifying the functions with the sequence (ρε) defined in Lemma 3.5 and using Lemma 3.5,
we get

Lgε = Gε + rε in [0, T )× Rd, rε → 0 in L1
loc.

Because gε is a smooth function, we may perform the following computation (in the sense of the
classical differential calculus)

Lβ(gε) = β′(gε)Gε − ν β′′(gε) |∇xgε|2 + β′(gε) rε,

so that

(3.4)

∫
β(gε)L

∗ϕ =

∫
Ω

β(gε(0, .))ϕ(0, .) +

∫
β′(gε)Gε ϕ− ν

∫
β′′(gε) |∇xgε|2 ϕ+

∫
β′(gε) rε

for any ϕ ∈ C2
c ([0, T )× Rd. Using that

gε → g, Gε → G, rε → 0, ν|∇gε|2 → ν|∇g|2

in L1
loc as ε → 0, which in turns imply β′′(gε) → β′′(g) a.e., and that (β′′(gε)) is bounded in L∞,

we may pass to the limit ε → 0 in the last identity and we obtain (3.2) for any test function
ϕ ∈ C2

c ((0, T )× Ω).

In the case we consider a solution g built thanks to Theorem 2.4 above or Theorem 3.2 in chapter 1,
we know that additionally g ∈ C([0, T );L1

loc(Ω)) and therefore

gε → g in C([0, T );L1
loc(Ω)).

In particular gε(0, .) → g(0, .) in L1
loc(Ω) and we may pass to the limit in equation (3.4) for any

test function ϕ ∈ C2
c ([0, T )× Ω), which ends the proof of (3.2).

4 Consequence of the renormalization result

In this section we present several immediate consequences of the renormalization formula establi-
shed in Theorem 3.4 for the transport equation (1.1).

4.1 Uniqueness and C0-semigroup in Lp(Rd), 1 ≤ p <∞
Corollary 4.1 Assume p ∈ [1,∞). For any initial datum g0 ∈ Lp(Rd), the transport equation
admits a unique weak solution g ∈ C([0, T ];Lp(Rd)).

Proof of Corollary 4.1. Consider two weak solutions g1 and g2 to the transport equation (1.1)
associated to the same initial datum g0. The function g := g2 − g1 ∈ C([0, T ];Lp(Rd)) is then a
weak solution to the transport equation (1.1) associated to the initial datum g(0) = 0. Thanks to
Theorem 3.4 it is also a renormalized solution, which means∫

Rd
β(g(t, .))ϕdx =

∫ t

0

∫
Rd
β(g) divx(aϕ) dxds
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for any renormalizing function β ∈W 1,∞(R), β(0) = 0, and any test function ϕ = ϕ(x) ∈ C1
c (Rd).

We fix β such that furthermore 0 < β(s) ≤ |s|p for any s 6= 0, χ ∈ D(Rd) such that 0 ≤ χ ≤ 1,
χ ≡ 1 on B(0, 1) and we take ψ(x) = χR(x) = χ(x/R), so that∫

Rd
β(g(t, .))χR dx =

∫ t

0

∫
Rd
β(g) (divxa)χR dxds+

1

R

∫ t

0

∫
Rd
β(g) a(x) · ∇χ(x/R) dxds

Observing that β(g) ∈ C([0, T ];L1(Rd)) and χR → 1, we easilly pass to the limit R → ∞ in the
above expression, and we get

(4.1)

∫
Rd
β(g(t, .)) dx =

∫ t

0

∫
Rd
β(g) (divxa) dxds

By the Gronwall lemma we conclude that β(g(t, .)) = 0 and then g(t, .) = 0 for any t ∈ [0, T ]. ut

In the same way as in chapter 1, we can deduce from the above existence and uniqueness result on
the linear transport equation (1.1) that the formula

(Stg0)(x) := g(t, x)

defines a C0-semigroup on Lp(Rd), 1 ≤ p < ∞, where g is the solution to the transport equation
(1.1) associated to the initial datum g0.

4.2 Positivity

We can recover in a quite elegant way the positivity as an aposteriori property that we deduce
from the renormalization formula.

Corollary 4.2 Consider a solution g ∈ C([0, T ];Lp(Rd)), 1 ≤ p < ∞, to the transport equation
(1.1). If g0 ≥ 0 then g(t, .) ≥ 0 for any t ≥ 0.

