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Abstract. We prove existence of DiPerna-Lions renormalized solutions to the Boltzmann equation
and to the Vlasov-Poisson-Boltzmann system for the initial boundary value problem.

1. Introduction and main results.

This paper deals with the initial boundary value problem for the Boltzmann equation and for the
Vlasov-Poisson-Boltzmann system (VPB in short) with general boundary conditions. We establish a
stability result for sequences of DiPerna-Lions renormalized solutions which enables us to prove the
global existence of such a solution.

Let Ω be a smooth, open and bounded set of R3 and set O = Ω×R3. We consider a gas confined
in Ω ⊂ R3. The state of the gas is given by the distribution function f(t, x, ξ) ≥ 0 of particles, which
at time t ≥ 0 and at the position x ∈ Ω, move with the velocity ξ ∈ R3. In this model, the evolution
of f is governed by the following Boltzmann equation

(1.1)
∂f

∂t
+ ξ · ∇xf + E · ∇ξf = Q(f, f) in (0,∞)×O,

where Q(f, f) is the quadratic Boltzmann collision operator describing the collision interactions (binary
elastic shock). For the Boltzmann equation, E = 0, and for the VPB system, E is a self-induced force
(or mean field) which describes the fact that particles interact by the way of the two-body long range
Coulomb force. In this case E is given by E = Ef (t, x) = −∇xVf (t, x) where Vf is the solution of the
following Poisson equation

−∆Vf = ρf =
∫

R3
f(t, x, ξ) dξ on (0,∞)× Ω,(1.2)

and Vf = 0 on (0,∞)× ∂Ω,(1.3)

or
∂Vf

∂n
= η on (0,∞)× ∂Ω.(1.4)

These equations have to be complemented with boundary conditions which take into account how
the particles are reflected by the wall. We assume that the boundary ∂Ω is sufficiently smooth (say a
C2 manifold). We denote by n(x) the outward unit normal vector at x ∈ ∂Ω and by dσx the Lebesgue
surface measure on ∂Ω. We define the incoming/outgoing sets by

Σ± = {(x, ξ) ∈ Σ;±n(x) · ξ > 0} where Σ = ∂Ω× R3.

The boundary conditions take the form of a balance between the values of the traces γ±f of f on these
sets. Precisely, we assume that the following linear boundary condition holds

(1.5) γ−f = (1− α) K γ+f + α φ− on (0,∞)× Σ−.

Here α ∈ [0, 1] is a fixed parameter and φ− ≥ 0 is a given function such that, for all T < ∞

(1.6)
∫ T

0

∫ ∫
Σ−

φ−
(
1 + |ξ|2 + | log φ−|

)
|n(x) · ξ| dξdσxds < ∞.
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The reflection operator K splits into K = λ L + (1 − λ) D, where the accommodation coefficient λ
belongs to [0, 1], L is a local reflection operator defined by

(1.7) Lγ+f(t, x, ξ) = γ+f(t, x,Rx ξ),

with Rx ξ = −ξ (inverse reflection) or Rx ξ = ξ − 2 (ξ · n(x))n(x) (specular reflection) and D is a
diffuse reflection operator. The precise assumptions we make on D will be detailed later on. A typical
example is the Maxwell diffuse reflection

(1.8) D γ+f(t, x, ξ) = Mw(t, x, ξ)
∫

ξ′·n(x)>0

γ+f(t, x, ξ′) ξ′ · n(x) dξ′,

where Mw is the wall Maxwellian defined by

(1.9) Mw(t, x, ξ) =
1

2 π Θ2
exp(−|ξ|

2

2Θ
),

with the prescribed temperature Θ(t, x) which may be constant Θ(t, x) = Θw ∈ (0,∞) or may satisfy

(1.10) 0 < Θ0 ≤ Θ(t, x) ≤ Θ1 < ∞.

Last, we require on initial condition, so we prescribe f at time t = 0, i.e.

(1.11) f(t, .) = f0 on O,

where f0 ≥ 0 satisfies

(1.12)
∫ ∫

O
f0

(
1 + |ξ|2 + | log f0|

)
dξdx + ν

∫
Ω

|∇Vf0 |2 dx < ∞,

with the value ν = 0 for the Boltzmann equation and ν = 1 for the VPB system.

In the following we will distinguish three cases according to the values of α and λ. In each case,
different a priori estimates can be established which lead to three different natural definitions of the
solution to the boundary value problem for the Boltzmann equation and the VPB system. These
different cases are

- Case 1 : α 6= 0 (partially absorbing condition).
- Case 2 : α = 0 and λ 6= 1 (total reflection condition with diffusion).
- Case 3 : α = 0 and λ = 1 (purely local reflection condition).

For the Boltzmann equation we prove in each case a corresponding sequential stability result and we
deduce the following existence theorem. The precise meaning of Theorem 1, as well as the meaning of
Theorem 2 and 3, is given in section 3 and 4.

