
A crash course on evolution PDEs April 23, 2025

LECTURE 1 - THE HEAT EQUATION

The present lecture mainly addresses one of the simplest evolution equations which
is the heat equation for which we present some simple but efficient tools for solving
it. We next present some semigroup/perturbation arguments for establishing the
existence of solutions to more general parabolic equations.
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2 LECTURE 1 ON EVOLUTION PDES

1. Topic 1. The heat equation and the Fourier transform

We consider the heat equation

(1.1) Btf “ ∆f on U :“ p0, T q ˆ Rd,

T P p0,8s, on the function f “ ft “ fpt, xq, t P r0, T q the time variable, x P Rd the
position variable, where ∆ is the Laplace operator

∆f :“
d

ÿ

j“1

B2
jjf,

and we use the shorthands Bt :“
B
Bt , Bj :“ B

Bxj
and B2

jk :“ B
2

BxjBxk
. We complement

this time evolution equation with an initial condition

(1.2) fp0, ¨q “ f0 on Rd.

We define the Fourier transform (for functions defined on Rd)

pFfqpξq “ f̂pξq :“

ż

Rd

fpxqe´ix¨ξdξ, @ ξ P Rd.

On the Fourier side, the heat equation (1.1)-(1.2) writes

(1.3) Btf̂ “ ´|ξ|2f̂ , f̂p0, ¨q “ f̂0,

by observing that FpBjfq “ iξj f̂ . We readily solve that equation and we get

(1.4) f̂pt, ξq “ Γtpξqf̂0pξq, @ t ě 0, ξ P Rd,

where we have defined the Gaussian function Γtpξq :“ e´t|ξ|
2

. In order to come
back to the initial PDE side, we recall that, defining

p qFgqpxq :“

ż

Rd

gpξqeix¨ξdξ,

we have F´1 “ p2πqd qF , what means

F´1 ˝ Fg “ F ˝ F´1g “ g

for any reasonable (that is smooth enough and decaying fast enough) function g,

that Γ̂1{2 “ p2πqd{2Γ1{2, that pFfλq “ λdpFfqλ´1 , where gspyq :“ gpy{sq, and that

Fpfgq “ f̂ ˚ ĝ, where ˚ stands for the convolution operator

pf ˚ gqpxq :“

ż

Rd

fpx ´ yqgpyqdy.

In particular, defining the heat kernel

γtpxq :“
1

p4πtqd{2
e´

|x|2

4t ,

we find pγt “ Γt. Taking the inverse Fourier transform of formula (1.4), we thus
obtain

(1.5) fpt, ¨q “ F´1pΓtf̂0q “ γt ˚ f0, @ t ą 0.

So far, all the discussions have been conducted without much mathematical justifi-
cation. We explain how to fix it now. For f0 P L2pRdq, the Plancherel identity tells

us that f̂0 P L2pRdq, and more precisely }f̂0}L2 “ p2πqd{2}f0}L2 . As a consequence,

Ft :“ Γtf̂0 P L2pRdq for any t ě 0. More precisely, we have F P Cpr0, T s;L2pRdqq

thanks to the continuity theorem about parameter depending integrals (what is a
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mere application of the dominated convergence theorem of Lebesgue). We also have
ξF P L2pU q, because

(1.6)

ż T

0

|ξ|2e´2|ξ|
2tdt “

1

2

ż 2|ξ|
2T

0

e´udu ď
1

2
,

and then
ż T

0

ż

Rd

|ξF |2dξdt “

ż

Rd

ż T

0

|ξ|2e´2|ξ|
2tdt|f̂0|2dξ ď

1

2
}f̂0}2L2 .

From the above discussion, we have thus

(1.7) f P X “ XT :“ Cpr0, T s;L2pRdqq X L2p0, T ;H1pRdqq,

the last space is just as a notation for telling that f,∇f P L2pU q, ∇ :“ pB1, . . . , Bdq.
More precisely, we define the Sobolev (type) space

H “ HT :“ L2p0, T ;H1q :“ tf P L2pU q; ∇f P L2pU qu

that we endowed with the Hilbert norm defined, for any f P H , by

}f}2H “ }f}2L2p0,T ;H1q :“

ż T

0

}fpsq}2H1 ds “

ż

U

p|f |2 ` |∇f |2q dxdt.

