LECTURE 3 - PARABOLIC EQUATIONS

We present (the existence part of) the theory of variational solutions for uniformly elliptic parabolic equations. We next discuss the several approaches for dealing with the well-posedness issue of linear evolution equations.

Contents

- Topic 9. Introduction to the parabolic equations framework
 Topic 10. First proof an implicit Euler scheme approach
 Topic 11. Second proof of the existence part a variational approach
 Topic 12. Generalities about evolution PDEs
- Topic 9. Introduction to the parabolic equations framework Content: Parabolic equations, a priori estimates, weak solutions and main result
- Topic 10. Existence of solutions an implicit Euler scheme approach Content: The implicit Euler scheme and its convergence
- Topic 11. Existence of solutions the variational approach of J.-L. Lions Content: A variant of the Lax-Milgram theorem, an alternative proof in the time independent case, a time dependent variant
- Topic 12. Generalities about evolution equations and semigroups Content: Evolution equation and semigroup, explicit semigroup, the spectral analysis approach, perturbation of semigroup, the variational approach, the Hille-Yosida approach
- 1. TOPIC 9. INTRODUCTION TO THE PARABOLIC EQUATIONS FRAMEWORK In this lecture we will mainly focus on the parabolic equation

(1.1)
$$\partial_t f = \mathcal{L} f \quad \text{on} \quad (0, \infty) \times \Omega,$$

on the function $f = f(t, x), t \ge 0, x \in \Omega \subset \mathbb{R}^d$, where \mathcal{L} is the elliptic operator

(1.2)
$$\mathcal{L}f := \operatorname{div}(A\nabla f) + \operatorname{div}(af) + b \cdot \nabla f + cf$$

that we complement with an initial condition

$$(1.3) f(0,x) = f_0(x) in \Omega.$$

In order to develop the variational approach for the equation (1.1)-(1.2), we assume that

$$f_0 \in L^2(\Omega) =: H$$
, which is an Hilbert space,

and we typically assume that the coefficients satisfy

$$(1.4) A, a, b, c \in L^{\infty}(\Omega), \quad A \ge \nu I, \ \nu > 0.$$

We observe that for any nice function f = f(x), any $\alpha \in (0, \nu)$ and any $\beta > 0$, we have

$$\langle \mathcal{L}f, f \rangle := \int_{\mathbb{R}^d} (\operatorname{div}(A\nabla f) + \operatorname{div}(af) + b \cdot \nabla f + c f) f$$

$$= -\int_{\mathbb{R}^d} A\nabla f \cdot \nabla f + \int_{\mathbb{R}^d} f(b - a) \cdot \nabla f + \int_{\mathbb{R}^d} c f^2$$

$$\leq -(\nu - \beta) \int_{\mathbb{R}^d} |\nabla f|^2 + \int_{\mathbb{R}^d} (c + \frac{|b - a|^2}{4\beta}) f^2$$

$$\leq -\alpha \|f\|_{H^1}^2 + \kappa \|f\|_{L^2}^2,$$

with

$$\kappa := \operatorname{ess\,sup} \left(\alpha + \frac{1}{4(\nu - \alpha)} |b - a|^2 + c \right),$$

where we have used the Green-Ostrogradski divergence formula for the two first terms in the second line, the Young inequality $uv \leq \beta u^2/2 + v^2/(2\beta)$, $\forall u, v \geq 0$, in the third line and we have particularized $\beta := \nu - \alpha$ is the last line. Now, for a (nice) solution f = f(t,x) to the parabolic equation (1.1)-(1.2)-(1.3)-(1.4), we compute

$$\frac{1}{2}\frac{d}{dt}\|f(t)\|_{L^{2}}^{2} = \int_{\mathbb{R}^{d}}(\partial_{t}f)f = \langle \mathcal{L}f, f \rangle \leq -\alpha\|f(t)\|_{H^{1}}^{2} + \kappa \|f(t)\|_{L^{2}}^{2},$$

and, thanks to the Gronwall lemma, we deduce

(1.5)
$$||f(T)||_{L^2}^2 + 2\alpha \int_0^T ||f(s)||_{H^1}^2 ds \le e^{2\kappa T} ||f_0||_{L^2}^2, \quad \forall T.$$

