A crash course on evolution (linear) PDEs October 16, 2025

EXERCISES ON PARABOLIC EQUATIONS

1. THE VARIATIONAL METHOD

Exercise 1.1. We consider the parabolic equation

(1.1) Wf=Lf on (0,00) xR  f(0,2) = fo(z) in RY,
on the function f = f(t,z), t >0, x € R, where L is the operator
(1.2) Lf:=div(AVf) +div(af)+b- VS +cf,

with

0O<vI<AeL™® abel?+L® celLl, c,eLY?4+L>
We define V := {f € H', \Je_f € L?}. For fo € L?, establish the existence of a
weak solution f € L*(0,T;V).

[Hint. Observe that f(|b — a|ljp—aj>m + /C+1le,>nm) — 0 in L? when M — oo and that
2/d+2/2* =1, where 2% denotes the Sobolev exponent.]

Exercise 1.2. We consider the Fokker-Planck equation
(1.3) Of = Af +div(zf) on (0,00) x RY  f(0,2) = fo(z) in RY,

on the function f = f(t,z), t >0, z € R, We define L? := {f € L% (x)kf € L?},
()2 := 1+ |z, and H} .= {f € L?; Vf € L}}. For fo € L}, k > d/2, establish
the existence of a weak solution f € L*(0,T; H}).

Exercise 1.3. We consider the transport equation with kernel term
Of =div(af)+b-Vf+cf+Kf,  [f(0)= fo,
on the function f = f(t,x), t >0, x € R, with
(Kf) () := / k(z,9)f(y)dy, a,bce L2((0,T) xRY), ke L*([R? x R?).
R4

For fo € L*(R%), establish the existence of a weak solution f € L?((0,T) x R?)
thanks to the variational method.

[Hint. Observe that K : L*(R%) — L*(R%).]
Exercise 1.4. We consider the kinetic Fokker-Planck (or Kolmogorov) equation

atfzfv'vmf‘i’Avfa f(ov'):fO;

on the function f = f(t,x,v), t > 0, z,v € RL. For fy € L*(R??), establish the
existence of a weak solution f € L((0,T) x R%; HL(R)) thanks to the variational
method.
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Exercise 1.5. Prove that
d
L0, T; H'RY) = {Fo+ Y 0, Fi, Fy € L*(U), 0<i<d}.

i=1
[Hint. Consider the mapping A : # := L*(0,T; H') — & := (L*(U))*™, f — (f, V),
F:=RAand B:=A"': % — L?(0,T; H). For a linear form T € L?(0,T; H *(R%)) =
H', define the linear form S : # — R, G € % — S(G) := (T, BG) and prove that there
exists § € & and thus F; € L*(U) such that S|z = S and S(G) = Y ,(Fi, Gi) 2 for
any G € &. Deduce that (T, f) = S(Af) and conclude].

2. AROUND RENORMALIZATION
Exercise 2.1. (1) For f € L*(U) prove that f+,|f| € L*(U). For f € L*(0,T; H*(R?))
prove that fy,|f| € L*(0,T; HY(R?)) and Vf = Vfl;so [Hint. Consider B.(f)
with B.(s) := s2 (e2 + s?)71/2].  What about f € Xr ?
(2) For f € H*() prove that V.f =0 on {f = ¢} for any ¢ € R. [Hint. Consider
55(f)/and '75(f) with Be(s) = (S + 5)1(52 + 52)_1/2 and '76(3) = (S - 5)3(62 +
s2)~1/2].

Exercise 2.2 (Weak maximum principle). We consider the parabolic equation
(2.1) Wf=LFf+F on (0,00) xRL  £(0,2) = fo(z) in RY,

on the function f = f(t,x), t >0, x € R, with L given by (1.2) and

(2.2) Aya,b,ce€ L*RY, A>vl, v>0.

We assume 0 < fo € L2(R%), 0 < § € L*(0,T; H Y (RY)) (the order relation
> 0 has to be understood in the weak sense). Establish that the weak solution
f € L*0,T; H') satisfies f > 0.

Exercise 2.3 (Maximum principle). We consider more or less the same equation
as above and we aim to establish a mazimum principle in the sense that f € L™= (U)
under convenient (uniform) boundedness conditions on the data.

(1) We first assume a = b = c = F = 0 and fo € L>®(RY). Establish that

I fll oo @y < 1 follLos me)-
[Hint. For k > || fo||zo, use the test function ¢ := (f — k)4, observe that VfVp =V fVp
and establish that f < k on U].

(2) Establish the same estimate when a = ¢ = F = 0 and b € L (or even
be L4+ L>).

Exercise 2.4. Let (p:) be a mollifer on the real line, namely 0 < p. € CX(R)
such that ||pe|lpr = 1 and (for instance) suppp. C (—e,e). For f € L _(U),
U= (0,T) x R, we define f. = p. *; f.

(1) For f € C([0,T); L*(R%)), prove that f. € C1((0,7); L2(R%)) and f. — f in
C((0,7); L*(RY)).