Next, for any k ě 0, we have

tk
ż

Rd

|ξ|k|Ft|
2dξ ď sup

ξPRd

ppt|ξ|2qkΓtpξqq

ż

Rd

|f̂0|2dξ ≲ }f̂0}2L2 ,

or in other words

(1.8) }fpt, ¨q}HkpRdq ď
Ck

tk{2
}f0}L2 ,

and thus in particular f P L8pτ, T ;HkpRdqq, for any τ P p0, T q. Moreover, differ-
entiating in time (1.4), we find

Bℓ
t f̂pt, ξq “ pBℓ

tΓtpξqqf̂0pξq “ p´|ξ|2qℓΓtpξqf̂0pξq,

so that, proceeding similarly as for the last estimate, we have

sup
tPrτ,T s

ż

Rd

|ξαBℓ
t f̂pt, ξq|2dξ ≲ }f̂0}2L2 ,

for any τ P p0, T q, ℓ, k ě 0, from what we get f P Hspp0, T q ˆ Rdqq, for any s ě 0,

and thus f P C8pp0, T q ˆ Rdqq. Because F p0, ¨q “ f̂0, we clearly have (1.2) in the
a.e. sense (for L2 functions). Because of (1.3), we clearly have (1.1) in the classical
sense. When f0 P HkpRdq Ă C0pRdq, with k ą d{2, we may show exactly as above
that f P Cpr0, T s;HkpRdqq Ă Cpr0, T s ˆ Rdq, so that (1.2) holds in the classical
(everywhere) sense.

Exercise 1.1. Apply the same procedure to the heat equation with a source term

(1.9) Btf “ ∆f ` G on U , fp0, ¨q “ f0 on Rd,

with f0 P L2pRdq and G P L2pU q. Build a solution f which
(1) satisfies f P Cpr0, T s;L2pRdqq;
(2) satisfies f P L2p0, T ;H1pRdqq and more precisely

(1.10) }f}2L2p0,T ;H1q ď
1

2
}f0}2L2pRdq ` p

2

3
T 3{2 `

1

2
T q}G}2L2pU q.
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2. Topic 2. The heat equation and the heat kernel

From the very definition of γt, we may compute (in the classical sense)

Btγt “ ´
d

2t
γt ´

|x|2

4t2
γt

and

∆γt “ divp´
x

2t
γtq “ ´

d

2t
γt `

|x|2

4t2
γt,

which imply that γt satisfies the heat equation

Btγt “ ∆γt on p0,8q ˆ Rd.

On the other hand, for f0 P C0pRdq or f0 P LqpRdq, 1 ď q ď 8, we define

(2.1) fpt, xq :“ pγt ˚ f0qpxq.

We may then compute (formally, in the sense of distribution or classically)

Btf ´ ∆f “ pBtγt ´ ∆γtq ˚ f0 “ 0

and, because pγtqtą0 is a approximation of the identity (Dirac mass in x “ 0), we
have

γt ˚ f0 Ñ f0 as t Ñ 0.

We have thus recovered by a direct approach (alternative to the Fourier transform
approach presented in the previous section) that (2.1) provides a (weak) solution
to the heat equation (1.1)-(1.2).

Recalling the Young inequality for convolution products

(2.2) }g ˚ h}Lp ď }g}Lq}h}Lr ,
1

p
“

1

q
`

1

r
´ 1,

for any functions f, g and any (compatible) exponents p, q, r P r1,8s, and observing
that

}γt}Lr “ tpd{2qp 1
r ´1q}γ1}Lr ,

we deduce the ultracontractivity estimate

(2.3) }fpt, ¨q}Lp ď
Cd,r

t
d
2 p 1

q ´ 1
p q

}f0}Lq , @ 1 ď q ď p ď 8,

which may be compared to the regularization estimate (1.8). Two other properties
can be readily verified from the integral representation formula (2.1). On the one
hand, the following weak maximum principle holds

fpt, ¨q ě 0 a.e. on Rd, @ t ě 0, if f0 ě 0 a.e. on Rd,

as a consequence of the fact that γt ě 0 a.e. on Rd. On the other hand, the
following strong maximum principle holds

fpt, ¨q ą 0 on Rd, @ t ě 0, if f0 ě 0 and f0 ı 0 a.e. on Rd,

as a consequence of the fact that γt ą 0 on Rd. This second property also reveals
the infinite propagation speed of the heat equation.
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Exercise 2.1.
(1) Prove (2.2).
(2) Show that γt`s “ γt ˚ γs for any t, s ą 0.
(3) Show that

(2.4) }∇xγt}Lr “
Cd,r

t
d
2 p1´ 1

r q` 1
2

and recover the regularization estimate (1.8) when k “ 1.

