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Abstract - We study the trace problem for weak solutions of the Vlasov
equation set in a domain. When the force field has Sobolev regularity, we
prove the existence of a trace on the boundaries, which is defined thanks to
a Green formula, and we show that the trace can be renormalized. We apply
these results to prove existence and uniqueness of the Cauchy problem for
the Vlasov equation with specular reflection at the boundary. We also give
optimal trace theorems and solve the Cauchy problem with general Dirichlet

conditions at the boundary.

1. Introduction and main results.

Let Q be an open bounded or unbounded set of RN with sufficiently
smooth boundary 992. We denote by n(x) the unit outward normal vector at
x € 092 and by do, the surface measure on J€2. We define the phases space
O = Q xRN and the domain D = (0,T) x O, with T' > 0. We also define
L=00xRN Yy ={(2,8) €8, £&-n(x) >0}, Xo = {(z,£) €%, £-n(z) =
0}, I'=1(0,T7) x ¥ and in the same way I'1 et I'y.

In this paper, we consider weak solutions g = g(¢, z, &) € L*°(0,T; LY (0))

of the Vlasov equation set in the domain D

)
(1.1) AEg:a—g—l—f-Vmg—FE-Vgg:G in D,



for a fixed vector field E = E(t,x) and a fixed source term G = G(t,x,§)
which satisfy at least

(1.2) EcL'0,T; WP (Q) and G e L. ([0,T] x O).

loc

Equation (1.1) must be understood in the distributional sense, which is

(1.3) /// (9Ap¢+ G ¢)dédxdt =0,

for all test functions ¢ € D(D).

The main result is established in section 2 and state that a solution g of
the Vlasov equation has a trace vg on I' and for every ¢ € [0,T] a trace g(t, .)
on {t} x O in the sense of the Green formula. This problem of existence
of a trace is fundamental for the Cauchy problem associated to (1.1) with

boundary condition. Precisely, we prove the two following results.

Theorem 1. We assume p € [1,00). Let g € L*°(0,T; L} (O)) be a solution
of equation (1.1)-(1.2). Then ¢(t,.) is well defined for every t € [0,T] as a

function of L (O) and
(1.4) g € C([0,T]; L, (0)),

and the trace of g on I' is well defined, this is the unique function ~g such
that

(1.5) 79 € Li([0,T] x 2, (n(x) - €)* dédo, dt),

which satisfies the Green formula

/;// (g Apd + G ¢) dédudt =
=[] sty odaae], /tl//vggbn )€ dedoydr.

for all ty, t; € [0,T] and for all test functions ¢ € Dy(D), the space of
functions ¢ € D(D) such that ¢ = 0 on (0,T) x X.

Theorem 2. We assume p = co. Let g € LS (D) be a solution of equation

(1.1)-(1.2). Then g(t,.) € L3.(O) is well defined for all t € [0,T] and ~g
exists. They are uniquely defined by the Green formula (1.6) and they satisfy

(1.7) g€ C([0,T]; L{,.(0)) Va < oo and g € L5, ([0, T] x 2, dédo,dt).



Moreover, the Green formula (1.6) holds for all test functions ¢ € D(D).

The trace problem has been addressed in the case of free transport equa-
tion (E = 0) and neutronic equation (E =0 and £ € SN~ = {¢ ¢ R, |¢] =
1}) by V.I. Agoshkov [1], M. Cessenat [7], and by L. Arkeryd, C. Cercignani
[2], M. Cannone, C. Cercignani [6], K. Hambdache [9] in connection with the
investigation on Boltzmann equation. A. Heintz in [10] deals with the case of
irregular domain. The case of F Lipschitz had been treated by C. Bardos [3]
and S. Ukai [15].

The proofs we present here use new arguments for trace theorem, and in
particular, they are not based on the characteristic method as precedent works
are. On one hand, our approach is based on a multiplicator method, as the
one introduced by P.-L. Lions and B. Perthame [11] to prove moments lemmas
for transport equation, see also K. Hamdache [9] where similar multiplicator
to ours is used, and on the other hand, it is based on a regularization method
adapted from the one used by R.J. DiPerna et P.-L. Lions [8] in the framework
of transport equation with coefficients of Sobolev regularity.

In these proofs, the trace vg is constructed as the strong limit of gk|r7
where (gx) is a sequence of smooth approximations of ¢, defined on [0, 7] x O.

This implies that vg can be renormalized on the following sense

Corollary 1. Under assumptions of Theorem 1 or 2, and for all functions
B € WHo(R) we have ApS(g) = 3 (9) G in D' (D), and the traces defined by
Theorem 1 or 2 satisfy

(1.8) vB(g) = B(vg) and B(g)(t,.) = Blg(t,.)) Vt € [0,T].

In section 3, we give some possible extensions of Theorem 1 and 2 and
prove additional properties of the trace which are deduced from Corollary
1. We show that a stronger integrability assumption on E and G implies a
stronger integrability of vg and we state a duality formula. We also show the
strong and weak continuity of the trace yg with respect to g, £ and G. We
would like to emphasize that the renormalization property is very important.
As in [8], this property allows us to prove uniqueness of the solution for some

initial boundary value problem. It also makes possible to define the trace for



a renormalized solution of the Vlasov equation (1.1), and we refer to [13] for

an extension of the trace theory in this direction.
In section 4, we assume that E and G also satisfy

E(t,z)
1+ |z|

(1.9) c L0, T; LY (Q)NL*0,T; L*°(R)) and G € L*(0,T; LP(O)).
We study the initial boundary value problem for Vlasov equation (1.1) with

initial data

(110) g(O,x,ﬁ) = go($,f) in Oa

and specular reflection on the boundary

(1.11) V-g(t, 2, §) = 14+9(t, z, Ry€) for ae. (t,2,§) €T,

with R,{ =& —2(¢-n(x))n(z), and where we denote by 74 g (resp. v— g)
the restriction of the trace y¢g to I'y (resp. I'_).

We state in this framework the equivalent of existence and uniqueness
results of R.J. DiPerna and P.L Lions [8].

Theorem 3. Let p € [1,00]. Assume gy € LP(O), E and G such that
(1.9) and (1.2) hold. Then there exists an unique solution g to (1.1) in
L*>(0,T; LP(O)) satisfying (1.11), and corresponding to the initial datum go.

Moreover, g satisfies
(1.12) g € C(]0,T]; LP(O)) if p < 0.

Here, we focus our attention to the linear problem, where the force field £
and the source G are fixed. But the present work is motivated by applications
to non-linear problems which appear in plasma physic, in particular to the
Vlasov-Poisson equation where precisely the force field E is only known to
have Sobolev regularity. We refer to [13] for an application of the trace
theory developed here to the initial boundary value problem for the Vlasov-
Poisson-Boltzmann system. General references for mathematical results on
the Vlasov-Poisson system are also given in [13].