(2) For f € L*(U), prove that f. € C1((0,T); L*(RY)) and f. — f in L*(U). [Hint.
Use that for any n > 0 there exists g € C.(U) such that ||g — f|lr2@w) < n.]

(3) For any f € Xr, prove that f. € C1((0,T); H*(RY)) and f. — f in Xr.
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Exercise 2.5. (LP estimates). For b,c € L>®(R%), (divb)_ € L®(R%), f, €
LP(RY), 1 < p < oo, we consider the linear parabolic equation

(2.3) OWf =Af=Af+b-Vi+cf, [(0)=fo

We introduce the usual notations H := L?, V := H' and X1 the associated space
for some given T > 0.

1) Consider a convex function 3 € C%(R) such that 3(0) = 3'(0) = 0 and p" € L.
Prove that any variational solution f € Xp to the above linear parabolic equation
satisfies

t
0

» B(fy) dx < /Rd B(fo) dz +/ Rd{cfﬂ/(f) — (divd) B(f)} dxds,

for anyt > 0.

2) Assuming moreover that > 0 and there exists a constant K € (0,00) such that
0<sf(s) < KpB(s) for any s € R, deduce that for some constant C := C(b, ¢, K),
there holds

B(fy)dx < eCt/ B(fo)dz, Yt>0.
Rd' Rd

3) Prove that for any p € [1,2], for some constant C := C(b,c) and for any fo €
L?2N LP, there holds

1F@Olee < e llfollr, VE=0.

[Hint. For p € (1,2], define 8 ~ sP on Ry and extend it to R by symmetry. More
precisely, define B(s) = 201s<o + p(p — 1)sP 21554, with 20 = p(p — 1)aP~2,
and then the primitives which vanish at the origin, which are thus defined by
Bo(s) = 2051s<a + (psP" + p(p — 2)aP M) esa, Bals) = 05°1eca + (P + p(p —
2)aP s+ AaP)lssa, A:=p(p—1)/2—1—p(p—2). Observe that s, (s) < 284(s)
because s (s) < f.,(s) and B,(s) < B(s) because S(s) < 5”(s). Pass to the limit
p — 1 in order to deal with the case p = 1.]

4) Prove that for any p € [2,00] and for some constant C := C(a,c,p) there holds
1FO e < e““NfollLr, V>0

[Hint. Define B}(s) = p(p — 1)sP21,<r + 201,5g, with 20 = p(p — 1)RP~2,
and then the primitives which vanish in the origin and which are thus defined by
Bh(s) =psP ' 1<r+ (pPRP™1 +20(s— R)) 15> R, Br(s) = sPls<p+ (RP +pRP~ (s —
R)+60(s—R)*)14sr. Observe that sB5(s) < pBr(s) because sB%(s) < (p—1)B%(s)
and Br(s) < B(s) because BY(s) < ”(s). Pass to the limit p — oo in order to deal
with the case p = 00.]

5) Prove that for any fo € LP(R?), 1 < p < oo, there exists at least one weak (in
the sense of distributions) solution to the linear parabolic equation (2.3). [Hint:
Consider fy, € L' N L* such that fy, — fo in LP, 1 < p < oo, and prove that
the associate variational solution f, € Xr is a Cauchy sequence in C([0,T]; LP).
Conclude the proof by passing to the limit p — oo.] Prove that f > 0 if furthermore
fo=>0.
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3. NASH ARGUMENT

Exercise 3.1. (Poincaré Wirtinger inequality) Consider f € L _(R?) such
that Vf € L2(RY) and 0 < p € LI(R?) with unit integral. Prove that

1/2
1= £ *pllaeoy < C( [ pe)ldz) 19 Loy

Exercise 3.2. (Nash inequality) FEstablish the Nash inequality with the help of
the above Poincaré Wirtinger inequality.

Exercise 3.3. (Variant proofs of Nash inequality using the Sobolev in-
equality)

1. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d > 3. (Hint. Write the interpolation estimate

£z < A1 1727

and then use the Sobolev inequalily associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d = 2. (Hint. Prove the interpolation estimate

1/4 1/2
£ lze < WA P22,

then use the Sobolev inequality associated to the Lebesgue expoment p = 1 and
p* = 2 and finally the Cauchy-Schwartz inequality in order to bound the second
term).

3. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d = 1. (Hint. Prove the interpolation estimate

1/2 1/3
1£llze < IFIR2 17272102,

then use the Sobolev inequality associated to the Lebesque exponent p = 1 and

*

p* := oo and finally the Cauchy-Schwartz inequality in order to bound the second
term,).