Exercise 2.2 (variation of parameters formula). Consider the heat equation with
a source term (1.9) with f0 P L2pRdq and G P L2pU q. Established (directly) that
the function

(2.5) fpt, ¨q :“ γt ˚ f0 `

ż t

0

γt´s ˚ Gps, ¨qds

(1) is a solution to the heat equation with source term (1.9);
(2) satisfies f P Cpr0, T s;L2pRdqq.
(3) Why this solution is nothing but the one provided by Exercise 1.1?
(4) When furthermore f0 “ 0, establish (directly) that f P L2p0, T ;H1pRdqq and
more precisely (1.10).

Exercise 2.3. For G P L1pU q establish that the solution f to the heat equation
with source term given by (2.5) satisfies f P LppU q for any 1 ă p ă 1 ` 2{d. More
generally and more precisely, establish that

}f}LppU q ≲ CT 1´p1` d
2 qp 1

q ´ 1
p ´1q

}G}LqpU q, C :“
Cr,d

p1 ´ d
2 p 1

q ´ 1
p qrq1{r

,

under the condition 1 ď q ă p, p1` d
2 qp 1

q ´ 1
p q ă 1 and where Cr,d and r are defined

in (2.3).

3. Topic 3. The heat equation and the energy method (a priori
estimates)

We present some arguments which make possible to recover at least partially the
properties of the solutions to the heat equation presented before. The good thing is
that these arguments are very simple and very general (they are useful for general
parabolic equations). The negative point is that they are only partial and not
completely rigorous. Using these arguments in a completely rigorous way will be
the subject of future lectures.

We consider f a solution to the heat equation (1.1)-(1.2). Multiplying the equation
by f and integrating in the x P Rd variable, we have

1

2

d

dt

ż

f2 “

ż

p∆fqf “ ´

ż

|∇f |2,

where we have used the Green formula
ż

Rd

∇f ¨ G “ ´

ż

Rd

fdivG,
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for any real function f and vector field G. Integrating in the time variable, we
deduce the energy identity

ż

f2
t dx ` 2

ż t

0

ż

|∇fs|2dxds “

ż

f2
0 dx.

In particular, for f0 P L2, we have f P L8p0, T ;L2qXL2p0, T ;H1q. Here and below,
we note f P L8p0, T ;L2q if f P L2pU q is such that there exists C P r0,8q satisfying

(3.1) }fpt, ¨q}L2pRdq ď C, for a.e. t P p0, T q,

and we define

}f}L8p0,T ;L2q :“ inftC P r0,8q such that (3.1) holdsu.

We now recover (at least part of) the smoothing effect and the ultracontractivity
estimates in a very simple way. We indeed observe that

1

2

d

dt

ż

|∇f |2 “

ż

p∆∇fq∇f “ ´

ż

|D2f |2

and next

d

dt
Hptq :“

d

dt

´

ż

f2 ` 2t

ż

|∇f |2
¯

“ ´4

ż

|D2f |2 ď 0,

so that in particular

2t

ż

|∇f |2 ď Hptq ď Hp0q “

ż

f2
0 .

That is nothing but the smoothing estimate (6.1) in the case p “ q “ 2. In
dimension d ě 3, from the Sobolev inequality, we deduce that

}fpt, ¨q}Lp ≲ t´1{2}f0}L2 , @ t ą 0,
1

p
“

1

2
´

1

d
,

and we thus recover a part of the ultracontractivity estimate (2.3).

Exercise 3.1. Apply the same procedure to the heat equation with a source term
(1.9) with f0 P L2pRdq and G P L2pU q.

Exercise 3.2. Consider the parabolic equation

Btf “ divpA∇fq ` divpafq ` b ¨ ∇f ` c f in U ,

for some coefficients A, a, b, c P L8pRdq with A ě A0I, A0 ą 0. We complement
that equation with the initial condition (1.2) for an initial datum f0 P L2pRdq.

(1) Establish formally the energy estimate which implies that f P L8p0, T ;L2q X

L2p0, T ;H1q.