Theorem 1. Let f0 ≥ 0 satisfy (1.12) and φ− ≥ 0 satisfy (1.6). Then there exists a renormalized
solution f ∈ C([0,∞);L1(O)) of the Boltzmann equation (1.1) corresponding to the initial data f0 and
such that in Case 1 or in Case 3 the trace γf of f satisfies (1.5), and in Case 2 the trace γf satisfies
the relaxed boundary condition

(1.13) γ−f ≥ K γ+f on (0,∞)× Σ−.
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This is a slight generalization to the previous existence results due to K. Hamdache [23] (Case 1
and 3) and L. Arkeryd, N. Maslova [2] (Case 2), since [23] only deals with constant wall temperature
and in [2] only the pure diffuse boundary condition (α = λ = 0) is considered. But, the key point
here is that our sequential stability results can be extended to solutions to the VPB system. In order
to state the resulting existence theorem, we have to explain which boundary condition is prescribed
for the Poisson equation (1.2), since different ıa priori estimates can be obtained. When the Dirichlet
condition (1.3) is prescribed the system is noted the VPdB system and when the Neumann condition
(1.4) holds, we shall call it the VPnB system.

Theorem 2 (VPdB system). Assume that Θ is a constant and that Dirichlet condition (1.3) holds.
Let f0 ≥ 0 satisfy (1.12) and φ− ≥ 0 satisfy (1.6). Then in Case 1 and 3 there exists a renormalized
solution f ∈ C([0,∞);L1(O)) to the VPdB system (1.1)-(1.2) corresponding to the initial data f0 and
such that the trace γf of f is well defined and satisfies (1.5).

Theorem 3 (VPnB system). Assume that Θ satisfies (1.10) and that Neumann condition (1.4)
holds, with η satisfying the compatibility condition

(1.14) η =
1

meas(∂Ω)

∫
Ω

ρ0(x) dx.

Let f0 ≥ 0 satisfy (1.12). Then in Case 2 and 3 there exists a renormalized solution f ∈ C([0,∞);
L1(O)) to the VPnB system (1.1)-(1.2) corresponding to the initial data f0 and such that the trace
γf of f is well defined and satisfies the boundary condition (1.5) in Case 3, and the relaxed boundary
condition (1.13) in Case 2.

The existence of a weak global solution to the Boltzmann equation for initial data satisfying the
natural bound (1.12) was first considered by R.J. DiPerna and P.L. Lions [15,17] who introduce the so-
called renormalized solution and the equivalent formulation of mild and exponential solutions. Their
proof of existence and all the next ones are based on a sequantial stability or sequantial compactness
result: considering a sequence of renormalized solutions to the Boltzmann equation (or to a modified
and regularized version of the Boltzmann equation) one shows that there is a subsequence which
converges and that the resulting limit is still a renormalized solution to the Boltzmann equation.
Next, P.L Lions defined in [27] a more accurate notion of solution, the so-called dissipative solution,
using the regularity property of the gain term established in [26]. In [28] he proved the existence
of the renormalized solution (in fact a dissipative solution) to the VPB system thanks to a new
method of proof which only uses techniques of renormalization of PDEs but does not refer anymore to
characteristics which are involved in the definition of a mild solution. This proof, which is even new
for the Boltzmann equation, can be seen as a simplification of the initial DiPerna-Lions proof, and its
robustness permits it to be adapted in order to prove convergence of discretization schemes for the
Boltzmann equation, (see [14] and [31]).

The boundary value problem for the Boltzmann equation has been treated by many authors [23],
[11], [8], [1], [2], [20], [24] in the framework of mild and exponential solution. In these works, the trace
γf is defined as the limit at the boundary along characteristics (which are lines) of the solution f .

With regard to existence results for the initial value problem for the Vlasov-Poisson system set
in the whole space, we refer to Arsenev [3], C. Bardos, P. Degond [5], E. Horst [25], R.J. DiPerna,
P.L. Lions [16]. Uniqueness and propagation of moments have been investigated by F. Castella [9],
P.L. Lions, B. Perthame [30], B. Perthame [33], K. Pfaffermoser [35], R. Robert [38], G. Rein [37], J.
Schaeffer [39]. The initial boundary value problem has been addressed by Y. Guo [21,22], J. Weckler
[40], N. Ben Abdallah [6] and the stationary problem by F. Poupaud [36].

In the present work the main difficulty is to define the trace of a solution since the characteristics
are no longer lines because of the presence of the field E. The difficulty is overcome thanks to the
trace theory developed in [32] and especially the possibility of renormalizing the trace. The trace is
then defined by a Green formula written on the renormalized equation. Our sequential stability and
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existence results are obtained by adapting Lions’ proof [28]. It can be seen both as a generalization
and as a simplification of the previous existence result of a solution to the Boltzmann boundary value
problem.

The paper is organized as follow. In Section 2 we establish some a priori estimates for a solution to
the VPB system which are available under the natural bounds (1.6) and (1.12). Section 3 is dedicated
to make precise the sense of trace we shall use. We prove, in the context of renormalized solutions of
the Vlasov equation, a general trace theorem. In Section 4, we present the notion of a weak solution we
deal with and state the sequential stability result of renormalized solutions. The proof of the sequential
stability is given in Section 5.