In other words, we have established

$$(1.6) f \in L^{\infty}(0,T;L^2) \cap L^2(0,T;H^1).$$

It is worth emphasizing at this point that for two (nice) functions f = f(x) and g = g(x), we have

$$\langle \mathcal{L}f, g \rangle := \int_{\mathbb{D}^d} (\operatorname{div}(A\nabla f) + \operatorname{div}(af) + b \cdot \nabla f + c f) g$$

so that we may compute

$$(1.7) \qquad \langle \mathcal{L}f, g \rangle = -\int_{\mathbb{D}^d} A \nabla f \cdot \nabla g - \int_{\mathbb{D}^d} f(a \cdot \nabla g) + \int_{\mathbb{D}^d} (b \cdot \nabla f) g + \int_{\mathbb{D}^d} c f g,$$

thanks to the Green-Ostrogradski divergence formula. Coming back to a nice solution f = f(t, x) to the parabolic equation (1.1)-(1.2)-(1.3), we may multiply (1.1) by a test function $\varphi \in C_c^1([0, T) \times \mathbb{R}^d)$, and integrating by part, we have

$$-\int_{\mathbb{R}^d} f_0 \varphi(0) - \int_{\mathscr{U}} f \partial_t \varphi = \int_{\mathscr{U}} \varphi \, \partial_t f = \int_{\mathscr{U}} \varphi \, \mathcal{L} f$$
$$= -\int_{\mathscr{U}} (A \nabla f + f a) \cdot \nabla \varphi + \int_{\mathscr{U}} (b \cdot \nabla f + c f) \varphi.$$

That formulation gives a first meaningful (distributional) sense to a solution to the equation under the sole assumption $f \in L^2(0,T;H^1)$. Equivalently (by a density $C_c^1(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$ argument), we may write

$$(1.8) -(f_0, \varphi(0)) - \int_0^T (f, \varphi') dt = \int_0^T \langle \mathcal{L}f, \varphi \rangle dt,$$

for any $\varphi \in C_c^1([0,T);H^1)$.

Definition 1.1. For any given $f_0 \in L^2$, T > 0, we say that

$$f = f(t) \in L^2(0, T; H^1)$$

is a **weak solution** to the Cauchy problem associated to the parabolic equation (1.1)-(1.2)-(1.3) on the time interval [0,T) if it satisfies the weak formulation (1.8) for any $\varphi \in C_c^1([0,T);H^1)$. We say that f is a global weak solution if it is a weak solution on [0,T) for any T>0.

Theorem 1.2. With the above definition and assumptions, for any $f_0 \in L^2$, there exists at least one global weak solution to the Cauchy problem (1.1)-(1.2)-(1.3)-(1.4).

2. Topic 10. First proof - an implicit Euler scheme approach

In this section, we use the shorthands

$$(L^2, \|\cdot\|_{L^2}) = (H, |\cdot|), \quad (H^1, \|\cdot\|_{H^1}) = (V, \|\cdot\|).$$

We do emphasize that in formulation (1.7) the RHS makes sense for $f,g\in V$ and more precisely

$$|\langle \mathcal{L}f, g \rangle| \leq M ||f||_V ||g||_V$$

for a constant M>0, thanks to the Cauchy-Schwarz inequality in $L^2(\mathbb{R}^d)$ and because of the hypothesis (1.4) on the coefficients. A possible choice is $M:=\|A\|_{L^\infty}+\|a\|_{L^\infty}+\|b\|_{L^\infty}+\|c\|_{L^\infty}$. In other words, taking (1.7) as a definition of \mathcal{L} , we have

$$\mathcal{L}: V \to V', \quad V' := H^{-1}(\mathbb{R}^d),$$

is a linear and bounded operator with

(2.1)
$$\forall f \in V, \quad \|\mathcal{L}f\|_{V'} = \sup_{g \in B_V} \langle \mathcal{L}f, g \rangle \le M \|f\|_V.$$

Introducing an approximation scheme and next using a weak compactness argument in the Hilbert space $L^2(0,T;V)$, we will establish that there exists a function $f \in L^2(0,T;V)$ satisfying the weak formulation (1.8).