(2) Same thing when we only assume a, b P LdpRdq and c P Ld{2pRdq.
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4. Topic 4. Duhamel formula and perturbation argument

In this section, we explain how the previous analysis and a perturbation argument
make possible to tackle more general parabolic equations. We consider the parabolic
equation

(4.1) Btf “ ∆f ` b ¨ ∇f ` c f in U ,

for some coefficients b, c P L8pRdq. We complement that equation with the initial
condition (1.2) for an initial datum f0 P L2pRdq.

Because of the variation of parameters formula (2.5), we may look for a function
f P X , T ą 0, which satisfies the equation in the mild sense

(4.2) ft “ γt ˚ f0 `

ż t

0

γt´s ˚ rb ¨ ∇fs ` c fssds.

That identity is named as the Duhamel formula. Such a function f will automati-
cally satisfies (2.5) as a consequence of Exercise 2.2-(1). For a given function g P X
(or just g P H :“ L2p0, T ;H1q), we define

ht :“ γt ˚ f0 `

ż t

0

γt´s ˚ rb ¨ ∇gs ` c gssds, @ t P p0, T q,

and we denote g ÞÑ Υg :“ h this mapping. We aim to prove that Υ : H Ñ X Ă H
and that, for T ą 0 small enough, there exists a unique fixed point f P H, so that
f “ Υf P X , what is nothing but (4.2).

Because G :“ b ¨ ∇g ` c g P L2pU q and of Exercise 1.1, we have h P X . Now, for
g1, g2 P H and denoting h1 :“ Υg1, h2 :“ Υg2, h :“ h2 ´ h1, g :“ g2 ´ g1, we have

ht “

ż t

0

γt´s ˚ rb ¨ ∇gs ` c gssds.

From (1.10), we have

}h}2H ď p
2

3
T 3{2 `

1

2
T q}b ¨ ∇g ` c g}2L2 ď αT }g}H,

with αT :“ p 2
3T

3{2 ` 1
2T qp}b}L8 ` }c}L8 q. Choosing T ą 0 small enough in such a

way that αT ă 1, we see that Υ is a contraction in H, and the Banach-Picard fixed
point theorem for contraction mapping provides a unique fixed point f P H. We
repeat the same procedure in order to build a global (in time) solution to (4.1).

5. Complements to Topic 1.

About Exercise 1.1. By linearity we may consider the equation

(5.1) Btf “ ∆f ` G on p0,8q ˆ Rd, fp0, ¨q “ 0 on Rd,

and next add the contribution due to equation (1.1)-(1.2). On the Fourier side, we have

Btf̂ “ ´|ξ|2f̂ ` Ĝ on p0,8q ˆ Rd, f̂p0, ¨q “ 0 on Rd,

so that

f̂pt, ¨q “

ż t

0
Γt´sĜsds.
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On the one hand, we have

ż

Rd
|f̂pt, ξq|2dξ “

ż

Rd

´

ż t

0
Γt´sĜsds

¯2
dξ

ď

ż

Rd

´

ż t

0
|Ĝs|ds

¯2
dξ

ď t1{2

ż T

0

ż

Rd
|Ĝs|2dξds,

from what we deduce f P L8p0, T ;L2pRdqq (thanks to Plancherel identity). We next write

f̂pt, ¨q ´ f̂pt1, ¨q “

ż t

0
pΓt´s ´ Γt1´sqĜsds `

ż t

t1
Γt1´sĜsds “: pIq ` pIIq.

For the second term, we obviously have (that is the same computation as above)

}pIIq}2
L2 ď |t ´ t1|1{2}G}L2pU qq.

For the first term, for any fixed t P p0, T q and as t1 Ñ t, we have

pΓt´s ´ Γt1´sqĜs Ñ 0 a.e. and |pΓt´s ´ Γt1´sqĜs| ď |Ĝs| P L2pU q,

so that pIq Ñ 0 in L2pRdq thanks to the dominated convergence theorem of Lebesgue. Both

information together imply that f̂ P Cpr0, T s;L2pRdqq, so that f P Cpr0, T s;L2pRdqq (thanks to

Plancherel identity again).
On the other hand, we compute

ż T

0

ż

Rd
|ξf̂ |2 “

ż T

0

ż

Rd
|ξ|2

´

ż t

0
Γt´sĜsds

¯2
dξdt

ď T

ż T

0

ż t

0

ż

Rd
|ξ|2Γ2

t´s|Ĝs|2dsdξdt

ď T

ż T

0

ż

Rd

ż T

0
|ξ|2Γ2

τdτ |Ĝs|2dξdt

ď
T

2

ż T

0

ż

Rd
|Ĝs|2dξdt,

where we have used the Cauchy-Schwarz inequality in the second line and (1.6) in the last line.
We immediately deduce that (1.10) holds.