2. Reflection operators and a priori estimates.

The a priori estimates that we derive in this section are intimately linked with the assumptions
we make on the boundary conditions and that we explain now. We assume that the diffuse operator
D can be written

(2.1) D φ(t, x, ξ) =
1

|n(x) · ξ|

∫
ξ′·n(x)>0

k(t, x, ξ, ξ′) φ(t, x, ξ′) ξ′ · n(x) dξ′,

where the kernel k is a measurable function which satisfies the following assumptions introduced in
[2].

(H0) Positivity, i.e. k ≥ 0 a.e. .

(H1) Normalization, i.e.
∫

ξ·n(x)<0

k(t, x, ξ, ξ′) dξ = 1 a.e. on (0,∞)× Σ+.

(H2) Spreading condition, i.e. there is a constant κ0 > 0 such that∫
ξ·n(x)<0

k(t, x, ξ, ξ′) |ξ · n(x)| dξ ≥ κ0 a.e. on (0,∞)× Σ+.

(H3) Energy condition, i.e. there is a constant κ1 < ∞ such that∫
ξ·n(x)<0

k(t, x, ξ, ξ′) |ξ|2 dξ ≤ κ1 a.e. on (0,∞)× Σ+.

(H4) Reciprocity principle, i.e. there is a wall Maxwellian Mw defined by (1.9) such that∫
ξ′·n(x)>0

k(t, x, ξ, ξ′) Mw(t, x, ξ′) ξ′ · n(x) dξ′ = |ξ · n(x)|Mw(t, x, ξ) a.e. on (0,∞)× Σ−,

with constant temperature or temperature satisfying (1.10).
We refer to [10] or [12] for a physical analysis of the boundary conditions. Let us remark that the

Maxwell diffuse reflection (1.8)-(1.10) satisfies the assumptions (H0)–(H4), see [2]. The properties of
the reflections operators L and D are collected in the following lemma.

Lemma 1. Let φ satisfy (1.6). For the local operator (1.7) we have for a.e. (t, x) ∈ (0, T ) × ∂Ω the
following identities

(2.2)
∫

ξ·n(x)<0

Lφ p(|ξ|) |ξ · n(x)| dξ =
∫

ξ·n(x)>0

φ p(|ξ|) ξ · n(x) dξ,
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with p(y) = a + b y2, and

(2.3)
∫

ξ·n(x)<0

H(Lφ) |ξ · n(x)| dξ =
∫

ξ·n(x)>0

H(φ) ξ · n(x) dξ,

where H(s) = s log s. For the diffuse operator the following bounds hold a.e. (t, x) ∈ (0, T )× ∂Ω∫
ξ·n(x)<0

D φ |ξ · n(x)| dξ =
∫

ξ·n(x)>0

φ ξ · n(x) dξ,(2.4) ∫
ξ·n(x)<0

D φ |ξ|2 |ξ · n(x)| dξ ≤κ1

κ0

∫
ξ·n(x)<0

D φ (ξ · n(x))2 dξ,(2.5)

and the so called Darrozès-Guiraud inequality [13]∫
ξ·n(x)<0

(
H(D φ) +

|ξ|2

2 Θ
D φ

)
|ξ · n(x)| dξ ≤

∫
ξ·n(x)>0

(
H(φ) +

|ξ|2

2 Θ
φ
)
ξ · n(x) dξ,(2.6)

where Θ is the temperature of the wall Maxwellian defined in (H4).

Proof. The identities (2.2) and (2.3) are immediately deduced by changing variable V (x, ξ) → ξ. The
assumption (H1) implies (2.4). From (H2) and (H3) we deduce

(2.7)
∫

ξ·n(x)<0

D φ (ξ · n(x))2 dξ ≥ κ0

∫
ξ′·n(x)>0

φ′ ξ′ · n(x) dξ′

and ∫
ξ·n(x)<0

D φ |ξ|2 |ξ · n(x)| dξ ≤ κ1

∫
ξ′·n(x)>0

φ′ ξ′ · n(x) dξ′,

from which (2.5) follows.
Last, Jensen’s inequality, (H0) and (H4) imply

H
(D φ

Mw

)
≤

∫
ξ′·n(x)>0

H
( φ′

M ′
w

)
k

M ′
w ξ′ · n(x)

Mw |n(x) · ξ|
dξ′.

Therefore, thanks to (H1) we get

(2.8)
∫

ξ·n(x)<0

Mw H
(D φ

Mw

)
|ξ · n(x)| dξ ≤

∫
ξ′·n(x)>0

H
( φ′

M ′
w

)
M ′

w ξ′ · n(x) dξ′,

and we deduce (2.6) using (2.4).

We do not give the explicit expression of the Boltzmann collision operator that we find in [10] or
[15] for example. The precise assumptions we make on the cross section are those introduced in [15].
We just recall that the collision operator has the following remarkable properties

(2.9)
∫

R3
Q(f, f)

 1
ξ
|ξ|2

 dξ = 0,

and there is an entropy production term e(f) ≥ 0 which satisfies

(2.10)
∫

R3
e(f) dξ = −

∫
R3

Q(f, f) log f dξ.