Step 1. For a given $f_0 \in H$ and $\varepsilon > 0$, we seek $f_1 \in V$ such that

$$(2.2) f_1 - \varepsilon \mathcal{L} f_1 = f_0.$$

We introduce the bilinear form $\mathfrak{a}: V \times V \to \mathbb{R}$ defined by

$$\mathfrak{a}(u,v) := (u,v) - \varepsilon \langle \mathcal{L}u, v \rangle.$$

Thanks to the assumptions made on \mathcal{L} , we have

$$|\mathfrak{a}(u,v)| \le |u| |v| + \varepsilon M ||u|| ||v||,$$

and

(2.3)
$$\mathfrak{a}(u,u) \ge |u|^2 + \varepsilon \alpha \|u\|^2 - \varepsilon \kappa |u|^2 \ge \varepsilon \alpha \|u\|^2,$$

whenever $\varepsilon \kappa < 1$, what we assume from now on. On the other hand, the mapping $v \in V \mapsto (f_0, v)$ is a linear and continuous form. We may thus apply the Lax-Milgram theorem which implies

$$\exists ! f_1 \in V, \qquad (f_1, v) - \varepsilon \langle \mathcal{L}f_1, v \rangle = (f_0, v), \quad \forall v \in V.$$

Step 2. We fix $\varepsilon > 0$ such that $\varepsilon \kappa < 1/2$ and we build by induction the sequence (f_k) in $V \subset H$ defined by the family of equations (implicit Euler scheme)

(2.4)
$$\frac{f_{k+1} - f_k}{\varepsilon} = \mathcal{L} f_{k+1}, \qquad \forall k \ge 0.$$

From the identity

$$(f_{k+1}, f_{k+1}) - \varepsilon \langle \mathcal{L}f_{k+1}, f_{k+1} \rangle = (f_k, f_{k+1}),$$

and (2.3) again, we deduce

$$|f_{k+1}|^2 + \varepsilon \alpha ||f_{k+1}||^2 - \varepsilon \kappa |f_{k+1}|^2 \le |f_k| |f_{k+1}| \le \frac{1}{2} |f_k|^2 + \frac{1}{2} |f_{k+1}|^2,$$

and then

$$|f_{k+1}|^2 + 2\varepsilon\alpha ||f_{k+1}||^2 \le (1 - 2\varepsilon\kappa)^{-1} |f_k|^2, \quad \forall k \ge 0.$$

Thanks to the discrete version of the Gronwall lemma, we get

$$|f_n|^2 + 2\alpha \sum_{k=1}^n \varepsilon ||f_k||^2 \le (1 - 2\varepsilon\kappa)^{-n} |f_0| \le e^{2\kappa\varepsilon n} |f_0|, \quad \forall n \ge 1.$$

We now fix T > 0, $n \in \mathbb{N}^*$, and we define

$$\varepsilon := T/n, \quad t_k = k \, \varepsilon, \quad f^{\varepsilon}(t) := f_{k+1} \text{ on } [t_k, t_{k+1}).$$

The last estimate writes then

(2.5)
$$2\alpha \int_{0}^{T} \|f^{\varepsilon}\|^{2} dt \leq e^{2\kappa T} |f_{0}|^{2}.$$

Step 3. Consider a test function $\varphi \in C_c^1([0,T);V)$ and define $\varphi_k := \varphi(t_k)$, so that $\varphi_n = \varphi(T) = 0$. Multiplying the equation (2.4) by φ_k and summing up from k = 0 to k = n - 1, we get

$$-(\varphi_0, f_0) - \sum_{k=0}^{n-1} (\varphi_{k+1} - \varphi_k, f_{k+1}) = \sum_{k=0}^{n-1} \varepsilon \langle \mathcal{L} f_{k+1}, \varphi_k \rangle.$$