Additional material. Use the Fourier transform method in order to solve

(1) The wave equation

B2
ttf ´ c2B2

xxf “ 0 on p0, T q ˆ R, fp0, ¨q “ f0, Bxfp0, ¨q “ g0 on R,

with f “ fpt, xq and c ą 0. Hint. One has to find

fpt, xq “
1

2
pf0px ` ctq ` f0px ´ ctqq `

1

2c

ż x`ct

x´ct
g0pyqdy.

(2) The Shrödinger equation on f “ fpt, xq

iBtf “ ∆f on p0, T q ˆ Rd, fp0, ¨q “ f0 on Rd.

(3) The Kolmogorov equation on f “ fpt, x, vq

Btf ` v ¨ ∇xf “ ∆vf on p0, T q ˆ Rd ˆ Rd, fp0, ¨q “ f0 on Rd ˆ Rd.
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6. Complements to Topic 2 (and to Topic 1 again).

About Exercise 2.1. (1) Hint: use the Holder inequality.

(2) We may establish the formula directly from the definition or we may just use the series of

identities

γt ˚ γs “ F´1pFpγt ˚ γsqq “ F´1pΓtΓsq “ F´1pΓt`sq “ γt`s.

(3) We observe that

∇xfpt, ¨q “ p∇xγtq ˚ f0,

so that

(6.1) }∇xf}Lp ď }∇xγt}Lr }f0}Lq ,

with

(6.2) }∇xγt}Lr “
Cp,q

t1{2`pd{2qp1{q´1{pq
.

About Exercise 2.2.

(1) We define

(6.3) Gpt, ¨q :“

ż t

0
γt´s ˚ Gps, ¨qds

and we compute

BtGpt, ¨q “ Gpt, ¨q `

ż t

0
pBtγt´sq ˚ Gps, ¨qds

∆Gpt, ¨q “

ż t

0
p∆γt´sq ˚ Gps, ¨qds,

so that

BtG ´ ∆G “ G on p0,8q ˆ Rd, Gp0, ¨q “ 0 on Rd.

Putting together this result with the first calculus in Section 2, we have established that (2.5)
provides a solution to the heat equation with source term (1.9).

(2) For f0 P CcpRdq, we may establish that t ÞÑ Ft :“ γt ˚ f0 belongs to Cpr0, T s;L2pRdqq by

a mere application of the dominated convergence theorem of Lebesgue. We deduce the same
continuity property for f0 P L2pRdq thanks to the density CcpRdq Ă L2pRdq. We may indeed

build pf0εq a sequence of CcpRdq such that f0ε Ñ f0 in L2 as ε Ñ 0, so that

}Ft1 ´ Ft}L2 ď }γt1 ˚ pf0 ´ f0εq}L2 ` }γt1 ˚ f0ε ´ γt ˚ f0ε}L2 ` }γt1 ˚ pf0 ´ f0εq}L2

ď 2}f0 ´ f0ε}L2 ` }γt1 ˚ f0ε ´ γt ˚ f0ε}L2 Ñ 0,

as t1 Ñ t (and ε Ñ 0 in an appropriate way). On the other hand, we define

Gpt, ¨q :“

ż t

0
γt´s ˚ Gps, ¨qds

and we write

Gpt, ¨q ´ Gpt1, ¨q “

ż t

t1
γt´s ˚ Gps, ¨qds `

ż t

0
pγt´s ˚ Gps, ¨q ´ γt1´s ˚ Gps, ¨qqds “: pIq ` pIIq.

For the first term, we obviously have (when t1 ă t for instance)

}pIq}L2pRdq ď

ż t

t1
}γt´s ˚ Gps, ¨q}L2pRdqds

ď

ż t

t1
}Gps, ¨q}L2pRdqds

ď pt ´ t1q1{2}Gps, ¨q}L2pUq Ñ 0,

as t1 Ñ t. For the second term (II), we argue thanks to a regularization argument as for Ft.