We are now able to derive some a priori estimates that satisfy a given solution to the initial
boundary value problem of the Boltzmann equation or of the VPB system. In what follows, we
assume that f is regular enough and have sufficient decay at infinity such that all the manipulations
we perform are justified. We begin with the Boltzmann equation.
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Proposition 1 (Boltzmann equation). For all T ∈ (0,∞) there exists a constant CT < ∞ which
may depend on f0 and φ− by the way of bounds (1.6) and (1.12) and such that a solution f to the
Boltzmann equation (1.1)-(1.5)-(1.11) satisfies

(2.11) sup
[0,T ]

{∫∫
O

f
(
1 + |ξ|2 + | log f |

)
dξdx + ν

∫
Ω

|Vf |2 dx
}

+
∫ T

0

∫ ∫
O

e(f) dξdxdt ≤ CT ,

and the trace γf satisfies

(2.12)
∫ T

0

∫ ∫
Σ

γf (ξ · n(x))2 dξdσxds ≤ CT .

Furthermore, in Case 2 one has the additional estimate

(2.13)
∫ T

0

∫ ∫
Σ

γf (1 + |ξ|2) |ξ · n(x)| dξdσxds ≤ CT ,

and in Case 1

(2.14)
∫ T

0

∫ ∫
Σ

γf (1 + |ξ|2 + | log γf |) |ξ · n(x)| dξdσxds ≤ CT .

These estimates can be generalized to the VPB system in the following way.

Proposition 2 (VPdB system). We assume that the wall temperature is constant and we consider
Case 1 and 3. For all T there is a constant CT such that a solution f to the VPdB system (1.1)-(1.2)-
(1.3)-(1.5)-(1.11) satisfies (2.11). Furthermore, in Case 1 one has the additional boundary estimate
(2.14).

Proposition 3 (VPnB system). We assume that the wall temperature satisfies (1.10) and we con-
sider Case 2 and 3. For all T there is a constant CT such that a solution f to the VPnB system
(1.1)-(1.2)-(1.4)-(1.5)-(1.11) satisfies (2.11) and the boundary estimate (2.12). Furthermore, in Case
2 the bound (2.13) holds.

Proof of Proposition 1 and 3. Let f denote indifferently a solution to the Boltzmann equation or to
the VPnB system, with in this last case α = 0. By a simple integration of equation (1.1) and using
(2.9), (2.2) and (2.4) we clearly have

(2.15)
∫∫

O
ft dξdx+α

∫ t

0

∫ ∫
Σ+

γ+f ξ ·n(x) dξdσxds =
∫∫

O
f0 dξdx+α

∫ t

0

∫ ∫
Σ−

φ− |ξ ·n(x)| dξdσxds.

We remark that when α = 0 the total mass is conserved∫
Ω

ρ(t, x) dx =
∫

Ω

ρ0 dx,

and in particular for the VPnB system, the Poisson equation (1.2) and the Neumann condition (1.4)
are compatible since η is given by (1.14).

We denote the total energy by E(t) =
∫∫
O ft |ξ|2 dξdx + ν

∫
Ω
|∇Vf (t, x)|2 dx. Multiplying (1.1) by

|ξ|2 and integrating by parts we get

d

dt

∫∫
O

f |ξ|2 dξdx +
∫ ∫

Σ

γf |ξ|2 ξ · n(x) dξdσx − 2 ν

∫∫
O

E · ξ f dξdx = 0.

6



For the Boltzmann equation the last term vanishes. For the VPnB system, this is

−2
∫∫

O
∇xVf · ξ f dξdx = −2

∫
∂Ω

2 Vf (t, x)
[∫

R3
γf n(x) · ξ dξ

]
dσx + 2

∫∫
O

V (ξ · ∇xf) dxdξ.

The boundary term vanishes since (1.5), (2.2) and (2.4) imply that the mass flux is equal to zero when
α = 0. In order to deal with the last term we use equation (1.1) and (1.2), and we find

−2
∫∫

O
E · ξ f dξdx = 2

∫∫
O

V (
∂

∂t
f) dxdξ = −2

∫
Ω

∇xVf · ∇x(
∂

∂t
Vf ) dx + 2

∫
∂Ω

Vf
∂

∂t
(
∂Vf

∂n
)dσx,

and once again the boundary term vanishes thanks to (1.4). We have then proved that the energy E
satisfies
(2.16)

E(t) +
(
1−(1−α)λ

) ∫ t

0

∫ ∫
Σ+

γ+f |ξ|2 ξ · n(x) dξdσxds =

= E(0) + (1−α)(1−λ)
∫ t

0

∫ ∫
Σ−

D γ+f |ξ|2 |ξ · n(x)| dξdσxds + α

∫ t

0

∫ ∫
Σ−

φ− |ξ|2 |ξ · n(x)| dξdσxds.