Existence in Theorem 3 is obtained thanks to a penalty method, that

we introduce, and which can be generalized to a lot of other situations. The



penalty method is a classic tool which allows one to prove existence of a solu-
tion to a problem set in a domain from the existence of a family of solutions
of problems set in the whole space, see C. Bardos and J. Rauch [4]. The idea
of the penalty method is the following:

a) - We consider a family of fields E.(z) which “tends to penalize 2¢”,
forcing the particles to stay in the domain, and we consider the solution g.

to
(1.13) Apge+E. - Vege =G in (0,T) x RN x RY,

corresponding to the initial datum (1.10) for which we get uniform bound in .
b) - First, we pass to the limit in the distributional sense in the interior
of D, and up to the extraction of a sub-sequence, g. converges to a solution
g to (1.1).
c) - We then multiply (1.13) by functions belonging to an appropriate
class of functions and we pass to the limit in the whole space (0, T) x RY x RY.
We show that g satisfy the reflection specular condition (1.11) in a weak

sense, i.e. ¢ satisfies (1.3) for all test functions ¢ in an appropriate class

RS C Dy(D).
d) - We last use the trace Theorem 1 or 2 and the Green formula (1.6),
and we get that yg satisfies the specular reflection condition (1.11).
Uniqueness in Theorem 3 is obtained by a very simply way using the
renormalization property (1.8), the resolution of the backward problem of

(1.1) and a duality formula.

In the last section, we show how the classical optimal weight theorems can
be proved in the case of a field E' with Sobolev regularity. This generalizes the
already known results for the free transport equation, due to V.I. Agoshkov
[1], M. Cessenat [7] and S. Ukai [15]. Let emphasize that without assumption

on the geometry of the boundary, we can not hope in general, that
(1.14) 79 € Lh((0,T) x 3, n(x) - €] dédordt)

holds instead of (1.5). We refer to C. Bardos [3] where he builds a counter-

example. Nevertheless, we prove

(1.15) vg e LP ([0,T] x S, 7 (t, z,€) |n(x) - €] dedoydt),

loc



where 7g(t, x, ) is the time of live in Q of a particles submitted to the force
field E, which at time ¢, has position = € () and velocity £. This result is
optimal since we are able to solve the Cauchy problem for the equation (1.1)
with initial datum and Dirichlet condition in the incoming set y_g = g_ on
I'_, for every g_ satisfying (1.15).

Last, when E' = 0 an elementary calculation leads to
(1.16) T(t,x,&) > min(2 (Ry/R) |n(z) - &|,T) V¢ € Bg,

if () satisfies an uniform interior ball of radius Ry condition, with equality in
(1.16) when Q = Bg and [¢| = R, and 7(t,z,£) = T when  is an half-space.
Thus, we have the two extremal situations: if 2 is an half-space, then g
satisfies (1.14); if Q is a ball, then ~yg satisfies (1.5) and not better. We finish
with two sufficient conditions when (1.14) holds.

2. Proofs of trace Theorems 1 and 2.

We begin with some notations. We assume that €2 satisfies the following
regularity condition: € is locally on one side of 9¢2 and there exists a function
d = dg € W2°(RY) such that for all z in an interior neighborhood of 99
one has d(z) = —dist(x, ). (Such an assumption holds if for example 02
is a C? manifold). We define in Q the gradient field n(z) = V,d(x), which
coincide with the unit outward normal vector to €2 on every point of 0f2.

For a given real R > 0, we define B = {y € RY / |y| < R}, Qg =
QN Br, Or = Qg X Br, D = (0,T) x Or, ¥ = (02N Bgr) x Br and
I'r = (0,T) x ¥g. We also denote by Lgb the spaces L%(0,T; L°(Og)) or
L0, T; L*(QR)), and L{° the spaces L*(0,T; LY (O)) or L*(0,T; LY, (Q)).
We set du; = |n(z) - €| d€do,.dt, with i = 1 or 2, the measures defined on T'.
We define C(X) the space of continuous and bounded functions on X. Last,
for a, b € R, we set a A b = min(a,b) and for a € [1, 00| we note a’ € [1, ]

the conjugate exponent of a, given by 1/a+ 1/a’ = 1.

Proof of Theorem 1. We shall prove the Theorem in three steps.
First step: A priori bounds. Let assume g € W2'(D) N C(D) in such a

loc

way that all the manipulations which will follow are allowed. Consider three
functions, that we shall specify latter, 1 = ¥ (n(z)-£) € C'(R) not decreasing,



P(0) =0, ¢ = o(t,z,¢) € D(0,T] x RY x RY) and 8 € CY(R), and fix
to, t1 € [0,T]. Using Stokes formula and equation (1.1) we get the following
identity

/t:l//zﬁ(g)ww n(z) - € dédo,dt + [//Oﬁ(g)wgod:cdg]: —

(2.1) :/to /OAE(ﬁ(g(t,%f))w(t,w,ﬁ)w(n(fc)-f)) dédxdt

= /t / 0{6(9) o' (n(z) - €) (‘€ D2 € + E - n(x))
+B(9) ¥ Ap o + B8'(9) G} dédudt.

a) - Let fix ¢y € [0,T], a compact set K of O, ¢(z) = 1 and = S,
where (f:) is a sequence of smooth even and non negative functions, such
that 5.(0) = 0, |6.(y)| < 1 and B:(y) — |y|, Vy € R. One can then choose
¢ € D(O) in such a way that 0 < o < 1in D, ¢ =1 on K and we denote by

R > 0 a real number satisfying supp ¢ C Og. The identity (2.1) then implies
that for all ¢ € [0,T]

//Oﬁs(g(tl,.))goda:déz//Oﬂa(g(to,.))godxdé
" / / /O{ﬁs<9> Ap @+ BL(g) G} dédadr,

< 18-(g(to, Wiz, + Gl

T
+ iy IVelimcoy [ 1Al (14 1B ) dr
One deduces, letting € — 0, a first a priori estimate

sup |lg(t, )l k) < llg(to, ey + I1Glls,
te[0,T]
(2.2)

T
#Con [t llug (L Bl ) e

b) - We now fix a compact set K of X, ¢(z) = 2z, tg = 0, t1 = T
and 3 been unchanged. We chose ¢ € D(RY x RY) in such a way that
0 <p<1in O, p =1 on K, and we denote by R > 0 a real number



satisfying supp ¢ C Br x Bg. We deduce from the identity (2.1), in a same

way that previously, a second a priori estimate
||g||L1([0,T]><K,du2) <R (||9(T7 Iz + 11g(0, )||L1)

(2.3) T

Cr / (U 1B M) ot g, de + RIG L,
Second Step. Regularization. In this step we prove the following Lemma 1,
which state that g can be approximated by a sequence g; of regular functions,
defined on [0, T x O, and solutions of (1.1) with an error term 7 which tends
to 0 when k goes to oco.

