M1 MMD, Processus Continus Approfondis

Examen du Mardi 29 Mai, 16h30 - 18h30 Aucun document ni calculatrice n'est autorisé

Dans tous les exercices $B=B_t$ un mouvement brownien réel standard défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et $\mathcal{F} = \mathcal{F}_t^B$ est la filtration canonique associée.

Exercice 1

- a) Rappeler la définition d'un PAI.
- b) Soit (X_t) un PAI tel que $\mathbf{E}(e^{aX_t}) < \infty$ pour tout $t \ge 0$; $a \in \mathbb{R}$ fixé. Montrer que $e^{zX_t}/\mathbf{E}(e^{zX_t})$ est une martingale si $\Re e \ z \le a$.

Exercice 2

- a) Montrer que $B_t^2 t$ est une martingale.
- b) Soit $T:=\inf\{t;\ B_t\notin]-a,a[\}$ le temps de sorti de l'intervalle $]-a,a[,\ a>0.$ Pour tout M>0, montrer que $\mathbf{E}(B^2_{T\wedge M})=\mathbf{E}(T\wedge M).$ En déduire $\mathbf{E}(T)=a^2.$
- c) Rappeler la formule d'Itô pour le processus B et une fonction $f \in C_b^2(\mathbb{R}_+ \times \mathbb{R})$. En déduire que le processus $B_t^4 6tB_t^2 + 3t^2$ est une martingale.
- d) Exprimer $\mathbf{E}(B^4_{T\wedge M})$ en fonction de $B^2_{T\wedge M}$ et $T\wedge M$. En déduire que $\mathbf{E}(T^2)=5\,a^4/3$.

Exercice 3

Pour T > 0 fixé, on définit

$$\mathcal{H} := \left\{ X \in L^2(\mathcal{F}_T^B); \ \exists \, \phi \in L^2(Prog) \right.$$

$$(1) \qquad X = \mathbf{E}(X) + \int_0^T \phi_s \, dB_s \ \left. \right\}.$$

- a) Montrer que si $X \in \mathcal{H}$ alors le processus $\phi \in L^2(Prog)$ pour lequel (1) a lieu est unique.
- b) Montrer que si X^n vérifie (1) pour le processus $\phi^n \in L^2(Prog)$ et $X^n \to X$ dans L^2 , alors (ϕ^n) est une suite de Cauchy dans $L^2(Prog)$. En déduire que \mathcal{H} est un sev fermé de L^2 .
- c) Pour deux suites $0 = t_0 < ... < t_n = T$ et $\lambda_1, ..., \lambda_n$, on définit

$$M_t := \exp[i X_t], \quad X_t := (\phi \bullet B)_t, \quad \phi_s := \sum_{k=1}^n \lambda_k \, \mathbf{1}_{]t_{k-1}, t_k]}(s)$$

En notant

$$f(t,X) := \exp\left[i X + \frac{1}{2} \int_0^t \phi_s^2 ds\right],$$

montrer que

$$f(T, X_T) = 1 + i \int_0^T f(s, X_s) \phi_s dB_s.$$

En déduire que $M_T \in \mathcal{H}$.

d) - Avec les notations de la question précédente, montrer que l'espace engendré par les variables

$$\exp\left(i\sum_{k=1}^{n}\lambda_{k}\left(B_{t_{k}}-B_{t_{k-1}}\right)\right)$$

est dense dans $L^2(\Omega, \mathcal{F}_T^B)$. En déduire que \mathcal{H} est dense dans $L^2(\Omega, \mathcal{F}_T^B)$.

e) - Pourquoi $\mathcal{H} = L^2(\Omega, \mathcal{F}_T^B)$? Soit maintenant (M_t) une \mathcal{F}^B -martinagle bornée dans L^2 . Montrer qu'il existe un unique processus $\phi \in L^2(Prog)$ tel que

$$M_T = \mathbf{E}(M_T) + \int_0^T \phi_s \, dB_s.$$

En déduire que toute \mathcal{F}^B -martinagle (M_t) bornée dans L^2 peut s'écrire sous la forme d'une intégrale brownien: $\exists \phi \in L^2(Prog)$

$$M_t = \mathbf{E}(M_0) + \int_0^t \phi_s dB_s, \quad \forall t \in [0, T], \text{ pui } \forall t \ge 0.$$

Exercice 4

Sur $E = \mathbb{R}$, on se donne une chaîne de Markov (Y_n) définie par

$$\mathbf{E}(f(Y_{k+\ell}) f_k(Y_k) \dots f_1(Y_1)) = \mathbf{E}(U^{\ell} f(Y_k) f_k(Y_k) \dots f_1(Y_1))$$

pour tout $k, \ell \geq 1, f, f_k, ..., f_1 \in C_b(\mathbb{R})$, et avec

$$(Ug)(x) := \int_{\mathbb{R}} g(y) \, \mu(x, dy),$$

pour un taux de transition de Markov $\mu: \mathbb{R} \times \mathcal{B}(\mathbb{R}) \to [0,1]$ donné. On rappelle que U^{ℓ} est défini par récurrence, en posant pour $\ell \geq 2$

$$(U^{\ell}g)(x) = \int_{\mathbb{R}} (U^{\ell-1}g)(y) \, \mu(x,dy) =: \int_{\mathbb{R}} g(y) \, \mu^{\ell}(x,dy).$$

On se donne un processus de Poisson (N_t) d'intensité $\lambda > 0$ indépendant de (Y_n) et on pose $X_t := Y_{N_t}$.

a) - Montrer que (X_t) est un processus de Markov homogène et de taux de transition

$$p_t(x,A) := \sum_{n=0}^{\infty} \mu^n(x,A) \frac{(\lambda t)^n}{n!} e^{-\lambda t},$$

avec la convention $\mu^0(x, dy) = \delta_x(dy)$.

b) - On définit pour tout $f \in C_b^1(\mathbb{R})$

$$(T_t f)(x) = \mathbf{E}(f(X_t)|X_0 = x) = \int_{\mathbb{R}} f(y) \, p_t(x, dy) = \sum_{n=0}^{\infty} (U^n f)(x) \frac{(\lambda t)^n}{n!} \, e^{-\lambda t}.$$

Montrer que

$$(Lf)(x) := \frac{d}{ds}(T_t f)(x)_{t=0} = \int_{\mathbb{R}} (f(y) - f(x)) \, \mu(x, dy).$$