Introducing the two functions $\varphi^{\varepsilon}, \varphi_{\varepsilon} : [0,T) \to V$ defined by

$$\varphi^{\varepsilon}(t) := \varphi_k \quad \text{and} \quad \varphi_{\varepsilon}(t) := \frac{t_{k+1} - t}{\varepsilon} \varphi_k + \frac{t - t_k}{\varepsilon} \varphi_{k+1} \quad \text{for} \quad t \in [t_k, t_{k+1}),$$

in such a way that

$$\varphi'_{\varepsilon}(t) = \frac{\varphi_{k+1} - \varphi_k}{\varepsilon}$$
 for $t \in (t_k, t_{k+1})$,

the above equation also writes

(2.6)
$$-(\varphi(0), f_0) - \int_0^T (\varphi_{\varepsilon}', f^{\varepsilon}) dt = \int_0^T \langle \mathcal{L} f^{\varepsilon}, \varphi^{\varepsilon} \rangle dt.$$

On the one hand, from (2.5) and the fact that $L^2(0,T;V)$ is a Hilbert space, we know that up to the extraction of a subsequence, there exists $f \in L^2(0,T;V)$ such that $f^{\varepsilon} \rightharpoonup f$ weakly in $L^2(0,T;V)$ and thus $\mathcal{L}f^{\varepsilon} \rightharpoonup \mathcal{L}f$ weakly in $L^2(0,T;V')$. On

the other hand, from the above construction, we have $\varphi'_{\varepsilon} \to \varphi'$ and $\varphi_{\varepsilon} \to \varphi$ both uniformly in $L^{\infty}(0,T;V)$ (using that φ and φ' belong to C([0,T];V) and thus are uniformly continuous). We may then pass to the limit as $\varepsilon \to 0$ in (2.6) and we get (1.8). More concretely, we are just saying that

$$f^{\varepsilon} \rightharpoonup f$$
, $\nabla f^{\varepsilon} \rightharpoonup \nabla f$ weakly in $L^{2}(\mathcal{U})$,
 $\varphi'_{\varepsilon} \to \varphi'$, $\varphi^{\varepsilon} \to \varphi$ $\nabla \varphi^{\varepsilon} \rightharpoonup \nabla \varphi$ strongly in $L^{2}(\mathcal{U})$,

and we may pass to the limit $\varepsilon \to 0$ in both integrals

$$\int_0^T (\varphi_{\varepsilon}', f^{\varepsilon}) dt = \int_{\mathscr{U}} \varphi_{\varepsilon}' f^{\varepsilon}$$

and

$$\int_0^T \langle \mathcal{L} f^{\varepsilon}, \varphi^{\varepsilon} \rangle \, dt = - \int_{\mathcal{U}} \nabla f^{\varepsilon} \cdot \nabla \varphi_{\varepsilon} + \int_{\mathcal{U}} (b \cdot \nabla f^{\varepsilon} + c f^{\varepsilon}) \varphi_{\varepsilon}.$$

Exercise 2.1. Establish the same existence result under the assumptions

$$a, b \in L^d(\Omega), \quad c \in L^1_{loc}(\Omega), \quad c_+ \in L^{d/2}(\Omega).$$

3. Topic 11. Second proof of the existence part - a variational approach

3.1. A variant of the Lax-Milgram theorem. We consider a Hilbert space \mathscr{H} endowed with a scalar product (\cdot, \cdot) and the associated norm $|\cdot|$. We consider next a subspace $\Phi \subset \mathscr{H}$ endowed with a pre-Hilbertian scalar product $((\cdot, \cdot))$ and the associated norm $||\cdot||$ such that

$$(3.1) |\varphi| < C||\varphi||, \quad \forall \varphi \in \Phi.$$

We finally consider a bilinear form $\mathcal{E}: \mathcal{H} \times \Phi \to \mathbb{R}$ such that

(3.2)
$$\forall \varphi \in \Phi, \ \exists C_{\varphi} \ge 0, \quad |\mathcal{E}(f,\varphi)| \le C_{\varphi}|f|, \ \forall f \in \mathcal{H},$$

$$(3.3) \exists \alpha > 0, \mathcal{E}(\varphi, \varphi) \ge \alpha \|\varphi\|^2, \ \forall \varphi \in \Phi.$$