Given a sequence of mollifer py

pr(z) = kY p(kz), keN", peD (RY), supppC By, / p(z)dz =1,
RN

we introduce the sequence of regularization functions gy = g4,k pr *¢ pr and

G = G %1 P *¢ pr, Where * denote the usual convolution and . ; denote

the convolution-translation defined by

(2:4) (ke (@) = (2o e ))(@) = [ o) o= () =) d

loc

for all u € L} () and hy, € L*(RY) with supp by, C Bi.

Lemma 1. For all k € N*, there exists a function gx € C(D) N WH(0,Ts;

W,2>°(0)) such that the sequence (g;,) satisfies

loc

g is bounded in L*°(0,T; LY (O)),

loc

(2.5) -

gr — g in L*(0,T; L,.(0)) Va < oo
and
(26) AEgk: = Gk + 7k in D/(D),

where (1) converges to 0 in L} ([0,T] x O).

loc

Proof. The proof is inspired from lemma II.1 of R. DiPerna and P.-L. Lions
[3].



Noting g = ¢(t,y,n), one multiplies equation (1.1) by the test function

pr(z — 2 n(z) —y) pe(§ — 1) € D(Q, x Rfy) for fixed x € Q and € € RV and

integrate on y, 1. We get

0q o/~
% = G — (6 Vug) *ak pr*e pr— (E-Veg) *uk pr ke pr € L0, T; W;i2(0)),

and in particular g, € WH(0, T; I/VllocC>O (0)). Let define gi to be the contin-
uous representative of g, in the class of functions almost everywhere equal
to gr. Then gy solves (2.6) with 7 = r}(g) + r2(9), 7i(9) = & Vi gr — (-
Vg) %z k pr*pr and 72(g) = E-Ve g, — (E-Veg)*z k pr* pr. We have to prove
that r}.(g) and 7%(g) converges to 0 in L .. We shall prove the convergence
of r}(g); the one of 73(g) is yet proved in [8].

Let remark that if g is smooth, then of course, one has V(g x5 1 pr) =

2
=(I- z D*d(z)) (Vg) *zk pr and therefore

(2.7) i (9) k:oO in L? (D).
00,p
loc

To deal with general g € L
One has

we begin by proving an a priori estimate.

= //5 -Vaeg(t,y,n) pr(z — %n(w) —y) pr(§—1n)
—n-Vy(9(t,y.n) pr(z — %n(w) —y) pe(§ — 1)) dydé
z//g(t,y,n)pk(é —m{(E—n)-Vpr(z— %n(ﬂf) =)

- %g - D*d(z) V py(z — %n(:c) —y) } dydg.

Then, noting (Vp)r(2) = kY Vp(k z), we get, for a constant C' which only
depends on p, R and d(x), the bound
(2.8)

T
||7”Ii|’1£p(DR) < 2p/0 Hg(t, “ -)Hip(oRH) H(Vp)kHil(Rg) {”kfl)k(f)Hil(RN)

+2 ||§D2d(x)||poo(oR+1) ||pk(f)||il(Rév)} dt <C ||g||ip(DR+1)-

Then, for g € L7 we argue by density: we consider a sequence g.
p

loc

of smooth functions, such that g. — ¢ in L (D) and we write r}(g) =



74(g:) +74(g — g-) which obviously converges to 0 in L7 (D) thanks to (2.7)
and (2.8). O

Third step. Passing to the limit. Thanks to (2.5), gr(t,.) converges to g(t,.)
in LY (O) for almost all ¢ € [0,77], and we denote by ¢y such a time.
On the other hand, for all k,¢ € N* the difference gr — gs belongs to

W0, T; W,2°(0)) and solves

loc
(2.9) Ap(gr —9¢) = Gr — G+ —71¢ in D'(D).

The estimate (2.2) applied to g — g, and Lemma 1 imply that for all compact
sets K C O one has

2.10 sup |[(gr — ge)(t, )| 2 — 0.

(2:10) t€[0,T] I PO oo

We then deduce from (2.10) and the bound (2.5) that there exists for all
t € [0, 7] a function ;g such that g (¢, .) converges to v:g in C([0, T; L},.(O)),

and in particular
g(t,x, &) = yg(z, &) for almost every (t,x,§) € D.

Moreover, for all ¢t € [0,7] and R > 0 we have
lveglley, < lim sup 19kt Lz, = llgllLos-r.

One has gx(t,.) = (7 9) *z.k Pk *¢ pr a.e. in O for all k € N* and t € [0,T],

and since the two functions are continuous, this holds everywhere in O and

thus gi(t,.) — g in L (O) for all ¢t € [0,T]. In the sequel, we just note

loc
v g = g(t,.). From (2.10), we deduce g € C([0,T}]; L}, .(O)).

Estimate (2.3) applied to gx — g¢, Lemma 1 and the convergence (2.5)
imply that for all compact subsets K C X

(2.11) /// |Ygr — vgel dpa(t, x,§) — 0.
(0,T)xK k,f—+oo

One deduces from (2.11) the existence of a function vg € L} ([0,T] x X, dus)

loc

which is the limit of (ygg).



Last, for a fixed ¢ € Dy(D) there is a constant C' such that |p(t,z,€)| <
C'|n(z)-£&| on I' and therefore, the Green formula (1.6) is established, writing
it first for g and passing next to the limit k — co. Uniqueness of the trace

follows from the Green formula. O

Proof of Theorem 2. The proof is really similar to the one of Theorem 1, and
we describe it briefly. Let fix a compact subset K of (0,7) x 3, ¥(z) = z
and let chose ¢ € D((0,T) x RN x RY) such that 0 < ¢ <1, ¢ = 1 on K,
suppy C (0,T) x Og, B(z) = |2|? with 0 € [1,00). Using identity (2.1), one

has a first estimate

/ / Iy gl” dpiat, 2, €) <(RIVgll =y + 1) / / / 191" |B| dededt
(2.12) K Dp
FR | D%dalli=o) gl + RIgI% 1Ly

For all compact sets K C O, all ty € [0,7] and all a € [1,00) we also prove
that the following a priori estimate holds

sup [lg(t, )7 k) < llg(to, e
te[0,T]

(2.13) T
el [ [[ ot R+ 1B + algl " 61} deda.
0 Or
Let then consider the sequence (gi) of smooth approximations of g built

in Theorem 1. This one satisfies
(2.14)

gx is bounded in L{° (D) and gi 9 in LY .([0,T] x O) Va € [1,00).
We conclude without difficulty thanks to the a priori estimates (2.12) and
(2.13) and the convergence (2.14), in the same way that we have done in the

proof of Theorem 1. O

Proof of Corollary 1. We just have to remark that sequences (gr) and (Gy),

defined in Lemma 1, obviously satisfy

ApB(gr) = B'(gx) Gk + ' (gr) 7. in D'(D),
B(ygr) =7vB(ge) and B(yigr) =7 B(gr) Vte[0,T7],



and we pass to the limit £k — oo without difficulty, since gx, v gx and v gx
converge strongly. This proves (1.8). O

3. Extensions and additional properties of the trace.

We begin with some remarks on Theorems 1 and 2.

