EXERCISES ON TRANSPORT EQUATIONS

1. The Gronwall Lemma

We recall the two following variants of the Gronwall lemma:

Lemma 1.1 (classical differential version of Gronwall lemma). We assume that $u \in C([0,T);\mathbb{R}), T \in (0,\infty)$, satisfies the differential inequality

$$(1.1) u' \le a(t)u + b(t) on (0,T),$$

for some $a, b \in L^1(0,T)$. Then, u satisfies pointwise the estimate

(1.2)
$$u(t) \le e^{A(t)}u(0) + \int_0^t b(s)e^{A(t)-A(s)} ds \quad on \quad (0,T),$$

where we have defined the primitive function

(1.3)
$$A(t) := \int_0^t a(s) \, ds.$$

Lemma 1.2 (integral version of Gronwall lemma). We assume $u \in \mathcal{L}^{\infty}(0,T;\mathbb{R})$, $T \in (0,\infty)$, satisfies pointwise the integral inequality

(1.4)
$$u(t) \le u_0 + \int_0^t a(s)u(s) \, ds + \int_0^t b(s) \, ds \quad on \quad (0,T),$$

for some $0 \le a \in L^1(0,T)$ and $b \in L^1(0,T)$. Then, u satisfies pointwise the estimate

(1.5)
$$u(t) \le u_0 e^{A(t)} + \int_0^t b(s)e^{A(t)-A(s)} ds \quad on \quad (0,T).$$

Exercise 1.3. (1) Prove Lemma 1.1 under the additional assumptions $a, u \ge 0$ as a consequence of Lemma 1.2. (Hint. Pass to the limit $\varphi \to \mathbf{1}_{[0,t]}$ in the distributional formulation of (1.1)).

(2) Prove Lemma 1.1 in full generality. (Hint. Take φ as a primitive of $\psi := -w + (\int_0^T w) \varrho$ for arbitrary $0 \le w \in C_c^1(\varepsilon, T)$ and $\varrho \in C_c(0, \varepsilon)$ a probability measure).

Exercise 1.4. Let $f \in C^1((0,T) \times \mathbb{R})$ and consider $u,v \in C([0,T];\mathbb{R})$ such that

$$(1.6) u' < f(t, u), \quad v' > f(t, u), \quad u(0) < v(0),$$

(in a distributional sense). Prove that $u \leq v$ on [0, T].

2. The characteristics method for smooth data

We consider the transport equation

(2.1)
$$\partial_t f + b \cdot \nabla f = 0$$
 in $(0, \infty) \times \mathbb{R}^d$, $f(0, x) = f_0(x)$ in \mathbb{R}^d .

for a drift force field $b = b(t, x) : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ which is C^1 and globally Lipschitz. We denote $t \mapsto x(t) = \Phi_{t,s}(x) \in C^1(\mathbb{R}_+; \mathbb{R}^d)$. the unique solution to the ODE

(2.2)
$$\dot{x}(t) = b(t, x(t)), \quad x(s) = x.$$

Exercise 2.1. Make explicit the construction and formulas in the three following

- (1) $b(x) = b \in \mathbb{R}^d$ is a constant vector. (Hint. One must find $f(t,x) = f_0(x bt)$).
- (2) b(x) = x. (Hint. One must find $f(t,x) = f_0(e^{-t}x)$). (3) b(x,v) = v, $f_0 = f_0(x,v) \in C^1(\mathbb{R}^d \times \mathbb{R}^d)$ and look for a solution $f = f(t,x,v) \in C^1((0,\infty) \times \mathbb{R}^d \times \mathbb{R}^d)$. (Hint. One must find $f(t,x,v) = f_0(x-vt,v)$).
- (4) Assume that b = b(x) and prove that (S_t) is a group on $C(\mathbb{R}^d)$, where

$$(2.3) \forall f_0 \in C(\mathbb{R}^d), \ \forall t \in \mathbb{R}, \ \forall x \in \mathbb{R}^d (S_t f_0)(x) = f(t, x) := f_0(\Phi_t^{-1}(x)).$$