Theorem 3.1. For any linear and continuous form $\ell: \Phi \to \mathbb{R}$, meaning that

$$(3.4) |\ell(\varphi)| < C||\varphi||, \quad \forall \varphi \in \Phi,$$

there exists at least one $f \in \mathcal{H}$ such that

(3.5)
$$\mathcal{E}(f,\varphi) = \ell(\varphi), \quad \forall \varphi \in \Phi.$$

Proof of Theorem 3.1. For a fixed $\varphi \in \Phi$, the mapping $f \mapsto \mathcal{E}(f,\varphi)$ is a linear and continuous form on \mathcal{H} , so that, from the Riesz-Fréchet representation theorem in \mathcal{H} , there exists $\mathcal{A}\varphi \in \mathcal{H}$ such that

(3.6)
$$\mathcal{E}(f,\varphi) = (f,\mathcal{A}\varphi), \quad \forall f \in \mathcal{H}, \ \varphi \in \Phi,$$

and $\mathcal{A}: \Phi \to \mathscr{H}$ is a linear mapping. Because of (3.3), \mathcal{A} is one-to-one (injection). On the linear subspace $\mathscr{G}:=\mathcal{A}\Phi\subset \mathscr{H}$, we may then define the inverse linear mapping $\mathcal{B}:=\mathcal{A}^{-1}:\mathscr{G}\to\Phi$. Using (3.6), (3.3) and (3.1), for any $g\in\mathscr{G}$, we have

$$\alpha \|\mathcal{B}g\|^2 \le \mathcal{E}(\mathcal{B}g, \mathcal{B}g) = (\mathcal{B}g, g) \le |\mathcal{B}g||g| \le C\|\mathcal{B}g\||g|,$$

from what we immediately deduce that \mathcal{B} is bounded with norm $\|\mathcal{B}\| \leq C/\alpha$. Defining $\overline{\mathscr{G}}$ the closure of \mathscr{G} in \mathscr{H} (for the norm $|\cdot|$) and $\hat{\Phi}$ the completion of Φ for the norm $\|\cdot\|$, we may uniquely extend \mathcal{B} as $\bar{\mathcal{B}}: \bar{\mathscr{G}} \to \hat{\Phi}$, $\bar{\mathcal{B}}_{|\mathscr{G}} = B$. We may

also uniquely extend ℓ as a linear and continuous form $\bar{\ell}$ on $\hat{\Phi}$. The equation (3.5) becomes

$$(f, \mathcal{A}\varphi) = \bar{\ell}(\varphi), \quad \forall \varphi \in \Phi,$$

or equivalently

$$(3.7) (f,\psi) = \bar{\ell}(\bar{\mathcal{B}}\psi), \quad \forall \, \psi \in \bar{\mathcal{G}}$$

From the Riesz-Fréchet representation theorem in $\bar{\mathscr{G}}$ and because $\bar{\ell} \circ \bar{\mathscr{B}}$ is a linear and continuous mapping on $\bar{\mathscr{G}}$, there exists a unique $f \in \bar{\mathscr{G}}$ solution to (3.7), and this one provides a solution to (3.5). When $\bar{\mathscr{G}} \neq \mathscr{H}$, the problem (3.5) has a family of solutions given by $\{f\} + \bar{\mathscr{G}}^{\perp}$.

3.2. An alternative proof of Theorem 1.2. We consider the parabolic equation (1.1)-(1.2)-(1.3)-(1.4) with same notations, with A := I and a := 0 for simplicity and we additionally assume

(3.8)
$$\sup c + \frac{1}{2}|b|^2 \le -\frac{1}{2}.$$

This additional assumption will be removed in the next section. We define the Hilbert space $\mathcal{H} := L^2(0,T;H^1(\mathbb{R}^d))$ endowed with its usual norm and the pre-Hilbert space $\Phi := C_c^1([0,T) \times \mathbb{R}^d)$ endowed with the norm $\|\cdot\|$ defined by

$$\|\varphi\|^2 := \int_0^T \|\varphi(t,\cdot)\|_{H^1(\mathbb{R}^d)}^2 dt + \|\varphi(0,\cdot)\|_{L^2(\mathbb{R}^d)}^2.$$