Remark 1. (i) Theorems 1 and 2 can be generalized to a vector field £ =
E(t,z,&) such that
Ee L0, T; WP (0)) and dive E € L'(0,T; L®(0)).

loc

See [14].
(ii) A priori estimate (2.3) or (2.12) only use the bound of E in L*(0,T;

v (0)), but in general, we do not know how to give sense to the trace of g

loc

with only E € Lllff. Indeed, in the regularization step we use

E € LY0,T; Wli’f/(O)). In particular, Theorem 1 does not apply to the
Vlasov-Maxwell equation where the field E(t, z) + £ A B(t, z) only belongs to
L(0,T); I2,,(0)).

(iii) Nevertheless, when FE € Lllfc)/ and g > 0, one can show existence
of a measure trace 7g, using the estimate (2.3) and regularizing in the only
x variable. Furthermore, estimate (2.3) also allows one to show existence of

a solution to the Vlasov equation (1.1) with Dirichlet condition or specular

1,p

lee @s we do in Theorem 4.

reflection condition on the boundary when F € L

(iv) Theorem 1 is necessary local in £ if we do not make moments as-
sumption on g. One possibly global version of trace theorem is the follow-
ing: let g € L>(0,T;LP(O, (1 + |¢]) dzd€)), E € L'(0,T; W2 (0)) and
G € LY((0,T) x O) then we have vg € LY(T;pun(z, &) dwdédt) VM, with
pum(z,€) = |n(z) - | (In(x) - §] A M).

(v) We can extend Theorems 1 and 2 for solution g to the Vlasov-Fokker-
Planck equation

0
§g+£-vmg+E-V§g—0A€g:G in 'D/(D), o€ R.

See [14].
(vi) We obtain similar trace results in the case of the stationary Vlasov

equation.



(vii) We can make other assumptions concerning the integrability in time

of g, F and GG in Theorems 1 and 2. One has for instance

Proposition 1. Let E e L (0,T; Wlo’f (Q), G € L} .D) and

g € LU0,T;L? (0)) a solution to (1.1), with a,p € [1,00). Then g sat-
isfies g € C([0,T); L, .(0)), g(t,.) € L} (O\Xo) for all t € (0,T) and there
exists a trace function vg € L}, .((0,T) x X, dus) such that the Green for-
mula (1.6) holds for all ¢ € D(D) which vanishes in a neighborhood of

[0,T] x 2o U{0} x ZU{T} x .

The proof of Proposition 1 is a variant of the proof of Theorem 1. One
can show the following a priori bound: for every compact set K of O and for
all e, R > 0 there is a constant C' such that

SUPHQ( ) + Sup lg(t, ) n(x) - €llLron)

e, T—e¢]
T—e
- // 9l dua(t,,€) < € {1+ 1Bl v gl + Gy, -

Then, one can conclude using the sequence of regularized functions (g ).

We give now some additional results concerning the properties of the
trace. We begin with a stronger integrability result on vg and an improvement

of Corollary 1.

Proposition 2. We make assumption of Theorem 1, we assume that addi-

tionally

1 q A 1 = . 1 1 1
(31) EeL'(0,T;L} (), Ge L'(0,T;L;,.(0)) with P +]; <1,
and we set r = p (1 —1/q). Then, we have
(3.2) v gl" € Lo ([0,7) x 3, (n(x) - £)? dédordt),

and Corollary 1 holds with every 3 € WS> such that |3(y)| < C (1 + |y|")
Vy € R. Last, ifr > 2, then the Green formula (1.6) holds for all test functions

¢ € D(D).

Proof. We consider a sequence () of smooth non negative, even and
bounded functions, such that —r |y|"~! < B.(y) < r|y|"~! and B.(y) — |y|”



Vy € R. From Corollary 1, we can write the Green formula (1.6) for 8.(g)
and a test function ¢ = &-n(z) x, with xy € D([0, T] x O) such that 0 < x < 1,
x =10n[0,7] x Or and supp x C [0,T] x Ory1. Using the Holder inequality,

we easily obtain the estimate

T
/O/ERﬁa(g)( 7)-¢)° dﬁdaxdt<R//OR+l{ﬁ€ )+ Be(g(T, )} dwdg
T
*pé(//)+1“%Qﬂ(foﬂda€!+IE\+|a|AEXD+-muﬂxgnkn}daMﬂt

Or
(0,

< R(llg(0, )y, + I9(T, )z, )

T
+C§A(LWE(HW )t M e+ Rl 1G]

R+1
Letting € — 0 we get (3.2). Let now T € C'(R) be a not decreasing and odd
function such that T'(z) = zif 0 < z < 1 and T'(2) = 2 if z > 3, and let define
Ty(z) =LT(z/¢) for £ € N*. For a given 3 satisfying the above assumptions
we can use Corollary 1 with 7y o 8 and then (1.8) holds with 7 o § instead
of 3. Then, thanks to (3.2), we can let ¢ goes to oo and we obtain that
Corollary 1 still holds with such a 8. Of course, when r > 2 the embedding

Ly (T',dpe) C Llo/C (T', du1) permits us to write (1.6) for all ¢ € D(D). O

The next duality formula is important, it will be used in the sequel
in order to prove uniqueness of the solution to the Cauchy problem with

boundary conditions.

Proposition 3 (Duality formula). Let pi, p2, ¢ € [1,00] such that p% +
]}2+§§1. Wedeﬁneg———ka, g—p%—f‘%ﬂ”i:pi(l—%) if p; < o0,
r; = oo if p; = oo and % = Tl + E' Let g1 and g2 be two solutions of Vlasov
equations

AEgl = G1 and AEQQ = GQ in D/(D),

with E € L'(0,T; W, Ly (Q)NLL.(Q), p=p1 Ap2, gi € L*(0,T; LY (0)),

loc
G; € L'(0,T; L} (O)) for i = 1 and 2. Then the following Duality formula
holds

///F’Ygl v g2 x n(z) - € dédodt + [//Oglggxda:dg]::

- /// (91 Gox+Gig2x + 9192 AEX) dédxdt,
D

for all test functions x € Dy(O), and if r > 2, for all test functions y € D(O).