The smoothness assumption made on the boundary implies the existence of a vector field n which
belongs to

(
W 1,∞(Ω)

)3 and coincides with the outward unit normal vector at the boundary. The
Boltzmann operator is orthogonal to n(x) · ξ thanks to (2.9). Therefore, multiplying equation (1.1) by
n(x) · ξ and integrating by parts we get

(2.17)

∫∫
O

ft n(x) · ξ dξdx +
∫ t

0

∫ ∫
Σ

γf (ξ · n(x))2 dξdσxds =

= ν

∫ t

0

∫
Ω

ρ E · n(x) dxds +
∫ t

0

∫ ∫
O

f ξ · ∇xn(x)ξ dξdxds +
∫∫

O
f0 n(x) · ξ dξdx.

To estimate the term whit E we do the following easy computation using the Pohozaev method

(2.18)

∫
Ω

ρ E · n(x) dx =
∫

Ω

∆Vf ∇Vf · n(x) dx =
∫

Ω

∂2
iiVf ∂jVf nj dx =

=
∫

∂Ω

∂iVf ni ∂jVf nj dσx −
∫

Ω

∂iVf ∂jVf ∂inj dx−
∫

Ω

∂iVf nj ∂2
ijVf dx,

with the convention of summation over repeated indices. Integrating by parts the last term once again,
we find

−
∫

Ω

∂iVf nj ∂2
ijVf dx = −

∫
∂Ω

∂iVf nj ∂iVf nj dσx +
∫

Ω

∂iVf nj ∂2
ijVf dx +

∫
Ω

∂iVf ∂iVf ∂jnj dx

and we deduce

(2.19) −
∫

Ω

∂iVf nj ∂2
ijVf dx =

1
2

∫
Ω

|∇Vf (t, x)|2 (div n) dx− 1
2

∫
∂Ω

∣∣∣∂Vf

∂n

∣∣∣2 dσx,

since, thanks to (1.4), one has |∇Vf |2 =
∣∣∣∂Vf

∂n

∣∣∣2 on ∂Ω.

From (2.17), (2.18) and (2.19) we obtain

(2.20)
∫ t

0

∫ ∫
Σ

γf (ξ ·n(x))2 dξdσxds ≤
∫∫

O
(ft +f0) |ξ| dξdx+CΩ

∫ t

0

E(s) ds+
ν

2

∫ t

0

∫
∂Ω

∣∣∣∂Vf

∂n

∣∣∣2 dσxds.
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On the other hand, one deduces from (2.5) and (1.6)

(2.21)
∫ ∫

Σ−

Dγ+f |ξ|2 |ξ · n(x)| dξdσx ≤
κ1

κ0 (1− α) (1− λ)

∫ ∫
Σ−

γ−f (ξ · n(x))2 dξdσx.

Here, we have to distinguish two situations. If there is no diffuse reflection at the boundary, i.e.
α = 1 or λ = 1, one deduces directly from (2.15) and (2.16) the mass and energy bound

(2.22) sup
[0,T ]

{∫∫
O

f
(
1 + |ξ|2

)
dξdx + ν

∫
Ω

|∇xVf |2 dx
}
≤ CT .

In the case where there is diffuse reflection we have (1−α) (1−λ) 6= 0 and we deduce from (2.16),
(2.20), (2.21) and (1.4) the following inequality

E(t) ≤ C1 + C2

∫ t

0

E(s)ds on (0, T ),

which implies again (2.22), thanks to the Gronwall lemma.
The first bound (2.12) on the boundary is an easy consequence of (2.20) and (2.22). The outgoing

mass flux is estimated by (2.15) in Case 1 and by (2.7) and (2.12) in Case 2. Then the incoming mass
flux is controlled thanks to (1.5), (2.2) and (2.4). If diffuse reflection occurs at the boundary, (2.21)
and (2.12) imply ∫ T

0

∫ ∫
Σ−

Dγ+f |ξ|2 |ξ · n(x)| dξdσx ≤ CT ,

and then (2.16) gives a control of the outgoing energy flux in both cases 1 and 2. The incoming energy
flux is then estimated once again thanks to (1.5). To sum up, we have proved that γf satisfies the
bound (2.13) in both Case 1 and Case 2.

Last, we come to the entropy estimate. Integrating the equation satisfied by H(f) and using
(2.10), we get

(2.23)

∫∫
O

H(ft) dξdx +
(
1−(1−α)λ

) ∫ t

0

∫ ∫
Σ+

H(γ+f) ξ · n(x) dξdσxds +
∫ t

0

∫∫
O

e(f) dξdxds ≤

≤
∫∫

O
H(f0) dξdx +

∫ T

0

∫ ∫
Σ−

{
α H(φ−) + (1−α)(1−λ) H(D γ+f)

}
|ξ · n(x)| dξdσxds.

In Case 3 the boundary terms vanish and in Case 2 the difference between the outgoing and the
incoming entropy flux can be controlled by the energy flux thanks to (2.6), (1.10) and (2.13). Therefore
in both cases we obtain

(2.24) sup
t∈[0,T ]

∫∫
O

H(ft) dξdx +
∫ T

0

∫∫
O

e(f) dξdxdt ≤ CT .

In Case 1, we also get (2.24). Then (2.23) leads to the additional estimate of the outgoing entropy flux∫ T

0

∫ ∫
Σ+

H(γ+f) ξ · n(x) dξdσxds ≤ CT .