We also define the bilinear form

$$\mathcal{E}(f,\varphi) := \int_{\mathscr{U}} (\nabla f \cdot \nabla \varphi - (b \cdot \nabla f + cf)\varphi - f\partial_t \varphi) \, dx dt,$$

with always $\mathscr{U} := (0,T) \times \mathbb{R}^d$, and the linear form

$$\ell(\varphi) := \int_{\mathbb{R}^d} \varphi(0, \cdot) f_0 \, dx.$$

We observe that

$$\mathcal{E}(\varphi,\varphi) = \int_{\mathcal{U}} (|\nabla \varphi|^2 - \nabla \varphi \cdot b \, \varphi - c \varphi^2) dx dt + \frac{1}{2} \int_{\mathbb{R}^d} \varphi(0,x)^2 dx \ge \frac{1}{2} ||\varphi||^2,$$

where we have used the Young inequality and the condition (3.8) in order to get the last inequality, that \mathcal{E} also satisfies (3.2) and that ℓ satisfies (3.4). From Theorem 3.1, we know that there exists $f \in \mathcal{H}$ satisfying (3.5), or in other words

$$\int_{\mathcal{U}} (\nabla f \cdot \nabla \varphi - (b \cdot \nabla f + cf)\varphi - f\partial_t \varphi) \, dx dt = \int_{\mathbb{R}^d} \varphi(0, \cdot) f_0 \, dx,$$

for any $\varphi \in C^1_c([0,T) \times \mathbb{R}^d)$. Because $C^1_c([0,T) \times \mathbb{R}^d) \subset C^1_c([0,T); H^1(\mathbb{R}^d))$ with dense embedding, we deduce that f is in fact a weak-solution in the sense of Definition 1.1.

3.3. A time dependent variant of Theorem 1.2. We consider the parabolic equation

(3.9)
$$\partial_t f = \mathcal{L}f := \operatorname{div}(A \nabla f) + \operatorname{div}(af) + b \cdot \nabla f + cf + \mathfrak{F},$$

where A_{ij} , a_i , b_i and c are possible time dependent coefficients and where A_{ij} is uniformly elliptic in the sense that

$$(3.10) \qquad \forall t \in (0,T), \ \forall x \in \mathbb{R}^d, \ \forall \xi \in \mathbb{R}^d \quad A_{ij}(t,x) \, \xi_i \xi_j \ge \nu \, |\xi|^2, \quad \nu > 0.$$

Theorem 3.2 (J.-L. Lions). Assume that

$$(3.11) A, a, b, c \in L^{\infty}((0,T) \times \mathbb{R}^d)$$

and that A satisfies the uniformly elliptic condition (3.10). For any $f_0 \in L^2(\mathbb{R}^d)$ and $\mathfrak{F} := F_0 + \operatorname{div} F$, $F_i \in L^2(\mathscr{U})$, there exists at least a weak solution $f \in L^2(0,T;H^1)$ to the Cauchy problem associated to (3.9) in the sense that

(3.12)
$$\int_{\mathbb{R}^d} f(t)\varphi(t) dx = \int_{\mathbb{R}^d} f_0\varphi(0) dx + \int_0^t \int_{\mathbb{R}^d} (\mathfrak{F}\varphi + f\partial_t\varphi) dx ds + \int_0^t \int_{\mathbb{R}^d} \{(b \cdot \nabla f + cf) \varphi - (A\nabla f + af) \cdot \nabla \varphi\} dx ds,$$

for any $\varphi \in C_c^1([0$

Proof of Theorem 3.2. Step 1. We proceed similarly as in the alternative proof of Theorem 1.2 in Section 3.2 and in particular we define \mathscr{H} and Φ in the same way. We now define the bilinear form on $\mathscr{H} \times \Phi$ by

$$\mathcal{E}(f,\varphi) := \int_{\mathscr{U}} ((A\nabla f + af) \cdot \nabla \varphi - (b \cdot \nabla f + cf)\varphi - f\partial_t \varphi) \, dx dt$$

and the linear form on Φ by

$$\ell(\varphi) := \int_{\mathscr{U}} (F_0 \varphi - F \cdot \nabla \varphi) \, dx dt + \int_{\mathbb{R}^d} \varphi(0, \cdot) f_0 \, dx.$$