(3.3)



Proof. We consider the regularized functions g; r = g *z.k Pk *¢ Pk, ¢ = 1, 2
introduced in Lemma 1 and 7} defined in the proof of Proposition 2. We have

(34)  ApTi(g1.k91.%) = T¢ (91,6 91.6) (91,5 G2k + 925 G1x) in D'(D),

with G, — G; in LY(0,T;Lj ), i =1, 2, and then the Green formula (1.6)

loc

writes

(3.5)
[//o Te(91.% gz,k)Xda:d£]j + ///F To(vg1 x Y92.1) X n() - € dédodt =

= // {T; (91,6 91.%) (91,6 G2, + 92,6 G1,6) X + Te(91,k 92,1) Apx } dédadt.
D

We first pass to the limit & — oo using the fact that vg; , converges to vg;
a.e.in [0,T] x X and g; (¢, .) converges to g;(t,.) a.e. in O for every t € [0,T]
and for i = 1 and 2. We then get (3.3) letting ¢ go to oo and using the bound
(1.5), (1.7) or (3.2). O

In the next proposition we prove weak and strong continuity of the traces

~v ¢ and v; g with respect to g, £ and G.

Proposition 4. Let p € [1,00] and (g.), (F:) and (G.) be three sequences
of functions which satisfy assumptions of Theorem 1 or 2.
1) Assume that g. =~ g in L;->P) E. — FE in LY and G. —~Gin L}

loc loc loc?
and moreover that there is a function 5y € T/Vllofo (R) such that

Bo is stricly superlinear at the infinity, i.e. Go(z)/|z] | f 00
Z|— 00

(3.6)
and (y(g-) is bounded in L;>F.

loc

Then g solves Vlasov equation (1.1), g has a trace vg € L, ([0, T] x X, dus)
and a trace g(t,.) € LY (O) on {t} x O for all t € [0,T] in the sense of

loc

Green formula (1.6), which are the weak limits of yg. and g.(t, .) respectively.
Moreover, g € C([0,T]; LY (O) weak).

loc
2) Assume that g. is bounded in L;)P, g. — g in L;}?, Va < 00, E. = E

in LLP' with E € LY(0, T; W;2* (Q)) and G. — G in L}, then vg. — vg

loc ? loc locy

in L ([0, T] x ¥,duz) and g.(¢,.) — g(t,.) in Li, (O) for all t € [0, T).

loc



Remark 2. Result 1) shows that a solution g € L;;"" to the Vlasov equation
(1.1) with FE € LY G e Ll has a trace vg € L ([0,T] x 3, dus) if g is

loc ? loc loc

obtained as the weak limit of a sequence g. € L;.” of solutions to the Vlasov

equation (1.1) with E. € LY(0,T; Wlf;f/(@)), G. € L},.. But, in general,
we can not say that the trace function vg constructed by this way satisfies

B(vg) = vB(g) for every 8 € W>°(R). Compare to Remark 1. ii) and 1. iii).

We start with the statement and the proof of a technical lemma that we

shall use in the sequel.

Lemma 2. Under assumption (3.6), there exists 3 € I/Vlicoo (R) strictly super-
linear at the infinity such that 5(g.) is bounded in L}.)Y, 3(G.) and '(g:) G-

are bounded in L},,..

Proof of Lemma 2. First remark that it is not a restriction to assume that
moreover [3 is even, convex, not decreasing on R and satisfies 5y(z) > 1+|z]|
Vz € R. We can also assume, thanks to Dunford-Pettis lemma, that 5y(G.)

is bounded in L!

L (D). In order to construct 3 let define by as the infimum

of positive reals such that

Bo(2)

z

We then define by induction on k£ € N the even function 3 by

B(z)=11if z € [0,1], [B(z) =z if z € [1,a9], with as = max(1,bs),

B(z) =k (z—ag) + Blag) if z € [ag, agpi1],
2k ay, — B(ax)

> 2.
—1 k=2

with a1 = max(bgy1,

By construction of the ay, 3 satisfies 3'(z) z < 2 ((z) and 3(z) < kz < fo(z)
in each segment [ak,ar4+1] and [ is strictly superlinear, since §'(z) > k,
Vz > ay. Therefore, 3(ge) is bounded in L;>* and 8(G.) is bounded in L;

loc*

Last, we have |3'(ge) G| < 8'(lge|) |g=| + B (IGe]) |Ge| < 2(8(ge) + B(Ge)). ©

Proof of Proposition 4. We begin with 1). We claim that the sequence

(ge(t,.)) is weakly compact in L} (O) and the sequence (g, ) is weakly com-
pact in L} ([0,T] x X, dus). Indeed, we observe that thanks to Proposition

loc

2 and Lemma 2, we can write Agf(g:) = 3'(9:) G: in D'(D) and then that,



uniformly in e, 3(yg.) is bounded in L}, .([0,T] x ¥,dus) and B(g(t,.)) is
bounded in Lj, (O) for all ¢ € [0,T]. We conclude with the help of Dunford-
Pettis Lemma. Now, for fixed tg,t; € [0,T], there is a sub-sequence, denoted
by €', such that vg., and g¢./(t;,.), i = 0 or 1, converge; and we note g
and 7, ¢ the resulting limits. We write then the Green formula (1.6) for the
sequence g.., we pass to the limit ¢/ — 0 and we get that g is the trace of
g on I' and that is the all sequence vg. which converges. The same holds for

g(t,.) := vtg. The continuity t — g(t,.) in LY (O) weak is a consequence of

loc
the bound [[3(g)||se» < liminfe_g [|#(ge)|/2e» and of the continuity in the
distributional sense following from (1.6).

In order to prove 2), we first remark that, passing to the limit in the
Green formula (1.6), we obtain v g. (n(z)-£)? — vg (n(x) - £)? in the sense
of the weak x topology o (M*'([0,T] x Xg),C([0,T] x Xg)), for all R > 0. We
then choose a strictly convex function 8 € CY(R) N W1>°(R), 8(z) < |z|.
Since we have ((g.) — f(g) in LY (D) with $(g.) bounded in L (D),

loc

E. — Ein L*? (D) and §'(g.) G- — #'(9) G in L} (D) we also obtain that

loc loc

B(vge) = vB(g:) = v B(g) = B(7g), which implies that v g- converges to vy g
strongly, see H. Brézis [5]. In the same way we prove that g.(¢,.) converges

to g(t,.) in L} (O). O

loc

4. Vlasov equation with specular reflection on the boundary.

We show in this section existence and uniqueness of the solution to the
Cauchy problem for the Vlasov equation (1.1), with initial datum (1.10) and
specular reflection at the boundary (1.11).

Existence is proved thanks to the penalty method that we have described
in the introduction. Such a method had been used by P.L. Lions and A.S.
Snitzmann [12] to prove existence of a solution to an E.D.O. set in an open
set, with "reflection” when the trajectory touches the boundary. To our
knowledge, it is the first time that a penalty method is used in the framework

of kinetic equation.

In order to define the penalty term let introduce some notations. We
extend d = dg as a function d € W% (R¥) such that in an exterior neigh-
borhood V of 02 one has d(z) = dist(z,0Q) and d(z) > dy > 0 outside of V.