We prove that the same bound holds for the incoming entropy flux using (1.5), (2.3), (2.6), (1.10) and
(2.13). The proof is ended by the use of the following classical and elementary lemma, that one can
find in [15] for instance.
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Lemma 2. There exists an universal constant C3 such that for all φ ≥ 0 we have∫
R3

φ | log φ| dξ ≤
∫

R3
φ (log φ + |ξ|2) dξ + C3.

Proof of Proposition 2. Since the wall Maxwellian Mw is an absolute Maxwellian we can introduce the
relative entropy HMw

(f) = f log(f/Mw) + Mw − f and compute

( ∂

∂t
+ ξ · ∇x + E · ∇ξ

)
HMw

(f) = (log f − log Mw)Q(f, f) + E · ∇ξMw + f E · ξ

Θw
.

We integrate this equation using collision invariants (2.9) and entropy production (2.10), and we obtain

(2.25)

d

dt

∫∫
O

HMw
(f) dξdx +

∫ ∫
Σ

HMw
(γf) ξ · n(x) dξdσx

+
∫∫

O
e(f) dξdx +

ν

Θw

∫
Ω

∇Vf · j dx =
∫∫

O
E · ∇ξMw dξdx,

where
j(t, x) =

∫
R3

ξ f(t, x, ξ) dξ.

We first remark that integrating equation (1.1) in velocity we have

∂

∂t
ρ + divx j = 0 on (0,∞)× Ω,

and therefore

(2.26)
1

Θw

∫
Ω

∇Vf · j dx =
1

Θw

∫
Ω

Vf
∂

∂t
ρ dx =

1
2 Θw

d

dt

∫
Ω

|∇xVf |2 dx.

Next, we use (2.2), (2.3), (2.4) and (2.8) to estimate by bellow the boundary term by

(2.27)

∫ ∫
Σ

HMw
(γf) ξ · n(x) dξdσx ≥

∫ ∫
Σ+

HMw
(γ+f) ξ · n(x) dξdσx

−
∫ ∫

Σ−

{
(1−α) λ HMw

(Lγ+f) + (1−α) (1−λ)HMw
(Dγ+f) + α HMw

(φ−)
}
|ξ · n(x)| dξdσx

≥ α

∫ ∫
Σ+

HMw
(γ+f) ξ · n(x) dξdσx − α

∫ ∫
Σ−

HMw
(φ−) |ξ · n(x)| dξdσx.

From (2.25), (2.26) and (2.27) we obtain

d

dt

{∫∫
O

HMw(f) dξdx + ν

∫
Ω

|∇xVf |2

2 Θw
dx

}
+

∫∫
O

e(f) dξdx + α

∫ ∫
Σ+

HMw(γ+f) ξ · n(x) dξdσx ≤

≤ ν CΘw

∫
Ω

|∇xVf |2 dx + α

∫ ∫
Σ−

HMw
(φ−) |ξ · n(x)| dξdσx.

From this inequality and using tGronwall lemma and lemma 3 bellow, we can easily deduce that (2.11)
holds. When α 6= 0, we also obtain the additional boundary estimate (2.14) as we have done in the
proof of Proposition 1 and 3.
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Lemma 3 [29]. There is a nonnegative constant C = C(Θw) such that∫ ∫
O

f
(
1 + |ξ|2 + | log f |

)
dxdξ ≤ C

(
meas(Ω) +

∫ ∫
O

HMw(f) dxdξ
)
.

A proof of lemma 3 is given in [29].

Remark 1. When α = 0 we always have the estimate (2.11) but, for the VPdB system, we do not obtain
any boundary estimate, in particular, we do not know if estimate (2.12) holds. About Proposition 2,
we also note that the diffuse type operator D does not have to satisfy (H2) and (H3) anymore.

3. A trace Theorem for renormalized solutions to the Vlasov equation.

In Theorem 5 we give a general trace result for a renormalized solution to a Vlasov equation which
make clear the meaning of the trace we deal with in Theorem 1. In fact, we do not need Theorem 5
in the proof of existence or stability of renormalized solutions that we present in the next sections (at
least for case 1 and 2) and we only use in these proofs the fact that one can renormalize a distributional
solution to the Vlasov equation as we have shown in [32] and that we recall in Theorem 4 below. By
the way, it seems to us, that Theorem 5 is interesting in itself since it states that a renormalized
solution f to the VPB equation admits a trace because it solves a Vlasov equation and not because of
the way it has been built.

First, we recall the trace result obtained in [32] for a distributional solution g = g(t, x, ξ) ∈
L∞((0, T )×O) to the Vlasov equation

(3.1)
∂g

∂t
+ ξ · ∇xg + E · ∇ξg = G in D′((0, T )×O),

where G = G(t, x, ξ) is a source term satisfying G ∈ L1((0, T )× Ω×BR) for all R ∈ (0,∞), with the
notation BR = {ξ ∈ R3, |ξ| < R}, and E = E(t, x) is a fixed vector field such that

(3.2) E ∈ L1(0, T ;W 1,1(Ω)).