We additionally first assume that

(3.13)
$$\sup c \le -\min(\frac{1}{2}, \frac{\nu}{2}) - \frac{1}{2\nu} \|a - b\|_{L^{\infty}}^2.$$

In that case, we may observe that

$$\mathcal{E}(\varphi,\varphi) = \int_{\mathcal{U}} (A\nabla\varphi \cdot \nabla\varphi + \nabla\varphi \cdot (a-b)\varphi - c\varphi^2) dx dt + \frac{1}{2} \int_{\mathbb{R}^d} \varphi(0,x)^2 dx$$
$$\geq \min(\frac{1}{2}, \frac{\nu}{2}) \|\varphi\|^2,$$

that \mathcal{E} also satisfies (3.2) and that ℓ satisfies (3.4). Exactly as in Section 3.2, we deduce the existence of a weak solution $f \in \mathcal{H}$ to the parabolic equation (3.9) with the help of Theorem 3.1.

Step 2. We do not assume anymore (3.13). We define $c_{\lambda} := c - \lambda$, with $\lambda > 0$ large enough in such a way that c_{λ} satisfies the additional condition (3.13), and we set $\mathfrak{F}_{\lambda} := e^{-\lambda t}\mathfrak{F}$. We may apply the first step with the choice of functions A, a, b, c_{λ} , f_0 , \mathfrak{F}_{λ} , and we thus obtain the existence of a variational solution $g \in \mathscr{H}$ to the modified equation

(3.14)
$$\partial_t g + \lambda g = \operatorname{div}(A \nabla g) + \operatorname{div}(ag) + b \cdot \nabla g + cg + e^{-\lambda t} \mathfrak{F} \text{ in } \mathscr{U},$$

with initial condition $g(0,\cdot) = f_0$. For any $\varphi \in C_c^1([0,T); H^1(\mathbb{R}^d))$, choosing $\phi := e^{\lambda t} \varphi \in C_c^1([0,T); H^1(\mathbb{R}^d))$ as a test function in the variational formulation of (3.14), we immediately deduce that $f := e^{\lambda t} g \in \mathcal{H}$ satisfies (3.12).

Exercise 3.3. Consider the transport equation

$$\partial_t f = \operatorname{div}(af) + b \cdot \nabla f + cf, \quad f(0) = f_0,$$

with

$$a, b, c \in L^{\infty}((0, T) \times \mathbb{R}^d), \quad f_0 \in L^2(\mathbb{R}^d),$$

and prove the existence of a weak solution $f \in L^2((0,T) \times \mathbb{R}^d)$ thanks to the variational method.

4. Topic 12. Generalities about evolution PDEs

• From well-posed evolution equation to semigroup.

We consider an evolution equation

(4.1)
$$\partial_t f = \mathcal{L}f, \quad f(0) = f_0.$$

For two Banach spaces X and $\mathscr{X} \subset C(\mathbb{R}_+; X)$, we assume that for any $f_0 \in X$, there exists a unique function $f \in \mathscr{X}$ which is a solution to the evolution equation (possibly in a weak sense) and that for any T, R > 0 there exists $C_{T,R}$ such that

$$\sup_{[0,T]} ||f(t)||_X \le C_{T,R} \quad \text{if} \quad ||f_0|| \le R.$$

Then, there exists a semigroup S on X such that the above solution is given by $f = S_t f_0$. We recall the definition of a semigroup:

We say that $S = (S_t)_{t \geq 0}$ is a continuous semigroup of linear and bounded operators on a Banach space X, or we just say that S_t is C_0 -semigroup (or a semigroup) on X, if the following conditions are fulfilled:

- (i) one parameter family of operators: $\forall t \geq 0, f \mapsto S_t f$ is linear and continuous on X;
- (ii) continuity of trajectories: $\forall f \in X, t \mapsto S_t f \in C([0,\infty),X)$;
- (iii) semigroup property: $S_0 = I$; $\forall s, t \geq 0, S_{t+s} = S_t S_s$;
- (iv) growth estimate: $\exists \kappa \in \mathbb{R}, \exists M \geq 1$,

$$(4.2) ||S_t||_{\mathscr{B}(X)} \le M e^{\kappa t} \quad \forall t \ge 0.$$

We say that S is a semigroup of contractions if (4.2) holds with M=1 and $\kappa=0$.