Proof of Corollary 4.3. We argue similarily as in the proof of Corollary 4.1 but fixing a renormalizing
function β ∈ W 1,∞(R) such that β(s) = 0 for any s ≥ 0, β(s) > 0 for any s < 0. Since then
β(g0) = 0, we deduce that (4.1) holds again with that choice of function β and then, thanks to
Gronwall lemma, β(g(t, .)) = 0 for any t ≥ 0. That means g(t, .) ≥ 0 for any t ≥ 0. ut

4.3 A posteriori estimate

Corollary 4.3 Consider a solution g ∈ C([0, T ];Lp(Rd)), 1 ≤ p < ∞, to the transport equation
(1.1). If g0 ∈ Lq(Rd), 1 ≤ q ≤ ∞, then g ∈ L∞(0, T ;Lq(Rd)) for any T > 0.

Proof of Corollary 4.3. We argue similarily as in the proof of Corollary 4.1 but fixing an arbitray
renormalizing function β ∈ W 1,∞(R), β(s) = 0 on a small neighbourhood of s = 0, so that
β(g) ∈ C([0, T ];L1(Rd)). For such a choice, we obtain the time integrale inequality∫

Rd
β(g(t, .)) dx =

∫
Rd
β(g0) dx+

∫ t

0

∫
Rd
β(g) (divxa) dxds ∀ t ≥ 0.

From the Gronwall lemma, we obtain with b = ‖div a‖L∞ , the estimate

(4.2)

∫
Rd
β(g(t, .)) dx ≤ eb t

∫
Rd
β(g0) dx ∀ t ≥ 0.

Because estimate (4.2) is uniform with respect to β, we may choose a sequence of renormalizing
functions (βn) such that βn(s)↗ |s|q in the case 1 ≤ q <∞ and we get

‖g(t, .)‖Lq ≤ ebt/q ‖g(t, .)‖Lq ∀ t ≥ 0.

In the case q = ∞, we obtain the same conclusion by fixing β ∈ W 1,∞ such that β(s) = 0 for
any |s| ≤ ‖g0‖L∞ , β(s) > 0 for any |s| > ‖g0‖L∞ or by passing to the limit q → ∞ in the above
inequality. ut
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4.4 Continuity

We can recover the strong Lp continuity property from the renormalization formula for a given
solution. We do not present that rather technical issue here.

5 Complementary results

In this section we state and give a sketch of the proof of several complementary results of existence
and uniqueness.

Regarding to the existence issue, we may extend our analysis to more general

- equations (modifying the assumptions on the coefficients) ;

- initial data ;

- equations again by adding a given source term / a nonlinear RHS term ;

- domains by considering the equation set on Ω ⊂ Rd (and we possibly have to add boundary
conditions).

Regarding the uniqueness issue, we will explain how to obtain it in a L∞ framework.

5.1 Parabolic equation in Lp

We consider the parabolic equation

(5.1) ∂tg = Λ g +G in (0,∞)× Rd,

with
Λ := ∆ + a · ∇

As a first step, we look for a priori estimates. Given any solution g and any convex function β,
we (formally) have

d

dt

∫
β(g) =

∫
∆β(g)−

∫
β′′(g)|∇g|2 −

∫
(div a)β(g) +

∫
β′(g)G

≤
∫
|div a|β(g) +

∫
β′(g)|G|

Particularizing β(s) = |s|p, 1 ≤ p <∞, and using the Young inequality ap−1b ≤ ap + bp/p, we get

d

dt

∫
|g|p ≤ p b

∫
|g|p +

∫
|G|p, b := 1 + ‖div a‖L∞ .

The Gronwall lemma yields

‖g(t)‖pLp = epbt ‖g0‖pLp +

∫ t

0

epb(t−s)‖G(s)‖pLp ds

≤ epbt
(
‖g0‖Lp +

(∫ t

0

‖G(s)‖pLp ds
)1/p)p

,

or equivalently

(5.2) sup
[0,T ]

‖g‖Lp ≤ ebT
(
‖g0‖Lp + ‖G‖L1(0,T ;Lp)

)
.

Next, defining β = βM , M ∈ N, a C2 even and convex function such that
- if M ≤ 2, β(s) := s2/2 for s ≤ 2, β′′(s) = 0 for s ≥ 3 ;
- if M ≥ 3, β′′(s) = 0 for 0 ≤ s ≤M − 1/2 and s ≥M + 3/2, β′′(s) = 1 for M ≤ s ≤M + 1,
and fixing χ ∈ D(Rd), 0 ≤ χ ≤ 1, |∇χ|2 ≤ χ, we have
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1

2

∫ T

0

∫
β′′(g)

(
|∇g|2χ− |∇χ|

2

χ

)
≤
∫ T

0

∫
β′′(g)(|∇g|2χ−∇g · ∇χ)

=
[∫

β(g)χ
]0
T

+

∫ T

0

∫
β′(g) g∆χ−

∫
β(g) div (aχ) +

∫
β′(g)Gχ

from which we deduce that for any T,R > 0 and any M ∈ N that there exists a constant CT,R

(5.3)

∫ T

0

∫
BR

|∇g|2 1M≤|g|≤M+1 ≤ CT,R
(

sup
[0,T ]

‖g‖L1(BR+2) + ‖G‖L1((0,T )×BR+2)

)
.

