M1 MMD, Processus Continus Approfondis

Examen du Lundi 3 Septembre, 13h30 - 15h30 Aucun document ni calculatrice n'est autorisé

Dans tous les exercices $B = B_t$ est un mouvement brownien réel standard défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et $\mathcal{F} = \mathcal{F}_t^B$ est la filtration canonique associée.

Exercice 1

Soit (B_t) un mouvement Brownien standard. Montrer que les processus suivants sont des (\mathcal{F}_t^B) -martingales a) - $(B_t)_{t>0}$;

b) - $(B_t^2 - t)_{t>0}$.

Exercice 2

Soient a>0 et b deux réels. On cherche à calculer la probabilité que B atteigne la droite $t\mapsto (at+b)$. On introduit donc

$$T = \inf\{t \ge 0, B_t = at + b\}$$
 avec la convention $\inf\{\emptyset\} = +\infty$.

1) Calculer $P(T < +\infty)$ dans le cas $\mathbf{b} \leq \mathbf{0}$.

On suppose maintenant b > 0.

- 2) Montrer que pour tout réel α , le processus $(e^{\alpha B_t \frac{\alpha^2}{2}t})_{t \geq 0}$ est une martingale.
- 3) Montrer que si X est un processus réel continu et F est un fermé de \mathbb{R} alors $T_F(\omega) := \inf\{s; X_s(\omega) \in F\}$ est un temps d'arrêt. On pourra commencer par montrer que $\{T_F \leq t\} = \{d((X_u)_{0 \leq u \leq t}, F) = 0\}$.
- 4) Montrer que T est un temps d'arrêt.
- 5) Pourquoi ne peut-on pas appliquer directement le théorème d'arrêt à T? Montrer que pour tout α et tout t>0:

$$E[e^{\alpha B_{T \wedge t} - \frac{\alpha^2}{2}(T \wedge t)}] = 1.$$

- 6) Calculer la limite p.s. quand t tend vers l'infini de $e^{\alpha B_{T\wedge t}-\frac{\alpha^2}{2}(T\wedge t)}$.
- 7) Montrer que pour $\alpha = 2a$, on peut appliquer le théorème de convergence dominé.
- 8) En déduire $P(T < +\infty)$.
- 9) Comment traite-t-on facilement le cas a < 0?

Exercice 3

Pour tout $t \geq 0$, on définit la variable aléatoire :

$$Y_t = \int_0^t e^{-s} dB_s$$

- a) Rappeler la définition d'un processus Gaussien.
- b) Montrer qu'une limite dans $\mathcal{L}^2(\Omega)$ d'une suite de variables aléatoires Gaussiennes est encore une va Gaussienne.
- c) Montrer que $(Y_t)_{t>0}$ est un processus gaussien.
- d) Calculer son espérance et sa covariance.
- e) Montrer que (Y_t) est une martingale de carré intégrable et que la famille $(\mathbf{E}[Y_t^2])_{t\geq 0}$ est bornée. En déduire que (Y_t) converge p.s. et dans L^2 vers une variable aléatoire Y. Quelle est la loi de Y?

Exercice 4

Soient deux fonctions b, σ Lipschitziennes de \mathbb{R} dans \mathbb{R} , i.e.

$$\forall x, y \in \mathbb{R}$$
 $|b(y) - b(x)| \le L|x - y|, |\sigma(y) - \sigma(x)| \le L|x - y|,$

et une variable aléatoire X_0 indépendante de B définie sur le même espace $(\Omega, \mathcal{A}, \mathbf{P})$. On définit l'application qui à $X \in L^2([0, T]; \operatorname{Prog})$ associe $\Lambda(X) = Y$ le processus défini par

$$Y_t := X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s.$$

- a) Montrer que $\Lambda: L^2([0,T]; \operatorname{Prog}) \to L^2([0,T]; \operatorname{Prog}).$
- b) Etant donnés deux processus $X_i \in L^2(\text{Prog}), i = 1, 2$, et en notant $Y_i := \Lambda(X_i)$, montrer que

$$\int_0^T \mathbf{E}(|Y_{2t} - Y_{1t}|^2) dt \leq (T^2 + 2T) L^2 \int_0^T \mathbf{E}(|X_{2s} - X_{1s}|^2) ds.$$

c) - En déduire que pour T>0 assez petit, puis pour tout T>0, il existe un unique processus $X\in L^2([0,T];\operatorname{Prog})$ tel que

$$X_t = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s.$$

d) - On note μ_t la loi de X_t . Montrer que pour tout $\varphi \in C_c^2([0,T[\times \mathbb{R})])$ on a

$$\mathbf{E}(\varphi(T, X_T)) = \int_{\mathbb{R}} \varphi(0, .) \,\mu_0(dx) + \int_0^T \int_{\mathbb{R}} \left\{ \partial_t \varphi + b \,\partial_x \varphi + \frac{\sigma^2}{2} \,\partial_{xx}^2 \varphi \right\} (t, x) \,\mu_t(dx).$$

En supposant que $\mu_t(dx) = u(t,x) dx$ avec $u(t,x) \in C^2([0,T] \times \mathbb{R})$, en déduire l'équation aux dérivées partielles satisfaite par u.