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EXERCISES ON PARABOLIC EQUATIONS

1. The variational method

Exercise 1.1. We consider the parabolic equation

(1.1) ∂tf = L f on (0,∞)× Rd, f(0, x) = f0(x) in Rd,

on the function f = f(t, x), t ≥ 0, x ∈ Rd, where L is the operator

(1.2) Lf := div(A∇f) + div(af) + b · ∇f + cf,

with

0 < νI ≤ A ∈ L∞, a, b ∈ Ld + L∞, c ∈ L1
loc, c+ ∈ Ld/2 + L∞.

We define V := {f ∈ H1,
√
c−f ∈ L2}. For f0 ∈ L2, establish the existence of a

weak solution f ∈ L2(0, T ;V ).

[Hint. Observe that f(|b− a|1|b−a|>M +
√
c+1c+>M ) → 0 in L2 when M → ∞ and that

2/d+ 2/2∗ = 1, where 2∗ denotes the Sobolev exponent.]

Exercise 1.2. We consider the Fokker-Planck equation

(1.3) ∂tf = ∆f + div(xf) on (0,∞)× Rd, f(0, x) = f0(x) in Rd,

on the function f = f(t, x), t ≥ 0, x ∈ Rd. We define L2
k := {f ∈ L2; ⟨x⟩kf ∈ L2},

⟨x⟩2 := 1 + |x|2, and H1
k := {f ∈ L2

k; ∇f ∈ L2
k}. For f0 ∈ L2

k, k > d/2, establish
the existence of a weak solution f ∈ L2(0, T ;H1

k).

Exercise 1.3. We consider the transport equation with kernel term

∂tf = div(af) + b · ∇f + cf +Kf, f(0) = f0,

on the function f = f(t, x), t ≥ 0, x ∈ Rd, with

(Kf)(x) :=
∫
Rd

k(x, y)f(y)dy, a, b, c ∈ L∞((0, T )× Rd), k ∈ L2(Rd × Rd).

For f0 ∈ L2(Rd), establish the existence of a weak solution f ∈ L2((0, T ) × Rd)
thanks to the variational method.

[Hint. Observe that K : L2(Rd) → L2(Rd).]

Exercise 1.4. We consider the kinetic Fokker-Planck (or Kolmogorov) equation

∂tf = −v · ∇xf +∆vf, f(0, ·) = f0,

on the function f = f(t, x, v), t ≥ 0, x, v ∈ Rd. For f0 ∈ L2(R2d), establish the
existence of a weak solution f ∈ L2((0, T )× Rd

x;H
1(Rd

v)) thanks to the variational
method.
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Exercise 1.5. Prove that

L2(0, T ;H−1(Rd)) = {F0 +

d∑
i=1

∂xi
Fi, Fi ∈ L2(U), 0 ≤ i ≤ d}.

[Hint. Consider the mapping A : H := L2(0, T ;H1) → E := (L2(U))d+1, f 7→ (f,∇f),

F := RA and B := A−1 : F → L2(0, T ;H1). For a linear form T ∈ L2(0, T ;H−1(Rd)) =

H ′, define the linear form S : F → R, G ∈ F 7→ S(G) := ⟨T,BG⟩ and prove that there

exists S̄ ∈ E ′ and thus Fi ∈ L2(U) such that S̄|F = S and S̄(G) =
∑

i(Fi, Gi)L2(U) for

any G ∈ E . Deduce that ⟨T, f⟩ = S(Af) and conclude].

2. Around renormalization

Exercise 2.1. (1) For f ∈ L2(U) prove that f±, |f | ∈ L2(U). For f ∈ L2(0, T ;H1(Rd))
prove that f±, |f | ∈ L2(0, T ;H1(Rd)) and ∇f+ = ∇f1f>0 [Hint. Consider βε(f)

with βε(s) := s2+(ε
2 + s2)−1/2]. What about f ∈ XT ?

(2) For f ∈ H1(Ω) prove that ∇f = 0 on {f = c} for any c ∈ R. [Hint. Consider
βε(f) and γε(f) with βε(s) := (s + ε)2+(ε

2 + s2)−1/2 and γε(s) := (s − ε)2+(ε
2 +

s2)−1/2].