Theorem 4 [32]. Under the above assumptions, there exists a trace function γg such that

(3.3) γ g ∈ L∞
(
(0, T )× Σ, dξdσxdt

)
,

and which is uniquely defined thanks to the Green formula

(3.4)
∫ T

0

∫∫
O

{
g (

∂φ

∂t
+ ξ · ∇xφ + E · ∇ξφ) + G φ

}
dξdxdt =

∫ T

0

∫∫
Σ

γ g φ n(x) · ξ dξdσxdt,

for every test function φ ∈ D((0, T )× Ō). Furthermore, for all β ∈ C1(R) the function β(g) solves

(3.5)
∂

∂t
β(g) + ξ · ∇xβ(g) + E · ∇ξβ(g) = β′(g)G in D′((0, T )×O),

and the trace γ β(g) of β(g) satisfies

(3.6) γ β(g) = β(γg).

We come now to the renormalized solutions to the Vlasov equation and, to do it, we introduce
some notation. Let (X,B, µ) be a measured space, and let L(X) denote the space of measurable
functions u : X → R̄. We define A as the class of all functions β ∈ C1(R) such that β′ has compact
support. For every u ∈ L(X) and β ∈ A we have β(u) ∈ L∞(X).

We assume that E satisfies (3.2) and G ∈ L((0, T )×O). We say that g ∈ L(D) is a renormalized
solution of Vlasov equation (3.2) if, for all β ∈ A, we have β′(g) G ∈ L1((0, T ) × Ω × BR) for all
R ∈ (0,∞) and β(g) solves (3.5).
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Theorem 5. Let g ∈ L(D) be a renormalized solution of equation (3.1)-(3.2). Then g admits a unique
trace function γg ∈ L((0, T )× Σ) in the sense of the Green formula

(3.7)
∫ T

0

∫∫
O

{
β(g) (

∂φ

∂t
+ ξ · ∇xφ + E · ∇ξφ) + β′(g) G φ

}
dξdxdt =

∫ T

0

∫∫
Σ

β(γ g)φ n(x) · ξ dξdσxds,

for every test function φ ∈ D((0, T )× Ō) and β ∈ A.

Proof. Let (βM )M≥1 be a sequence of odd functions which belong to A and satisfies

βM (s) =
{

s if s ∈ [0,M ]
M + 1/2 if s ≥ M + 1,

and |βM (s)| ≤ |s| for all s ∈ R. The function αM (σ) := βM (β−1
M+1(σ)) belongs to A and satisfies

αM (s) ≤ s for all s ≥ 0 and αM (s) ≥ s for all s ≤ 0. We will construct the trace γg from the
sequence of traces γβM (g) whose existence is given by Theorem 2. Let us define Γ(±)

M = {(t, x, ξ) ∈
Γ,±γβM (g)(t, x, ξ) > 0} and Γ(0)

M = {(t, x, ξ) ∈ Γ, γβM (g)(t, x, ξ) = 0}. Thanks to the definition of αM

and the renormalization property of the trace we have γ βM (g) = γ αM (βM+1(g)) = αM (γ βM+1(g)),
and we deduce the following equality, up to a negligible set

Γ(+)
M = Γ(+)

1 , Γ(−)
M = Γ(−)

1 and Γ(0)
M = Γ(0)

1 for all M ≥ 1.

Therefore the sequence (γ βM (g))M≥1 is increasing on Γ(+)
1 and decreasing on Γ(−)

1 . This implies that
γ βM (g) converge a.e. to a limit denoted by γg and which belongs to L(Γ). In order to establish the
Green formula (3.5) we fix β ∈ A and φ ∈ D((0, T ]× Ō), we write the Green formula for the function
β(βM (g)) and using the fact that γ

[
β ◦ βM (g)

]
= β(γβM (g)) we find

∫ T

0

∫∫
O

(
β ◦ βM (g) (

∂φ

∂t
+ ξ · ∇xφ + E · ∇ξφ) + (β ◦ βM )′(g)G φ

)
dξdxdt =∫ T

0

∫∫
Σ

β(γ βM (g))φn(x) · ξ dξdσxds.

We prove (3.5) letting M go to ∞ and noting that β ◦ βM (s) → β(s) for all s ∈ R.

4. Renormalized solution to the initial value problem for the VPB system and stability
result.

Let now introduce the definition of a renormalized solution to the initial boundary value problem
for the VPB system. Therefore, we shall be able to state the corresponding stability results.

With R.J. DiPerna and P.-L. Lions [15,17], [26,27,28] we say that f ∈ C([0,∞);L1(O)) is a
renormalized solution of (1.1)-(1.2)-(1.5)-(1.11) if first, f satisfies the bound (2.11) and β(f) solves

(4.1)
∂

∂t
β(f) + ξ · ∇xβ(f) + E · ∇ξβ(f) = β′(f)Q(f, f) in D′((0, T )×O),

for all time T > 0, and all β ∈ B, the class of all functions β ∈ C1(R) such that β(0) = 0 and
|β′(s)| ≤ C/(1 + s) ∀s ≥ 0. In equation (4.1) the vector field E = Ef is defined thanks to the
Poisson equation (1.2) for the VPB system and E = 0 for the Boltzmann equation. Remark that
thanks to (2.11), the renormalized collision term Q(f, f)/(1+f) belongs to L1((0, T )×Ω×BR) for all

11



R ∈ (0,∞) and E ∈ L∞(0, T ;W 1,1(Ω)) (see [15] and [28] for a proof of these claims), and thus each
terms in equation (4.1) makes sense.