The corresponding existence and uniqueness result reads as follows.

Theorem 5.1 For any exponent 1 ≤ p ≤ ∞, any initial datum g0 ∈ Lp(Rd) and any source term
G ∈ L1(0, T ;Lp(Rd)), there exists a unique renormalized solution g in the sense that g satisfies the
estimates (5.2) and (5.3) as well as

g ∈ C([0, T );Lp(Rd)) if p ∈ [1,∞), g ∈ C([0, T );L1
loc(Rd)) if p =∞,

and satisfies equation (5.5) in the following renormalized sense

(5.4)

∫
β(gt)ϕ(t, .) =

∫ t

0

∫
β(g)

{
∂tϕ− div(aϕ) + ∆ϕ

}
+

∫ t

0

∫
ϕ
{
β′(g)G− β′′(g) |∇g|2

}
for any test function ϕ ∈ C2

c ([0, T ) × Ω) and any renormalizing function β ∈ C2(R) such that
β′′ ∈ Cc(R).

Elements of proof of Theorem 5.1. Step 1. The general case. Consider some data g0 ∈ Lp and
G ∈ L1(0, T ;Lp). We introduce two sequences (g0,n) and (Gn) such that g0,n ∈ L2 ∩Lp, g0,n → g0

in Lp, Gn ∈ L1(0, T ;L2 ∩Lp) and Gn → G in L1(0, T ;Lp) and the corresponding sequence (gn) of
variational solutions in XT = C(L2) ∩ L2(H1) ∩ H1(H−1) to equation (5.5) which existence has
been proved in Chapter 1. Notice in particular that gn ∈ C([0, T ];L1

loc) and that gn is a renormized
solution so that the additionnal a posteriori estimates (5.2) and (5.3) holds uniformly in n.

Step 2. The case p ∈ (1,∞). We claim that gn ∈ C([0, T ];Lp(Rd)). Indeed, from the renormalizing
formula, we easily show that |gn|p−2 |∇gn|2 ∈ L1((0, T )× Rd), next

d

dt

∫
|gn|p

p
= −(p− 1)

∫
|gn|p−2 |∇gn|2 −

∫
|gn|pdiva+

∫
Gngn |gn|p−2 ∈ L1(0, T )

and then ‖g‖Lp ∈ C([0, T ]). Together with the fact that gn ∈ C([0, T ];L1
loc), we proved the above

claim.
Now, using (5.2) we classically get that (gn) is a Cauchy sequence in C([0, T ];Lp(Rd)), it thus
converges to a limit g in C([0, T ];Lp(Rd)), from what we immediately pass to the limit n→∞ in
the renormalized formulation (5.4) and conclude to the existence. The uniqueness follows from the
renormalization property.

Step 3. The case p = 1. Here again we can aslo prove that gn ∈ C([0, T ];L1(Rd)) and conclude
exactly as in Step 2. The claimed continuity property comes from the fact that one can prove

sup
[0,T ]

∫
Rd
|gn|1|gn|≥M → 0, sup

[0,T ]

∫
Rd
|gn|1|x|≥M → 0,

when M →∞ for any n (and in fact uniformly in n).

Step 4. The case p = ∞. Here we argue in a different way. From (5.2), the equation (5.5) and
summing (5.3) up to M = ‖gin‖L∞tx , we get that (gn) is bounded in L∞((0, T ) × Rd), (∇gn) is

bounded in L2
loc((0, T )× Rd) and∫
Rd
gn ϕdx is strongly compact in C([0, T ]) for any ϕ ∈ C2

c ([0, T )× Rd).
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We may then extract a subsequence of (gn) (still denoted in same way) such that gn converges
to a limit g in σ(L∞tx , L

1
tx) and also in C([0, T ];w − L2

loc). We then can pass to the limit in the
weak formulation (5.4) with β(s) = s and for any test function ϕ ∈ C2

c ([0, T ) × Rd). Thanks
to Theorem 3.4, we recover a posteriori the fact that g is a renormalized solution and the local
continuity of g. Uniqueness follows from a duality argument that we present below. ut

5.2 Duhamel formula and existence for transport equation with an ad-
ditional term

We consider the transport equation with an additional term

(5.5) ∂tg = Λ g +G in (0,∞)× Rd,

with

(Λg)(x) := −a(x) · ∇g(x) + c(x) g(x) +

∫
Rd
b(x, y) g(y) dy

We interpret that equation as a perturbation equation

∂tg = Bg + G̃, G̃ = Ag +G,

and we claim that the fiunction

(5.6) g(t) = SB(t)g0 +

∫ t

0

SB(t− s) G̃(s) ds

is a solution to equation (5.5). Indeed, the semigroup SB satisfies by definition (and at least
formally)

d

dt
SB(t)h = BSB(t)h,

so that (again formally)

d

dt
g(t) =

d

dt
SB(t)g0 +

∫ t

0

d

dt
SB(t− s) G̃(s) ds+ SB(0) G̃(t)

= B
{
SB(t)g0 +

∫ t

0

SB(t− s) G̃(s) ds
}

+ G̃(t)

= B g(t) + G̃(t).