Exercise 2.2 (Weak maximum principle). We consider the parabolic equation

(2.1) ∂tf = L f + F on (0,∞)× Rd, f(0, x) = f0(x) in Rd,

on the function f = f(t, x), t ≥ 0, x ∈ Rd, with L given by (1.2) and

(2.2) A, a, b, c ∈ L∞(Rd), A ≥ νI, ν > 0.

We assume 0 ≤ f0 ∈ L2(Rd), 0 ≤ F ∈ L2(0, T ;H−1(Rd)) (the order relation
≥ 0 has to be understood in the weak sense). Establish that the weak solution
f ∈ L2(0, T ;H1) satisfies f ≥ 0.

Exercise 2.3 (Maximum principle). We consider more or less the same equation
as above and we aim to establish a maximum principle in the sense that f ∈ L∞(U)
under convenient (uniform) boundedness conditions on the data.

(1) We first assume a = b = c = F = 0 and f0 ∈ L∞(Rd). Establish that
∥f∥L∞(U) ≤ ∥f0∥L∞(Rd).
[Hint. For k > ∥f0∥L∞ , use the test function φ := (f −k)+, observe that ∇f∇φ = ∇f∇φ

and establish that f ≤ k on U ].

(2) Establish the same estimate when a = c = F = 0 and b ∈ L∞ (or even
b ∈ Ld + L∞).

Exercise 2.4. Let (ρε) be a mollifer on the real line, namely 0 ≤ ρε ∈ C∞
c (R)

such that ∥ρε∥L1 = 1 and (for instance) supp ρε ⊂ (−ε, ε). For f ∈ L1
loc(U),

U := (0, T )× Rd, we define fε := ρε ∗t f .
(1) For f ∈ C([0, T ];L2(Rd)), prove that fε ∈ C1((0, T );L2(Rd)) and fε → f in
C((0, T );L2(Rd)).

(2) For f ∈ L2(U), prove that fε ∈ C1((0, T );L2(Rd)) and fε → f in L2(U). [Hint.
Use that for any η > 0 there exists g ∈ Cc(U) such that ∥g − f∥L2(U) < η.]

(3) For any f ∈ XT , prove that fε ∈ C1((0, T );H1(Rd)) and fε → f in XT .
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Exercise 2.5. (Lp estimates). For b, c ∈ L∞(Rd), (div b)− ∈ L∞(Rd), f0 ∈
Lp(Rd), 1 ≤ p ≤ ∞, we consider the linear parabolic equation

(2.3) ∂tf = Λf := ∆f + b · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space
for some given T > 0.

1) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞.
Prove that any variational solution f ∈ XT to the above linear parabolic equation
satisfies∫

Rd

β(ft) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c f β′(f)− (div b)β(f)} dxds,

for any t ≥ 0.

2) Assuming moreover that β ≥ 0 and there exists a constant K ∈ (0,∞) such that
0 ≤ s β′(s) ≤ Kβ(s) for any s ∈ R, deduce that for some constant C := C(b, c,K),
there holds ∫

Rd

β(ft) dx ≤ eCt

∫
Rd

β(f0) dx, ∀ t ≥ 0.

3) Prove that for any p ∈ [1, 2], for some constant C := C(b, c) and for any f0 ∈
L2 ∩ Lp, there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

[Hint. For p ∈ (1, 2], define β ≃ sp on R+ and extend it to R by symmetry. More
precisely, define β′′

α(s) = 2θ1s≤α + p(p − 1)sp−21s>α, with 2θ = p(p − 1)αp−2,
and then the primitives which vanish at the origin, which are thus defined by
β′
α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) = θs21s≤α + (sp + p(p −

2)αp−1s+Aαp)1s>α, A := p(p− 1)/2− 1−p(p− 2). Observe that sβ′
α(s) ≤ 2βα(s)

because sβ′′
α(s) ≤ β′

α(s) and βα(s) ≤ β(s) because β′′
α(s) ≤ β′′(s). Pass to the limit

p→ 1 in order to deal with the case p = 1.]

4) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

[Hint. Define β′′
R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2,

and then the primitives which vanish in the origin and which are thus defined by
β′
R(s) = psp−11s≤R+(pRp−1+2θ(s−R))1s>R, βR(s) = sp1s≤R+(Rp+pRp−1(s−
R)+θ(s−R)2)1s>R. Observe that sβ′

R(s) ≤ pβR(s) because sβ
′′
R(s) ≤ (p−1)β′

R(s)
and βR(s) ≤ β(s) because β′′

R(s) ≤ β′′(s). Pass to the limit p→ ∞ in order to deal
with the case p = ∞.]

5) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in
the sense of distributions) solution to the linear parabolic equation (2.3). [Hint:
Consider f0,n ∈ L1 ∩ L∞ such that f0,n → f0 in Lp, 1 ≤ p < ∞, and prove that
the associate variational solution fn ∈ XT is a Cauchy sequence in C([0, T ];Lp).
Conclude the proof by passing to the limit p→ ∞.] Prove that f ≥ 0 if furthermore
f0 ≥ 0.
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3. Nash argument

Exercise 3.1. (Poincaré Wirtinger inequality) Consider f ∈ L1
loc(Rd) such

that ∇f ∈ L2(Rd) and 0 ≤ ρ ∈ L1
2(Rd) with unit integral. Prove that

∥f − f ∗ ρ∥L2(Rd) ≤ C
(∫

Rd

ρ(z)|z|2dz
)1/2

∥∇f∥L2(Rd).

Exercise 3.2. (Nash inequality) Establish the Nash inequality with the help of
the above Poincaré Wirtinger inequality.

Exercise 3.3. (Variant proofs of Nash inequality using the Sobolev in-
equality)
1. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d ≥ 3. (Hint. Write the interpolation estimate

∥f∥L2 ≤ ∥f∥θL1 ∥f∥1−θ
L2∗

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d = 2. (Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/4L1 ∥f3/2∥1/2L2 ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and
p∗ := 2 and finally the Cauchy-Schwartz inequality in order to bound the second
term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in
dimension d = 1. (Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/2L1 ∥f3/2∥1/3L∞ ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and
p∗ := ∞ and finally the Cauchy-Schwartz inequality in order to bound the second
term).

Exercise 3.4. (A regularity estimate) We consider the parabolic equation

∂tf = ∆f + div(af), f(0) = f0,

with a ∈W 1,∞(Rd). Establish that

∥∇f(t)∥Lp ≤ C

tα
∥f0∥L1 , ∀ t > 0,

for any p ∈ [2,∞] and for some associated constant C,α > 0.

Exercise 3.5. (A gain of integrability estimate)
(1) Using the Fourier transform technique, establish that the solution to the heat
equation with source term We consider the heat equation with source term

∂tf = ∆f + divG,

with f,G ∈ L2(Rd+1), satisfies f ∈ Lp(Rd+1), with p > 2.

(2) Deduce that any weak solution to the parabolic equation

∂tf = div(A∇f),
with 0 < νI ≤ A ∈ L∞, satisfies f ∈ Lp((T0, T1) × Rd), with p > 2, for any
0 < T0 < T1 <∞.
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4. The McKean equation

Exercise 4.1. Consider a sequence (fn) such that fn → f in L2(U) and, for some
k > d/2,

fn ∈ Z := {g ∈ L2(U); g ≥ 0, ∥g(t)∥L1 ≤ A(t), ∥g(t)∥L2
k
≤ B(t)}.

(1) Prove that f ≥ 0. [Hint. Prove that for g ∈ L1(U), we have g ≥ 0 if and only
if ⟨g, φ⟩ ≥ 0 for any φ ∈ L∞(U).]
(2) Prove that ∥f∥L1(Rd) ≤ A a.e. on (0, T ). [Hint. Prove that ∥fn(t, ·)∥L1 →
∥f(t, ·)∥L1 in L1(0, T ) by using the Cauchy-Schwartz inequality and conclude by
using the reverse sense of the dominated convergence Lebesgue theorem.]

(3) Prove that ∥f∥L2
k(Rd) ≤ B a.e. on (0, T ). [Hint. For any k′ ∈ [0, k), prove that

fn⟨x⟩k
′ → f⟨x⟩k′

strongly L2(U) and that ∥fn∥L2
k′

→ ∥fn∥L2
k′

a.e. on (0, T ). Next

deduce that ∥f(t, ·)∥L2
k′

≤ B a.e. on (0, T ) for any k′ ∈ (0, k) and conclude.]

Exercise 4.2. Consider a sequence (fn) such that fn ⇀ f in L2(U) and fn ∈ Z,
for some k > d/2.