 \bullet From semigroup to evolution equation. On the other way round, for a given semigroup S, we may associate its generator in the following way. We define the domain

$$D(\mathcal{L}) := \{ f \in X; \lim_{t \searrow 0} \frac{S_t f - f}{t} \text{ exists in } X \},$$

and next the generator

$$\mathcal{L} f := \lim_{t \searrow 0} \frac{S_t f - f}{t}$$
 for any $f \in D(\mathcal{L})$.

It turns out that for any $f_0 \in D(\mathcal{L})$ (resp. $f_0 \in X$) the flow $f := S_t f_0$ provides a strong (resp. weak) solution to the evolution equation (4.1) associated to its generator \mathcal{L} .

- Explicit semigroup. They are some (few) evolution PDEs for which we may build explicitly the solutions through a representation formula (among them are the heat equation and the transport equation). That provides in the same time the solution and the associated semigroup.
- Spectral analysis and evolution equation. They are some evolution PDEs associated to an integro-differential operator \mathcal{L} acting in some Hilbert space \mathcal{H} for which we may establish the existence of spectral basis. That means that there exists a sequence (ϕ_k, λ_k) of $\mathcal{H} \times \mathbb{R}$ such that the space generated by (ϕ_k) is dense in \mathcal{H} and

$$(\phi_k, \phi_\ell) = \delta_{k\ell}, \quad \mathcal{L}\phi_k = \lambda \phi_k, \quad \forall k, \ell \ge 1.$$

For any $f_0 \in \mathcal{H}$, the evolution equation (4.1) is equivalent to

$$f'_k = \lambda_k f_k, \quad f_k(0) = (f_0, \phi_k)_{\mathcal{H}}.$$

We thus obtain that the function

$$f(t) := \sum_{k=1}^{\infty} e^{\lambda_k t} (f_0, \phi_k)_{\mathcal{H}} \phi_k$$

is a solution to (4.1).

• Perturbation / Duhamel formula. Consider a semigroup $S_{\mathcal{B}}$ with generator \mathcal{B} and an operator \mathcal{A} which is bounded by \mathcal{B} (in a sense to specify). We may then build a (mild) solution to the evolution equation associated to the operator $\mathcal{L} := \mathcal{B} + \mathcal{A}$ through one of the two Duhamel formulas

$$S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{B}}\mathcal{A} * S_{\mathcal{L}} = S_{\mathcal{B}} + S_{\mathcal{L}} * \mathcal{A}S_{\mathcal{B}},$$

that we establish to be true using the Banach-Picard point Theorem exactly as we have done for perturbing the heat equation (in the first lecture) and the free transport equation (in the second lecture).

- The variational approach. In a Hilbert space framework, the variational approach of J.-L. Lions provides an efficient tools for proving the existence of solutions for a large class of evolution PDE, including parabolic equations and transport equations.
- The Hille-Yosida theory. Any semigroup is a semigroup of contractions in a convenient equivalent Banach space. Thanks to the Hille-Yosida-Lumer-Phillips theorem, we may characterize the class of operators which are the generator of semigroups of contractions: they are the operator with dense domain, closed graph and which are maximal dissipative. In a Hilbert space, we say that an operator $\mathcal L$ is maximal dissipative if

$$\exists x_0 \in \mathbb{R}, \ \forall x \ge x_0, \ R(x - \mathcal{L}) = \mathcal{H} \quad \text{and} \quad \forall f \in D(\mathcal{L}), \ (\mathcal{L}f, f)_{\mathcal{H}} \le 0$$

and it has closed graph if $\{(f, \mathcal{L}f); f \in \mathcal{H}\}$ is closed in $\mathcal{H} \times \mathcal{H}$. We may then build a solution to the evolution equation associated to \mathcal{L} by just using the Euler implicit scheme (2.4).