Exercise 2.2. (1) Show that

$$f(t, x, v) := f_0(x - vt, v)e^{-t}, \quad t \ge 0, \ x \in \mathbb{R}^d, \ v \in \mathbb{R}^d,$$

is a solution to the dampted free transport equation

$$\partial_t f + v \cdot \nabla_x f = -f, \quad f(0, \cdot) = f_0.$$

(2) Show that

$$f(t,x) := f_0(\Phi_{0,t}(x)) e^{-\int_0^t c(\tau,\Phi_{\tau,t}(x)) d\tau} + \int_0^t G(s,\Phi_{s,t}(x)) e^{-\int_s^t c(\tau,\Phi_{\tau,t}(x)) d\tau} ds$$

is a solution to the transport equation with source term

(2.4)
$$\partial_t f + b \cdot \nabla f + c f = G, \quad f(0) = f_0,$$

with b = b(t, x), c = c(t, x) and G = G(t, x) smooth functions. (Hint. Compute the time derivative of $f(t, \Phi_t(x)) \exp \int_0^t c(s, \Phi_s(x)) ds$.

Exercise 2.3. 1) Consider the transport equation with vanishing boundary condition

(2.5)
$$\begin{cases} \partial_t f + \partial_x f = 0 \\ f(t,0) = 0, \quad f(0,x) = f_0(x), \end{cases}$$

where $f = f(t,x), \ t \geq 0, \ x \geq 0$. Assume $f_0 \in C^1_c(]0,\infty[)$. Establish that $\bar{f}(t,x) := f(t,x)$ $f_0(x-t)$ provides a solution to equation (2.5).

2) Consider the transport equation with boundary condition

(2.6)
$$\begin{cases} \partial_t f + \partial_x f + af = 0 \\ f(t, 0) = b(t), \quad f(0, x) = f_0(x), \end{cases}$$

where $f = f(t,x), t \geq 0, x \geq 0$. Assume $a \in L^{\infty}(\mathbb{R}_+), f_0 \in C_c^1(]0,\infty[)$ and $b \in C^1_c([0,T])$. Show that the characteristics method provides a unique smooth solution f given by $f = \overline{f}$, with

$$\bar{f}(t,x) := e^{A(x-t)-A(x)} f_0(x-t) \mathbf{1}_{x>t} + e^{-A(x)} b(t-x) \mathbf{1}_{t>x}, \quad A(x) := \int_0^x a(u) \, du.$$

(Hint. When $f \in C^1([0,T] \times \mathbb{R}_+)$, observe that both

$$\frac{d}{dt}(e^{A(t+x)}f(t,t+x)) = 0, \quad \frac{d}{dx}(e^{A(x)}f(t+x,x)) = 0, \quad A(x) := \int_0^x a(u) \, du,$$

and then $f = \bar{f}$. Also observe that $\bar{f} \in C^1([0,T] \times \mathbb{R}_+)$ in that case and conclude).

3. The characteristics method for non-smooth data

We recall that the solution to the transport equation is given by

(3.1)
$$\bar{f}(t,x) := f_0(\Phi_{-t}(x)).$$

We recall the Liouville theorem which tells us that the Jacobian function $J := \det D\Phi_t(y)$ satisfies the ODE

$$\frac{d}{dt}J = (\operatorname{div}b(t, \Phi_t(y)))J, \quad J(0, y) = 1,$$

so that

(3.2)
$$\det D\Phi_t(y) = e^{\int_0^t (\operatorname{div}b(s, \Phi_s(y))) ds}.$$

Exercise 3.1. Prove that (3.1) does not depend of the choice of the function $f_0 \in \mathcal{L}^p(\mathbb{R}^d)$ in the class $\{f_0\} \in L^p(\mathbb{R}^d)$. (Hint. Take $g_0 \in \{f_0\}$ and compute $||f_0 \circ \Phi_{-t} - g_0 \circ \Phi_{-t}||_{L^p}$).

Exercise 3.2. (1) For any matrix $B \in M_d(\mathbb{R})$ and $h \in \mathbb{R}$, prove that

$$\det(I + hB) = 1 + h \operatorname{tr} B + \mathcal{O}(h^2).$$

(2) Consider $A, B \in C^1((0,T); M_d(\mathbb{R}))$ which satisfy

$$\frac{d}{dt}A(t) = B(t)A(t),$$

and prove that

$$\frac{d}{dt}(\det A(t)) = (\operatorname{tr} B(t))(\det A(t)).$$

(3) Establish the Liouville theorem (3.2).