All that computations can be justified when written in a weak sense. The method used here is
nothing but the wellknown variation of the constant method in ODE, the expression (5.6) is called
the “Duhamel formula” and a function g(t) which satisfies (5.6) (in an appropriate and meaningful
functional sense) is called a “mild solution” to the equation (5.5).

Theorem 5.2 Assume a ∈W 1,∞, c ∈ L∞, b ∈ L∞x (Lp
′

y ) ∩ L∞y (Lp
′

x ), 1 ≤ p <∞. For any g0 ∈ Lp
and G ∈ L1(0, T ;Lp) there exists a unique mild (weak, renormalized) solution to equation (5.5).

Elements of proof of Theorem 5.2. For any h ∈ C([0, T ];Lp), we define the mapping

(Uh)(t) := SB(t)g0 +

∫ t

0

SB(t− s)
{
Ah(s) +G(s)

}
ds

and we observe that
U : C([0, T ];Lp)→ C([0, T ];Lp)

with Lipschitz constant bounded by b T . We just point out that thanks to Young inequality (when
1 < p <∞) ∫ ∫

b(x, y)h(y) g(x)p−1 dxdy ≤
∫ ∫

b(x, y)[h(y)p + g(x)p dxdy

≤ ‖b‖
L∞x (Lp

′
y )
‖h‖pLp + ‖b‖

L∞y (Lp
′
x )
‖g‖pLp .

Choosing T small enough, we can apply the Banach-Picard contraction theorem and we get the
existence of a fixed point g ∈ C([0, T ];Lp), g = Ug. Proceding by induction, we obtain in that way
a global mild solution to equation (5.5). ut
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5.3 Duality and uniqueness in the case p =∞
Theorem 5.3 Assume a ∈ W 1,∞. For any g0 ∈ L∞ there exists at most one weak solution
g ∈ L∞((0, T )× Rd) to the transport equation (1.1).

Elements of proof of Theorem 5.3. Since the equation is linear we only have to prove that the
unique weak solution g ∈ L∞((0, T )× Rd) associated to the initial datum g0 = 0 is g = 0.
By definition, for any ψ ∈ C1

c ([0, T ]× Rd), there holds∫ T

0

∫
Rd
g L∗ψ dxdt = −

∫
Rd
g(T )ψ(T ) dx

with L∗ψ := −∂tψ − div(aψ). We claim that for any Ψ ∈ C1
c ((0, T ) × Rd) there exists a function

ψ ∈ C1
c ([0, T ]× Rd) such that

(5.7) Λ∗ψ = Ψ, ψ(T ) = 0.

If we accept that fact, we obtain∫ T

0

∫
Rd
gΨ dxdt = 0 ∀Ψ ∈ C1

c ((0, T )× Rd),

which in turns implies g = 0 and that ends the proof.

Here we can solve easily the backward equation (5.7) thanks to the characterics method which
leads to an explicit representation formula. In order to make the discussion simpler we exhibit that
formula for the associated forward problem (we do not want to bother with backward time, but
one can pass from a formula to another just by changing time t → T − t). We then consider the
equation

∂tψ + a · ∇ψ + c ψ = Ψ, ψ(0) = 0,

with c := div a. Introduction the flow Φt(x) associated to the ODE ẋ = a(x), if such a solution
exists, we have

d

dt

[
ψ(t,Φt(x)) e

∫ t
0
c(Φs(x)) ds

]
= Ψ(t,Φt(x)) e

∫ t
0
c(Φs(x)) ds,

from which we deduce

ψ(t,Φt(x)) = e−
∫ t
0
c(Φτ (x)) dτ

∫ t

0

Ψ(s,Φs(x)) e
∫ s
0
c(Φτ (x)) dτ ,

or equivalently, observing that Φ−1
t = Φ−t because the ODE is time autonomous, we have

ψ(t, x) :=

∫ t

0

Ψ(s,Φs−t(x)) e−
∫ t
s
c(Φτ−t(x)) dτ ds.

It is clear that ψ defined by the above formula is the solution to our dual problem from which we
get (reversing time) the solution to (5.7) we were trying to find. ut
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