One defines 6(z) = d(z) 1{zeqe}, and thus §(z) = dist(z, Q) in V. In a neigh-
borhood W of 992 the vector field n(z) = V,d(z) does not vanish, and we
can define on W the field II, of projector operators on the hyperplane which
is orthogonal to n(x), in such a way that we have £ = (n(x) - &) n(x) + 11, £

and n(z) - I, & = 0, for all ¢ € RY, and we extend it arbitrarily outside of

2
W. Last, we define de vector field E.(z) = —Vw%:) = —@ n(x). For a

given function H defined on D or on (0,7) x RN x RY we note H, or just
H when there is no ambiguity, the function defined on (0,7) x RY x RN by
H=HonD, H=0o0n (0,T) x Q° x RV,

We begin with a first theorem which implies the existence result in The-

orem 3.

Theorem 4 (Existence). Let p € [1,00], go € LP(O), E € L'(0,T;
L¥ (Q)), G € L*(0,T;LP(O)). Then, there exists a solution g to (1.1) in

loc

L°(0,T; LP(0O)) satistying (1.11), and corresponding to the initial datum go.

Proof. First step. We assume in this first step that £ € L*(0,T; Wllo’f /(Q))

and p € (1, 00].

We shall deduce the existence from the existence result of DiPerna-Lions [8].
a) - Proposition II.1 [8] state that there exists a solution g. € L*(0, T}

LP(RYN x RM)) to

(10) e+ € Vage + (B4 B) - Ve =G in D((0,T) x BV x BY),

corresponding to the initial datum g, and satisfying the uniform bound

(4.2) [SOU% 9=t ) e @~ xrry < C(T [|g0llzr 0y Gl L1 ((0,7);27(0)))-

Therefore, up to the extraction of a subsequence, g. converges to a function
gin L>((0,T); LP(RN x RY)) weak.

b) - We remark that E. = 0 in the domain D. Thus, passing to the limit
in the sense of D'(]0,T") x O) in equation (4.1), we obtain that g solves (1.1),

corresponding to the initial datum gg, i.e. g satisfies

(4.3) //O 9o (0, .) dxd§ + ///D(g App+ G ¢)dédxdr =0,



for all ¢ € D([0,T) x O). We still have to show that g satisfies (1.11).
¢) - Given three functions ¢ € D((0,T)xRY), ¢ € D([0, +0)), 1(0) = 0,
and ¥ € D(RY 1), we set

0%(x)

®e = 1) U= o(t,x)((n(z) - ) + ) V(I £),

and we define the class RS C Dy((0,7) x RY) as the space of functions
which write ®(¢,x, &) = p(t,x) ¥ ((n(z) - £)?) U(I1, £). We choose P, as a test

function in (4.1), and we get
g 0
_/// Ge {@baql(agp"i_é'vw@) +¢\P<€'vmw£+(Ea+E)'V§wa)
0J JRN xRN

T
+ 0. (S-Vm\ll—l—(EE—I-E)-V,E\I/)}dmdfdt:/O//RN G o1, U dadédt.

xRN

We pass to the limit ¢ — 0 noting that

5 ’ vxwe + Ee : Vg% = 25 ’ vx [(n(x) ’ §)2} ¢'((n($) ’ 5)2 + %)7
E. VU = —@ n(z) - VU (I, €) = —@ n(z) - [H, V,¥ (IL, £)] =0,

and
9e ¢E = 951/) + 9 1m¢Q 'QZJE - 91/1 Lfoc Weak7
since . — 0 a.e. z € Q° and [|Yc]|co < [|¥] 0o, and thus
0
- [[] s{ov Gore- Ve +ou e Vv + B Ve

+o(§-V,UV+E- vgxp)} dxdédt = // G ® dxdédt,
D

or, in other words,

(4.4) ///D(g Ap® + G ®)dzdédt =0, Y € RS.

This last equation is a weak formulation of the specular reflection condition.

d) - Indeed, Theorem 1 or 2 imply that the trace g is well defined, and,
thanks to Green formula (1.6), vg satisfies

(4.5) ///F vg(t,z, &) P(t,xz, &) n(z) - Edo(x)dédt =0, VP € RS.



Therefore, for almost every (¢,z) € (0,T) x 9, for all 1 odd, |(2)| < C 22

and for all ¥ we have shown that

/ / [vg(t, 2, & +&" n(z))
g el (RN)/ Ry

- ’Yg(t, xz, 5/ - ?”L(ZI?))} \P(§/> &(éhll) dfldfu = 07
which is equivalent to say that vg(t,z,£) = vg(t,z, R, &) for almost every
(t,z,§) €T
Second step. We deal now with the general case E € Ll(O,T;Lp/ (©)) and

loc

p > 1. Let consider a sequence of approximations E, € L'(0,T; W'? /(Q))

loc

such that Fy, — F in L'(0,T; Lf;c(@)). To deal with the case p = 1 we
introduce an additional approximation: we define the sequence gé = Ty g0
and Gy = Ty G, where Ty is defined just like in the proof of Proposition 2, in
such a way that g§ — go in LP? and Gy — G in L*?. We note g, the solution
of the Vlasov equation (1.1)-(1.10)-(1.11) corresponding to the field Ey, the
source Gy and initial datum g§, constructed thanks to the first step.

When p > 1, the sequence gy satisfies the a priori bound (4.2), and
thus, up to the extraction of a subsequence, gy converges to a function ¢ in
L*(0,T; LP(RY x R¥Y)) weak, which solves (1.1)-(1.10). But, in order to
prove that g satisfies (1.11), and in order to deal with the case p = 1, we shall
need an a priori estimate a little stronger than (4.2).

Thanks to Dunford-Pettis Lemma and Lemma 2, there is a convex, even
and superlinear function 3 such that 3(go) € L*(0), B(G) € L*(0,T; L*(0))
and ('(z)z < 20(z) for all z > 0. With the notations of Lemma 2, we
define the function (i, which is even and increases linearly at the infinity,
by Ok(z) = B(2) if z € [0,ax] and Bi(z) = k(z — ax) + B(ax) if z > ai.
Proposition 2 implies

(4.6) Ap,Br(ge) = Br(9¢) Ge in D'(D),

and thanks to the Gronwall lemma we get the estimate

[SOU% 18k (ge) |z < CUIBk(g) e 1Be(Ge)ll 2 0y, T),

from which we deduce using Lebesgue Theorem and Beppo-Levy theorem

(4.7) sup [|8(ge)lr < CU1B(go)llze, [|B(G)lLr (Lr), T)-

[0,T]



Therefore, we are able to pass to the limit & — oo in (4.6), and we obtain

(4.8) Ag,B(g¢) = 8'(9¢) Ge in D'(D).

When p = 1, estimate (4.7) and Dunford-Pettis lemma show that, up to the
extraction of a subsequence, gy converges to a function g in L>(0,T; L! (RN X
RY)) weak, which solves (1.1)-(1.10).

