EXERCISES ON THE HEAT EQUATION

1. The heat equation and the Fourier transform

Exercise 1.1. Apply the Fourier technique to the heat equation with a source term

(1.1)
$$\partial_t f = \Delta f + G \quad on \quad \mathcal{U}, \quad f(0,\cdot) = f_0 \quad on \quad \mathbb{R}^d,$$

with $f_0 \in L^2(\mathbb{R}^d)$ and $G \in L^2(\mathcal{U})$. Build a solution f which

- (1) satisfies $f \in C([0,T]; L^2(\mathbb{R}^d))$;
- (2) satisfies $f \in L^2(0,T;H^1(\mathbb{R}^d))$ and more precisely

(3) Establish the representation formula

(1.3)
$$f(t,\cdot) = \gamma_t * f_0 + \int_0^t \gamma_{t-s} * G(s,\cdot) ds,$$

where we recall that we have defined the heat kernel

$$\gamma_t(x) := \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}.$$

Exercise 1.2. Use the Fourier transform method in order to solve

(1) The wave equation

$$\partial_{tt}^2 f - c^2 \partial_{xx}^2 f = 0 \quad on \quad (0,T) \times \mathbb{R}, \quad f(0,\cdot) = f_0, \ \partial_x f(0,\cdot) = g_0 \quad on \quad \mathbb{R},$$

with f = f(t, x) and c > 0. [Hint. One has to find

$$f(t,x) = \frac{1}{2}(f_0(x+ct) + f_0(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g_0(y)dy.$$

(2) The Shrödinger equation on f = f(t, x)

$$i\partial_t f = \Delta f$$
 on $(0,T) \times \mathbb{R}^d$, $f(0,\cdot) = f_0$ on \mathbb{R}^d .

(3) The Kolmogorov equation on f = f(t, x, v)

$$\partial_t f + v \cdot \nabla_x f = \Delta_v f$$
 on $(0,T) \times \mathbb{R}^d \times \mathbb{R}^d$, $f(0,\cdot) = f_0$ on $\mathbb{R}^d \times \mathbb{R}^d$.

2. The heat equation and the heat kernel

Exercise 2.1.

- (1) Show that $\gamma_{t+s} = \gamma_t * \gamma_s$ for any t, s > 0.
- (2) Show that

(2.1)
$$\|\nabla_x \gamma_t\|_{L^r} = \frac{C_{d,r}}{t^{\frac{d}{2}(1-\frac{1}{r})+\frac{1}{2}}}$$

(3) Prove the Young inequality for convolution products

for any functions f, g and any (compatible) exponents $p, q, r \in [1, \infty]$.

(4) Recover the regularization estimate

(2.3)
$$||f(t,\cdot)||_{\dot{H}^1(\mathbb{R}^d)} \leqslant \frac{C}{t^{1k/2}} ||f_0||_{L^2}.$$

Exercise 2.2 (variation of parameters formula). Consider the heat equation with a source term (1.1) with $f_0 \in L^2(\mathbb{R}^d)$ and $G \in L^2(\mathcal{U})$. Established (directly) that the function

(2.4)
$$f(t,\cdot) := \gamma_t * f_0 + \int_0^t \gamma_{t-s} * G(s,\cdot) ds$$

- (1) is a solution to the heat equation with source term (1.1);
- (2) satisfies $f \in C([0,T]; L^2(\mathbb{R}^d))$.
- (3) Why this solution is nothing but the one provided by Exercise 1.1?
- (4) When furthermore $f_0 = 0$, establish (directly) that $f \in L^2(0,T;H^1(\mathbb{R}^d))$ and more precisely (1.2).
- (5) Establish (directly) (1.2) for $f_0 \in L^2(\mathbb{R}^d)$ and $G \in L^2(\mathscr{U})$.

Exercise 2.3. For $G \in L^1(\mathcal{U})$ establish that the solution f to the heat equation with source term given by (2.4) satisfies $f \in L^p(\mathcal{U})$ for any 1 . More generally and more precisely, establish that

$$||f||_{L^p(\mathscr{U})} \lesssim CT^{1-(1+\frac{d}{2})(\frac{1}{q}-\frac{1}{p}-1)}||G||_{L^q(\mathscr{U})},$$

under the condition $1 \leqslant q < p$, $(1 + \frac{d}{2})(\frac{1}{q} - \frac{1}{p}) < 1$.

Exercise 2.4. Consider the heat equation with source term

(2.5)
$$\frac{\partial f}{\partial t} = \Delta f + G \quad in \ \mathbb{R} \times \mathbb{R}^d,$$

with $f, G \in L^2(\mathbb{R}^{d+1})$. Using the Fourier transform in both variables, establish that

$$||f||_{L^p}^2 \lesssim ||f||_{H^1}^2 \lesssim ||f||_{L^2}^2 + ||G||_{L^2}^2,$$

with p := 2(d+1)/(d-1) > 2. [Hint. Write the equation on the Fourier side, use the Sobolev embedding in \mathbb{R}^{d+1} , the Fourier definition of the Sobolev space in \mathbb{R}^{d+1} and the Plancherel identity.]

3. The heat equation and the energy method

Exercise 3.1. (1) Consider $f \in L^1(\mathbb{R}^d)$ such that $\operatorname{div} f \in L^1(\mathbb{R}^d)$. Show that

$$\int_{\mathbb{D}^d} \operatorname{div} f \, dx = 0.$$

[Hint. That is true for $f \in C_c^1(\mathbb{R}^d)$. For $f \in L^1(\mathbb{R}^d)$ we introduce a mollifier (ρ_{ε}) , a truncation function χ_M and $\rho_{\varepsilon} * (f\chi_M) \in C_c^1(\mathbb{R}^d)$.]
(2) Deduce that for $f \in H^1(\mathbb{R}^d)$ such that $\Delta f \in L^2(\mathbb{R}^d)$ and $g \in H^1(\mathbb{R}^d)$, there holds

$$\int_{\mathbb{R}^d} g \, \Delta f = -\int_{\mathbb{R}^d} \nabla g \cdot \nabla f.$$

Exercise 3.2. Apply the energy method to the heat equation with a source term (1.1) with $f_0 \in L^2(\mathbb{R}^d)$ and $G \in L^2(\mathcal{U})$.

Exercise 3.3. Consider the parabolic equation

$$\partial_t f = \operatorname{div}(A\nabla f) + \operatorname{div}(af) + b \cdot \nabla f + c f \quad in \quad \mathcal{U},$$

for some coefficients $A, a, b, c \in L^{\infty}(\mathbb{R}^d)$ with $A \ge A_0 I$, $A_0 > 0$. We complement that equation with the initial condition

$$(3.1) f(0,\cdot) = f_0 on \mathbb{R}^d,$$

for an initial datum $f_0 \in L^2(\mathbb{R}^d)$.

- (1) Establish formally the energy estimate which implies that $f \in L^{\infty}(0,T;L^2)$ $L^2(0,T;H^1)$.
- (2) Same thing when we only assume $a, b \in L^d(\mathbb{R}^d)$ and $c \in L^{d/2}(\mathbb{R}^d)$.