(1) Prove that f ≥ 0. [Hint. Prove that for g ∈ L1(U), we have g ≥ 0 if and only
if ⟨g, φ⟩ ≥ 0 for any φ ∈ D(U).]
(2) Prove that ∥f∥L1(Rd)) ≤ A a.e. on (0, T ). [Hint. Prove that fn ⇀ f in

L2(0, T ;L2
k′) for any k′ ∈ [0, k) and there exists a sequence (gn) such that gn is a

convex combination of f1, . . . , fn and gn → f in L2(0, T ;L2
k′). Conclude with the

help of Exercise 4.1.]

(3) - Prove that f2n ⇀ g weakly and g ≥ f2. [Hint. Consider the family A of
real affine functions such that ℓ ∈ A iff ℓ(s) ≤ s2 for any s ∈ R and observe that
ℓ(fn)⇀ ℓ(f) weakly.]

- We define Gn(t) := ∥fn(t, ·)∥2L2
k
. Prove that, up to the extraction of a subse-

quence, Gn ⇀ G weakly and G(t) ≥ ⟨g(t, ·)⟩ a.e. on (0, T ). [Hint. Take ψ(t)χR(x)
as a test function].

- Conclude that ∥f∥L2
k(Rd) ≤ B a.e. on (0, T ).

(4) - For 0 ≤ F ∈ L2(U) such that∫
Fφ ≤ C∥φ∥L1(0,T ;L2), ∀φ,

establish that ∥F∥L∞(0,T ;L2) ≤ C by proving first∫
(F ∧ n)2ψ ≤ C∥ψ∥L1(0,T ), ∀ψ, ∀n.

- Establish that ∥f(t, ·)∥L2
k
≤ C = B(T ) a.e. on (0, T ).

(5) For 0 ≤ F ∈ L1(U) such that∫
Fψ ≤ C∥ψ∥L1(0,T )), ∀ψ,

establish that ∥F∥L∞(0,T ;L1) ≤ C. [Hint. Consider ψ := 1F≥C+ε, ε > 0]. Recover
(2).
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Exercise 4.3. (McKean-Vlasov equation) Consider the linear parabolic equa-
tion

(4.1) ∂tf = Lgf := ∆f + div(agf), f(0) = f0,

with

(4.2) ag := a ∗ g, a ∈ L∞(Rd)d,

associated to the nonlinear McKean-Vlasov equation. We prove the existence and
uniqueness of the solution to this equation by using directly the J.-L. Lions theorem
in the flat L2 and associated Sobolev spaces.

1) Defining F := f⟨x⟩2k, establish that F is a solution to the linear parabolic
equation

(4.3) ∂tF = MgF := ∆F + div(agF ) + b · ∇F + cgF,

with b and cg to be determined. [Hint. b := −4kx/⟨x⟩2, cg := ⟨x⟩−2k(8|∇⟨x⟩k|2 −
∆⟨x⟩2k) + 1

2ag · b.]
2) Establish that for any F0 ∈ L2 and g ∈ L∞(0, T ;L1), there exists a unique
variational solution F ∈ XT to the parabolic equation (4.3).

3) Establish that for f0 ∈ L2
k and g ∈ L∞(0, T ;L1), there exists a unique variational

solution f ∈ YT to the parabolic equation (4.1) with YT = C([0, T ];H)∩L2(0, T ;V )∩
H1(0, T ;V ′), H := L2

k, V := H1
k .

Exercise 4.4. (McKean-Vlasov equation again) We consider the same linear
parabolic equation as in Exercise 4.3 and the associated nonlinear McKean-Vlasov
equation. We extend the existence of solutions to a larger class of initial data.

1) Prove that for f0 ∈ L2
k, k > d/2, and g ∈ L1(U), the solution f ∈ XT to the

linear parabolic equation satisfies

(4.4) ∥f(t, ·)∥L1 ≤ ∥f0∥L1 , ∀ t ≥ 0.

[Hint. Define f± the solutions associated to the initial data f0± ≥ 0. Prove that
f = f+ − f− and conclude.]

2) When diva ∈ L∞, recover (4.4) by using a convenient family of renormalizing
functions.

3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Vlasov
equation for any f0 ∈ L2

k, k > d/2.

4) Prove the existence of a weak solution to the nonlinear McKean-Vlasov equation
(4.1) for any initial datum f0 ∈ L1 ∩ L2

k, k > 0.
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