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EXERCISES ON THE HEAT EQUATION

1. The heat equation and the Fourier transform

Exercise 1.1. Apply the Fourier technique to the heat equation with a source term

(1.1) Btf “ ∆f ` G on U , fp0, ¨q “ f0 on Rd,

with f0 P L2pRdq and G P L2pU q. Build a solution f which
(1) satisfies f P Cpr0, T s;L2pRdqq;
(2) satisfies f P L2p0, T ;H1pRdqq and more precisely

(1.2) }f}2L2p0,T ;H1q ď
1

2
}f0}2L2pRdq ` p

2

3
T 3{2 `

1

2
T q}G}2L2pU q.

(3) Establish the representation formula

(1.3) fpt, ¨q “ γt ˚ f0 `

ż t

0

γt´s ˚ Gps, ¨qds,

where we recall that we have defined the heat kernel

γtpxq :“
1

p4πtqd{2
e´

|x|2

4t .

Exercise 1.2. Use the Fourier transform method in order to solve

(1) The wave equation

B2
ttf ´ c2B2

xxf “ 0 on p0, T q ˆ R, fp0, ¨q “ f0, Bxfp0, ¨q “ g0 on R,

with f “ fpt, xq and c ą 0. [Hint. One has to find

fpt, xq “
1

2
pf0px ` ctq ` f0px ´ ctqq `

1

2c

ż x`ct

x´ct

g0pyqdy.s

(2) The Shrödinger equation on f “ fpt, xq

iBtf “ ∆f on p0, T q ˆ Rd, fp0, ¨q “ f0 on Rd.

(3) The Kolmogorov equation on f “ fpt, x, vq

Btf ` v ¨ ∇xf “ ∆vf on p0, T q ˆ Rd ˆ Rd, fp0, ¨q “ f0 on Rd ˆ Rd.
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2. The heat equation and the heat kernel

Exercise 2.1.
(1) Show that γt`s “ γt ˚ γs for any t, s ą 0.
(2) Show that

(2.1) }∇xγt}Lr “
Cd,r

t
d
2 p1´ 1

r q` 1
2

(3) Prove the Young inequality for convolution products

(2.2) }g ˚ h}Lp ď }g}Lq}h}Lr ,
1

p
“

1

q
`

1

r
´ 1,

for any functions f, g and any (compatible) exponents p, q, r P r1,8s.
(4) Recover the regularization estimate

(2.3) }fpt, ¨q} 9H1pRdq
ď

C

t1k{2
}f0}L2 .

Exercise 2.2 (variation of parameters formula). Consider the heat equation with
a source term (1.1) with f0 P L2pRdq and G P L2pU q. Established (directly) that
the function

(2.4) fpt, ¨q :“ γt ˚ f0 `

ż t

0

γt´s ˚ Gps, ¨qds

(1) is a solution to the heat equation with source term (1.1);
(2) satisfies f P Cpr0, T s;L2pRdqq.
(3) Why this solution is nothing but the one provided by Exercise 1.1?
(4) When furthermore f0 “ 0, establish (directly) that f P L2p0, T ;H1pRdqq and
more precisely (1.2).
(5) Establish (directly) (1.2) for f0 P L2pRdq and G P L2pU q.

Exercise 2.3. For G P L1pU q establish that the solution f to the heat equation
with source term given by (2.4) satisfies f P LppU q for any 1 ă p ă 1 ` 2{d. More
generally and more precisely, establish that

}f}LppU q ≲ CT 1´p1` d
2 qp 1

q ´ 1
p ´1q

}G}LqpU q,

under the condition 1 ď q ă p, p1 ` d
2 qp 1

q ´ 1
p q ă 1.

Exercise 2.4. Consider the heat equation with source term

(2.5)
Bf

Bt
“ ∆f ` G in R ˆ Rd,

with f,G P L2pRd`1q. Using the Fourier transform in both variables, establish that

}f}2Lp ≲ }f}2H1 ≲ }f}2L2 ` }G}2L2 ,

with p :“ 2pd ` 1q{pd ´ 1q ą 2. [Hint. Write the equation on the Fourier side, use
the Sobolev embedding in Rd`1, the Fourier definition of the Sobolev space in Rd`1

and the Plancherel identity.]
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3. The heat equation and the energy method

Exercise 3.1. (1) Consider f P L1pRdq such that divf P L1pRdq. Show that
ż

Rd

divf dx “ 0.

[Hint. That is true for f P C1
c pRdq. For f P L1pRdq we introduce a mollifier pρεq, a

truncation fiunction χM and ρε ˚ pfχM q P C1
c pRdq.]

(2) Deduce that for f P H1pRdq such that ∆f P L2pRdq and g P H1pRdq, there holds
ż

Rd

g∆f “ ´

ż

Rd

∇g ¨ ∇f.

Exercise 3.2. Apply the energy method to the heat equation with a source term
(1.1) with f0 P L2pRdq and G P L2pU q.

Exercise 3.3. Consider the parabolic equation

Btf “ divpA∇fq ` divpafq ` b ¨ ∇f ` c f in U ,

for some coefficients A, a, b, c P L8pRdq with A ě A0I, A0 ą 0. We complement
that equation with the initial condition

(3.1) fp0, ¨q “ f0 on Rd,

for an initial datum f0 P L2pRdq.

(1) Establish formally the energy estimate which implies that f P L8p0, T ;L2q X

L2p0, T ;H1q.

(2) Same thing when we only assume a, b P LdpRdq and c P Ld{2pRdq.
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