Exercise 3.3. Prove that when $f_0 \in L^{\infty}(\mathbb{R}^d)$, formula (3.1) provides a function $f \in L^{\infty}(\mathcal{U}) \cap C([0,T]; L^1_{loc}(\mathbb{R}^d))$ which is a solution to the transport equation (2.1) in the distributional sense.

Exercise 3.4. Prove that the function f given by formula (3.1) satisfies

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} f L^{*} \psi \, dx dt = \int_{\mathbb{R}^{d}} f_{0} \, \psi(0) \, dx - \int_{\mathbb{R}^{d}} f(T) \, \psi(T) \, dx,$$

with $L^*\psi := -\partial_t \psi - \operatorname{div}(b\,\psi)$, for any $\psi \in C_c^1([0,T] \times \mathbb{R}^d)$. (Hint. (1) Prove first the result for $\psi \in C_c^1((0,T) \times \mathbb{R}^d)$ by intoducing the function $\psi_\varepsilon := \psi *_{t,x} \rho_\varepsilon$, for a mollifier (ρ_ε) on \mathbb{R}^{d+1} . (2) Introduce next the function $\psi_\varepsilon := \psi \chi_\varepsilon$, with $\chi_\varepsilon \in C_c^1(\mathbb{R})$, $\mathbf{1}_{(\varepsilon,T-\varepsilon)} \leq \psi_\varepsilon \leq 1$, $\psi'_\varepsilon \to \delta_0 - \delta_T$. We may take $\psi'_\varepsilon(t) := \rho_\varepsilon(t) - \rho_\varepsilon(t-T)$ for a mollifier (ρ_ε) on \mathbb{R} .

Exercise 3.5. Consider the dampted free transport equation with source term

(3.3)
$$\begin{cases} \partial_t f + v \cdot \nabla_x + f = G \\ f(0, \cdot) = f_0, \end{cases}$$

where f = f(t, x, v), $t \ge 0$, $x, v \in \mathbb{R}^d$, $f_0 \in L^1(\mathbb{R}^{2d})$ and $G \in L^1((0, T) \times \mathbb{R}^{2d})$. Establish that

(3.4)
$$f(t,x,v) := f_0(x - vt, v)e^{-t} + \int_0^t G(s, x + (s - t)v, v)e^{s-t}ds$$

belongs to $C([0,T];L^1(\mathbb{R}^{2d}))$ and provides a weak solution.

Exercise 3.6. Consider the transport equation with boundary condition

(3.5)
$$\begin{cases} \partial_t f + \partial_x f + af = 0 \\ f(t, 0) = b(t), \quad f(0, x) = f_0(x), \end{cases}$$

where f = f(t, x), $t \ge 0$, $x \ge 0$, $a \in L^{\infty}(\mathbb{R}_+)$, $f_0 \in L^1(\mathbb{R}_+)$ and $b \in L^1([0, T])$. (a) Establish the a priori estimate

$$\sup_{[0,T]} \|f(t,\cdot)\|_{L^1} \le (\|b\|_{L^1(0,T)} + \|f_0\|_{L^1}) e^{t\|a\|_{L^\infty}}, \quad \forall t \ge 0.$$

(Hint. Use the Gronwall lemma).

- (b) Establish the existence of a weak solution $f \in C([0,T];L^1(\mathbb{R}_+))$.
 - 4. Duhamel formula and perturbation argument (bis)

Exercise 4.1. Consider the renewal equation

(4.1)
$$\begin{cases} \partial_t f + \partial_x f + af = 0 \\ f(t,0) = \rho_{f(t)}, \quad f(0,x) = f_0(x), \end{cases}$$

where f = f(t, x), $t \ge 0$, $x \ge 0$, and

$$\rho_g := \int_0^\infty g(y) \, a(y) \, dy.$$

Assume $a \in L^{\infty}(\mathbb{R}_+)$ and $f_0 \in L^1(\mathbb{R}_+)$. Establish that there exists a unique mild solution $f \in C([0,T];L^1(\mathbb{R}_+))$ to equation (4.1).