In order to prove that the specular reflection condition (1.11) holds, we
use Proposition 4, part 1) which says that g has a trace yg and that vg, — ~g
in L1([0,T] x 3, dus). Passing to the limit in (4.5) written for g,, we get that
(4.5) also holds for g. This proves that g satisfies (1.11). 0

Proof of Theorem 3. Existence part is stated in Theorem 4. For the unique-
ness result we shall argue by duality. Thanks to Theorem 1 or 2, the trace
vg is well defined, vg € L} .([0,T] x ¥,duz), and therefore the boundary

loc

condition makes sense. Let us consider two solutions g; and g of (1.1)-
(1.10)-(1.11), and let us set f = go — g1. For a fixed 3 € C1(R) N W1>°(R),
such that 5(0) =0, (s) > 0 Vs € R*, the function G(f) € L>°(D) satisfies

ApB(f)=0 in D'(D), B(f)(0,2,§)=0
and B(f)(t,xz, &) =B(f)(t,z, R, &) a.e. on T.

Let us now consider ¢ € D(D) and ® € L>°(0,T; L'(0)) N L>°(D) a solution
to the backward problem

Ap® =¢ in D' (D), ®|;—7 =0 and ®(t,z,£) = ®(t,x, R€) on T,

given by Theorem 4. Last consider Xr = xr(|¢]) xr(|z|) a smooth troncature
function, with xg = X(E)’ R>1,x € Di(Ry), suppyx € [0,2), x =1 on
[0,1]. We use the duality formula (3.3) with the functions 3(f), ®, and the

test function Xr € D(O), and we obtain

//Aﬁ(f)ﬁbXRdfdl‘dt:///F’y@fyﬁ(f)XRn(x).gdgdaxdt

N ///D B()® (xrE Vaxr +XrE - Vexr) didudt.



The first right hand term vanishes thanks to the specular reflection condition,

and the last term is bounded by

§
181 o (m) /// @ (1jgi<2 ) % L{Rr<|z|<2 R}
(4.9) D

E
+ 1{jz|<2 R} % 1ir<ie)<2 R}) dxd&dt — 0,

R—o0
thanks to Lebesgue theorem. We deduce that [[[, B(f) ¢ dédxdt = 0 for all
¢ € D(D), which implies go = ¢;.

For the continuity result, first remark that thanks to Theorem 1 we

already have
(4.10) 9 € C([0,T]; Ly, (0)).

Moreover, for all 3 € W>°(R) and for all ¢ € Cy,(O), radial in the ¢ variable
(i.e. (x,&) = ((x,&) if €] = |£]), the following identity is satisfied

(4.11) // Blg gdgdx_// 9) G ¢+ B(g) AC) dédz.

In order to establish (4.11), we just have to write the Green formula (1.6)
with ((g) and ( X'g, and to pass to the limit R — oo using an estimate like
(4.9). Taking ¢ =1, we get

//ﬁ dgdx—//ﬁgo dgd:c+///ﬁ )G dedz € C([0,T)).

When p > 1 we let increase 3 to |.|P, and thus ||g(¢,.)||z» € C([0,T]), which
is enough to conclude in view of (4.10). When p = 1, we let increase [ to a
stricly superlinear fonction 3y, constructed as in the second step of Theorem

4, and we deduce

(4.12) sup / Bol(g(t,x,&)) dédr < co.

te[0,T)

We write (4.11) with 6(z) = |z] A M and ((§) = Cr(|€]), (r = ((
C€Cy(Ry),(=0o0n[0,1] and ( =1 on [2,0), and we obtain

R>1
R)7 — Y

d
at //o lg| A M (g dédx = //o (1jg1<m GCr + 9] A M ApCr) déde.



Using again the estimate made in (4.9), we deduce

(4.13) sup // 9t )| A M 10y o dédz — 0.
tefo,7)J Jo R—oo

Therefore, from (4.10), (4.12) and (4.13) we deduce that g € C([0,T]; L*(O)).

0

5. Trace theorem with optimal weight and resolution of the Dirich-

let problem.

We begin with an existence result for the Vlasov equation (1.1) which is
an extension of the result of C. Bardos [3] to the case of a force field with
Sobolev regularity. Our proof follows the method of R. DiPerna and P.-L.
Lions [8].

Lemma 3. Assume E € L'(0,T; W, (Q)). For given ® € Cy(D), ¢_ €

loc
Cy(T_) (resp. ¢4 € Cy(T'y)) and ¢g € Cy(O) (resp. ¢ € Cy(O)), there
exists a solution ¢ € L (D) N C([0,T); L}, .(O)) to

loc

Ap¢ =@ inD'(D), Ap¢ =@ inD'(D),
(5.1) { b =0o_, (resp. (5.1) { 726 =0y, ).
$(0) = do, o(T) = o7

Furthermore, the solution ¢ of (5.1) satisfies the estimate

(5.2) |9l Lo (py < Max([|¢oll o0y, |¢—||Loo @), T | Pl o (D))>

and if ¢g >0, ¢_ >0 and ® > 0, then ¢ > 0 in D.
We also have that the solution ¢ of (5.1') satisfies

(5.2") 9]l (py < Max(||¢7 || o0y |6+ | .y, T 1@z (D)),
and if o7 >0, ¢ >0 and ® <0, then ¢ > 0 in D.

Proof. We only deal with problem (5.1), since the proof in the case of problem
(5.1") can be performed in the same way. For a smooth field E, C. Bardos

in [3] solves the problem using a characteristic and semi-group method. The



solution, that he constructs, satisfies the bound (5.2) and the positivity prop-
erty.
When E € L'(0,T; Wlicl (Q)), we consider a sequence E,, € C*([0,T]xQ),

such that F, — E in L'(0,T; L}, .(€)), and we note ¢, the corresponding
solution to (5.1); for which estimate (5.2) holds uniformly in v. Up to the
extraction of a subsequence, ¢, converges to a function ¢ in L (D), which
satisfies (5.2). Proposition 4 implies that ¢ solves the Dirichlet problem.
Continuity follows from Theorem 2, and the positivity of ¢ is deduced from

the positivity of ¢, . O

Lemma 4. (Uniqueness). Let a, p € [1,00]. Let E € L% (0,T; Wllo’f/(Q))
satisfying (1.9) and g € L*(0,T; LY (O)) a solution of

loc

Agg =0 inD'(D), Agg =0 inD'(D),
(5.3) § 7-g=0, (resp- (53) § 7119=0, )
9(0) =0, 9(T) =0
then g = 0.

Proof. Again, we only treat the case of equation (5.3). One fixes 3 € C*(R)N
W1o°(R) such that 8(0) = 0 and B(s) > 0 if s # 0, in such a way that
B(g) € L*°(D) is still a solution of (5.3). For all ¢ € D(D), we solve thanks

to lemma 3 the backward problem

AE(b = in D/<D)7
’Y+¢ = Oa
¢(T) = 0.