Exercise 3.4. (A regularity estimate) We consider the parabolic equation

of =Af+div(af), f(0)= fo,
with a € W (R4). Establish that
C
IVF@Olee < S llfoller,  vE>0,
for any p € [2,00] and for some associated constant C,a > 0.
Exercise 3.5. (A gain of integrability estimate)

(1) Using the Fourier transform technique, establish that the solution to the heat
equation with source term We consider the heat equation with source term

o f =Af +divG,
with f,G € L>(R¥1Y), satisfies f € LP(RTY), with p > 2.
(2) Deduce that any weak solution to the parabolic equation
O f = div(AV ),

with 0 < vl < A € L™, satisfies f € LP((Ty, Ty) x RY), with p > 2, for any
0< Ty <1y <o0.
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4. THE MCKEAN EQUATION

Exercise 4.1. Consider a sequence (f,) such that f, — f in L>(U) and, for some
k>d/2,

fn€Z:={ge L*U); g >0, llg®)llr < A®), llg®)llz < B(t)}-

(1) Prove that f > 0. [Hint. Prove that for g € L'(U), we have g > 0 if and only
if {g,) > 0 for any ¢ € L>=(U).]
(2) Prove that || f||p1rey < A a.e. on (0,T). [Hint. Prove that || fu(t,-)|lrr —

£t )|lzr in LY(0,T) by using the Cauchy-Schwartz inequality and conclude by
using the reverse sense of the dominated convergence Lebesgue theorem.]

(3) Prove that || f||p2 ey < B a.e. on (0,T). [Hint. For any k" € [0, k), prove that
(@)™ — fl@)" strongly L*(U) and that ||fallz2, = || fall2, a.e. on (0,T). Next
deduce that || f(t, ')”Li/ < B a.e. on (0,T) for any k' € (0,k) and conclude.]

Exercise 4.2. Consider a sequence (f,) such that f, — f in L*(U) and f, € Z,
for some k > d/2.

(1) Prove that f > 0. [Hint. Prove that for g € L'(U), we have g > 0 if and only
if (g, ) > 0 for any ¢ € DU).]

(2) Prove that ||f|p1(rayy < A a.e. on (0,T). [Hint. Prove that f, — f in
L2(0,T; L%,) for any k' € [0,k) and there exists a sequence (gy,) such that gy, is a
convex combination of fi,..., f, and g, — f in L?(0,T;L3,). Conclude with the
help of Exercise 4.1.]

(3) - Prove that f> — g weakly and g > f%. [Hint. Consider the family </ of
real affine functions such that ¢ € < iff {(s) < s® for any s € R and observe that

U(fn) — £(f) weakly.]
- We define Gy (t) := || fu(t,-)||32. Prove that, up to the extraction of a subse-
k

quence, G, = G weakly and G(t) > (g(t,-)) a.e. on (0,T). [Hint. Take ¥(t)xr(z)
as a test function].

- Conclude that || f||2re) < B a.e. on (0,T).
(4) - For0<F e L*U) such that

/FW < Cllellcromrrey, Yo,
establish that ||F| peo,r;r2) < C by proving first
[E R0 <Clvlnom, ¥o. 0.

- Establish that || f(t,")||2 < C = B(T) a.e. on (0,T).
(5) For 0 < F € LY(U) such that

/F¢ < C||¢HL1(O,T))7 un

establish that || F| e o,r;z1y < C. [Hint. Consider ¢ := 1p>c4e, € > 0]. Recover

(2).
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Exercise 4.3. (McKean-Vlasov equation) Consider the linear parabolic equa-
tion

(4.1) Of =Lyf =Af+div(agf), f(0)= fo,
with
(4.2) agi=axg, acL®RYY,

associated to the nonlinear McKean-Vlasov equation. We prove the existence and
uniqueness of the solution to this equation by using directly the J.-L. Lions theorem
in the flat L? and associated Sobolev spaces.

1) Defining F := f(x)?*, establish that F is a solution to the linear parabolic
equation

(4.3) O F = M F = AF + div(agF) +b- VF + ¢, F,

with b and ¢, to be determined. [Hint. b:= —4kx/(z)?, ¢4 := (z) "2 (8|V(z)k|? —
Alz)?*) + La, - b]

2) Establish that for any Fy € L? and g € L>=(0,T; L"), there exists a unique
variational solution F' € X to the parabolic equation (4.3).

3) Establish that for fo € Lﬁ and g € L>=(0,T; L'), there exists a unique variational
solution f € Yr to the parabolic equation (4.1) with Y7 = C([0,T]; H)NL?*(0,T; V)N
HY0,T;V"), H := L}, V := H}.

Exercise 4.4. (McKean-Vlasov equation again) We consider the same linear

parabolic equation as in FExercise 4.3 and the associated nonlinear McKean-Viasov
equation. We extend the existence of solutions to a larger class of initial data.

1) Prove that for fo € L}, k > d/2, and g € L*(U), the solution f € Xt to the
linear parabolic equation satisfies

(4.4) 1f @) < [ follpr, Vit =0.

[Hint. Define f *+ the solutions associated to the initial data fo+ > 0. Prove that
f=f*t— f and conclude.]

2) When diva € L, recover (4.4) by using a convenient family of renormalizing
functions.

3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Viasov
equation for any fo € L3, k > d/2.

4) Prove the existence of a weak solution to the nonlinear McKean-Viasov equation
(4.1) for any initial datum fo € L' N L%, k > 0.
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