(3) Taking the Fourier transform of the function f defined by (2.5), we get

f̂pt, ¨q “ Γtf̂0 `

ż t

0
Γt´sĜsds,

what is nothing but the solution built in Exercise 1.1.
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(4) We assume f0 “ 0, so that the solution to (1.9) is given by (6.3). On the one hand, for any

t P p0, T q, we have

}Gt}L2 ď

ż t

0
}γt´s ˚ Gs}L2ds ď

ż t

0
}Gs}L2ds

Using the the Cauchy-Schwarz inequality, we deduce

}G}2
L2pU q

ď

ż T

0

´

ż t

0
}Gs}L2ds

¯2
dt

ď

ż T

0
t1{2

ż t

0
}Gs}2

L2dsdt ď
2

3
T 3{2}G}2

L2pU q
.

On the other hand, we have

∇Gt “

ż t

0
∇γt´s ˚ Gsds,

from what we deduce

}∇Gt}L2 ď

ż t

0
}p∇γt´sq ˚ Gs}L2ds

ď

ż t

0

C

pt ´ sq1{2
}Gs}L2ds.

For α, β ě 0 measurable functions, we observe that

ż T

0

´

ż t

0
αpt ´ sqβpsqds

¯2
dt ď

ż T

0

ż t

0
αpt ´ sqds

ż t

0
αpt ´ sqβ2psqdsdt

ď

ż T

0
αpτqdτ

ż T

0

ż t

0
αpt ´ sqβ2psqdsdt

ď

´

ż T

0
αpτqdτ

¯2
ż T

0
β2psqds,

where we have used the Cauchy-Schwarz inequality in the first line. We deduce that

}∇G}2
L2pU q

ď

´

ż T

0

C

τ1{2
dτ

¯2
ż T

0
}Gs}2

L2ds ď 4CT }G}2
L2pU q

.

The both estimates together, we have recovered (1.10) (in the case f0 “ 0).

Additional material. Consider the heat equation with source term

(6.4)
Bf

Bt
“ ∆f ` G in R ˆ Rd,

with f,G P L2pRd`1q. We define the Fourier transform (in both variables)

ĥpτ, ξq :“

ż

Rd`1
hpt, xqe´ipτt`x¨ξqdtdx.

On the Fourier side, the above heat equation is

iτ f̂ ` |ξ|2f̂ “ Ĝ,

from what we immediately compute
ż

Rd`1
p1 ` τ2 ` |ξ|4q|f̂ |2 “

ż

Rd`1
|f̂ |2 `

ż

Rd`1

τ2 ` |ξ|4

|iτ ` |ξ|2|2
|ĝ|2 “

ż

Rd`1
|f̂ |2 ` |Ĝ|2.

We deduce

}f}2Lp ≲ }f}2
H1 ≲ }f}2

L2 ` }G}2
L2 ,

with p :“ 2pd` 1q{pd´ 1q ą 2, from the Sobolev embedding, the Fourier definition of the Sobolev

space in Rd`1 and the Plancherel identity. This estimate also reveals some gain of integrability

of the solution to the heat equation and can be seen as a variant of (2.3).
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7. Complements to topic 3.

We consider f a solution of the heat equation (5.1) with source term G P L2pU q and vanishing
initial datum. Multiplying the equation by ´∆f and integrating in the x variable, we have

1

2

d

dt

ż

|∇f |2 “

ż

Bt∇f ¨ ∇f

“

ż

Btfp´∆fq

“ ´

ż

p∆fq2 `

ż

Gp´∆fq ď
1

4

ż

G2,

where we have used the Young inequality in the last line. Integrating in the time variable, we get
ż

|∇ft|2dx ď
1

2

ż t

0

ż

G2
sdxds, @ t ą 0.

Integrating once more in the time variable, we get

}f}2
L2p0,T ; 9H1q

ď
1

2
T }G}2

L2p0,T ;L2q
,

and thus we (partially) recover the estimate (1.10).


	1. Topic 1. The heat equation and the Fourier transform
	2. Topic 2. The heat equation and the heat kernel
	3. Topic 3. The heat equation and the energy method (a priori estimates)
	4. Topic 4. Duhamel formula and perturbation argument
	5. Complements to Topic 1.
	6. Complements to Topic 2 (and to Topic 1 again).
	7. Complements to topic 3.