We take Xr € D(O) as in the proof of Theorem 3, and using the duality
formula (3.3), we get

///D B(g) ¢ Xr dxdsdt + ///D B(g) ® ApXr dxdédt = 0.

We let R tend to co and we obtain [[[}, B(g) ¢ dzdédt = 0, Vo € D(D). We
deduce that 5(g) = 0 and thus g = 0. O



We note 7, and Tg the solutions of

Agpty =1 in D'(D), Apth = -1 in D'(D),
(5.4) T5lp =0, and (5.4") Tg]F+ =0,
75(0) =0, (T = 0.

Thanks to lemma 3, one has 0 < 7, Tg <T. We set Tg = Tg + 75, and
then 7 (t,z,£) is the “time of life in D” of a particle which at time ¢ has

position x and velocity &.

Theorem 5 (Optimal weight). Let p € [1,00), a € [p,00] and b € [1, o],
witha > (p—1)¥ ifp > 1. Let E € L (0,T; W-" (Q)), G € L*(0,T; LP(O))

loc

and g € L*(0,T; LP(O)) a solution to (1.1). Then the trace g satisfies
vg € LP([0,T] x I, n(z) - &| 7&(t, z, §) dédo,dt).

Proof. One fixes Bar(z) = (]z] A M)P. With the notations of Theorem 1, we

have
Ap(Bu(gr) 71) = B (gk) (G + 1) T8 — Bu(gr)  in D'(D).

Theorem 2 and Green formula (1.6) imply

- [ ooy dgae + [[[asuita) mi nie) - ¢ dedonit -

= ///D{ﬁfw(gk) (Gr +ri) Th — ﬁM(gk)} dédxdt.

We pass to the limit £ — oo and we get

[ sty dan s [[[ o) inta) ¢l dedont -

o r_
- [][ 8ut0) G — Buto)} deda < Cr gl {lallos + 16100

It is then enough to pass for second time to the limit M — oo in order to
obtain
v—g € LP(T_,|n(x) - &| E(t, z, &) d¢do,dt).



In a very same way, we prove v g € LP(I'y, |n(x) - &| 7 (t, x, &) d{do,dt). O

Theorem 6 (Dirichlet problem). Let E € L'(0,T; W, L7 (Q)) satisfy (1.9).

loc
For given g_ € LP(T'_,|n(z) - &| mp(t,x, &) d{do,dt), go € LP(O) and G €
L?(D), there exists an unique solution g € LP(D) of (1.1) such that y_ g = g—
and g(0) = go-

Proof.  We consider some sequences (g% ), (¢§) and (G¢) of approximations
of g_, go and G respectively, such that for all £ > 0 one has ¢¢ € C.(I'_),
g5 € C.(O) and G* € C.(D), in such a way that thanks to lemma 3, there is

a sequence of solutions g° € L°(D) to
Agg® =G in D'(D),
(5.5) g =g on I'_,
F(0)=g5 n O.

For p > 1 we fix 5(y) = |y|P, and for p = 1 we take 3 given by Lemma 2 and
such that

[ siraste. [[[ stetrmeam. [[[ se)anisin < c <.

The function 3(g¥)7# belongs to L>°(D) and satisfies
Ap (B(g%) i) = B'(9°) G° 75 — B(g°).

Using the Green formula (1.6) with Xz € D(D) defined in Theorem 3, we

have

///F B(g°) T Xrn(z) - € dido,dt + // B(g°) 7 Xn dfdx}oT _
/// °)GE i — B(9%)) Xr didadt.

Recalling that TE =0onl'y andint=T,0< TE < T, and letting R — oo,

we deduce

///D Plg") deduds = // | Pla) T In(x) - €| dédoydt
// B(90) 75 dfd“/// B'(g°) G° 7 déddt.



B(y) | BAT z)

F =1 he i li ! < f 1
or p we use the inequality ('(y)z < 5T + 5T and for p >
the inequality 5'(y) z < % + C7 (2), and we obtain the following a priori

estimate on g°

///Dﬁ (g) dedads < ///F_ﬁ(ge) mhIn(x) - €| dédoy dt
+Or {//Oﬂ(gg)dfdx+///Dﬁ(GE)dfdxdt}.

Therefore, up to the extraction of a sub-sequence, g converges weakly to
a function g € LP(D). We pass to the limit ¢ — 0 in equation (5.5) us-
ing Proposition 4. This ends the existence proof. Uniqueness follows from

lemma 4. O

Last, we present two situations where the weight (1.14) can be obtained.

Proposition 5. We assume in addition to the assumptions made in Propo-
sition 2 that v, g € L], .(I'y,duq) (resp. v—g € L}, .(I'—,du1)). Therefore,

we have

-9 € LGoc(]'—‘—’d,ul) (resp. Y+ 9 € Llroc(]'—‘—Hd:ul) )

Proposition 6. Let S C 02. We assume in addition to the assumptions
made in Proposition 2 that in a neighborhood w of S, w C Q and S CC
0w N IO we have (x) V(t,z) € (0,T) x w D?dg(x) <0 and E(t,z) - n(x) <0,
(this is for instance the case for S = 0 if E = 0, and ) is the exterior of a

closed convex set), then

Vg€ L;‘oc([oaT] X 5 X RNad,ul)

Idea of the proof of Propositions 5 and 6. Once again, we just establish for-
mally two a priori estimates that easily permit to conclude with the help of
the regularization procedure presented in Theorem 1. We begin with Propo-
sition 6. For a given R > 0, we fix ¢ € D(RY x RY™) in such a way that
0<p<1inO,p=10on S5 x Br and suppp C Br+1 X Bry1. We write
the identity (2.1) with g = |.|", to = 0, t; = T, ¢ and ¢ = v,, where



1
Y, (y) = ;p(g), p € Dy (R), /Rp(y) dy = 2, in such a way that 1, (y) tends

to the sign function sign(y) when ¢ — 0. We remark that the term multiplied
to ¢’ in (2.1) is non positive thanks to assumption (x), and therefore, letting

o go to 0 we get

T lr
([ [ laramee.9)" < ca+ 1B, ol + 16157
0 SxXBgr

For Proposition 5, we just treat the case y; g € L], .(I's, (n(z)-€) d{do,dt).
We write the identity (2.1) with 8 = |.|", toc = 0, t; = T, v = 1 and
¢ € D((0,T) x RN x RY), with 0 < ¢ < 1in D, ¢ = 1 on K =

[1/R,T —1/R] x (¥X_ NXg) and suppy C (0,T) X Bry1 X Bri1, for a
given R > 1/(2T) and we get

JI[ p-ar ety amae) == [[[ (o 2ee

+signglglP ! G ) dededt + / / /F 4 9P @(t, 2, €) (n(x) - €) dédoyd.

We deduce

l/r
vo Mol HNG Ly v gl )

R+1

[oa g||Lr(K apy S CrA+E]

with the notation FEH =T, N([0,7] X Zpy1). O
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