Secondly, f must correspond to the initial datum f0; this means that (1.11) holds in L1(O), or
equivalently that (4.1) holds in D′([0, T )×O):

(4.2)
∫ T

0

∫∫
O

{
β(f) (

∂φ

∂t
+ ξ · ∇xφ + E · ∇ξφ) + β′(f) Q(f, f)φ

}
dξdxdt +

∫∫
O

β(f0) φdξdx = 0,

for every test function φ ∈ D([0, T )×O) and β ∈ B.
Last, the trace γf ≥ 0, defined by Theorem 5, satisfies (2.14) in Case 1, (2.13) in Case 2, no

estimate in Case 3, the boundary condition (1.5) and

(4.2)
∫ T

0

∫∫
O

{
β(f) (

∂φ

∂t
+ξ·∇xφ+E·∇ξφ)+β′(f)Q(f, f) φ

}
dξdxdt =

∫ T

0

∫∫
Σ

β(γ f) φn(x)·ξ dξdσxds,

for every test function φ ∈ D((0, T ) × Ō) and β ∈ B. Equation (4.2) is a little more accurate than
(3.7).

We are now concerned by stability results for a sequence fn of renormalized solutions to the initial
boundary value problem for the VPB system which satisfies for all T ∈ (0,∞)
(4.4)

sup
n≥0

sup
[0,T ]

{∫∫
O

fn
(
1 + |ξ|2 + | log fn|

)
dξdx + ν

∫
Ω

|∇xVfn |2 dx
}

+ sup
n≥0

∫ T

0

∫ ∫
O

e(fn) dξdxdt ≤ CT < ∞.

In the three following propositions we give the stability result corresponding to the a priori esti-
mates that we have obtained in each case in section 2. These results are of course also true for the
Boltzmann equation.

Proposition 4 (Case 1: partial absorption). Let fn be a sequence of renormalized solutions
to the VPB system (1.1)-(1.2) which satisfies the bounds (4.4) such that the trace γ fn satisfies the
boundary condition (1.5) and

(4.5)
∫ T

0

∫ ∫
Σ

γfn (1 + |ξ|2 + | log γfn|) |ξ · n(x)| dξdσxds ≤ CT .

Assume that fn(0, .) converges to f0 in L1(O) weak. Then, up to the extraction of a subsequence,
fn converges weakly in L1([0, T ] × O) for all T ∈ (0,∞) to a renormalized solution f to the initial
value problem for the VPB system (1.1)-(1.2)-(1.11) corresponding to the initial datum f0 with trace
satisfying the boundary condition (1.5).

Proposition 5 (Case 2: total reflection with diffusion). Let fn be a sequence of renormalized
solutions to the VPB system (1.1)-(1.2) which satisfies the bounds (4.4) such that the trace γ fn

satisfies the boundary condition (1.5), or the relaxed boundary condition (1.13), and

(4.6)
∫ T

0

∫ ∫
Σ

γfn (1 + |ξ|2) |ξ · n(x)| dξdσxds ≤ CT .

Assume that fn(0, .) converges to f0 in L1(O) weak. Then, up to the extraction of a subsequence, fn

converges weakly in L1([0, T ]×O) for all T ∈ (0,∞) to a renormalized solution f to the initial value
problem for the VPB system (1.1)-(1.2)-(1.11) corresponding to the initial datum f0 and with trace
γf satisfying the relaxed boundary condition (1.13).

Proposition 6 (Case 3: total pure local reflection). Let fn be a sequence of renormalized
solutions to the VPB system (1.1)-(1.2) which satisfies the bounds (4.4) such that the trace γ fn
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satisfies the boundary condition (1.5) with α = 0 and λ = 1. Assume that fn(0, .) converges to f0

in L1(O) weak. Then there is a subsequence fn′ which converges weakly in L1([0, T ] × O) for all
T ∈ (0,∞) to a renormalized solution f to the initial value problem for the VPB system (1.1)-(1.2)-
(1.11) corresponding to the initial datum f0 and with trace γf satisfying the boundary condition
(1.5). If furthermore, fn′(0, .) converges strongly in L1(O) to f0 then fn′ converges strongly in
C([0, T ];L1(O)) to f for all T ∈ (0,∞).

Remark 2. In Case 3, for the Boltzmann equation and for the VPnB system, we have shown that the
a priori estimate (2.12) holds. Therefore, we can give a slightly different version of Proposition 3: if
we assume moreover that the sequence (γ fn) satisfies

(4.7)
∫ T

0

∫ ∫
Σ

γfn (ξ · n(x))2 dξdσxds ≤ CT ,

then the trace γf of f also satisfies (2.12).
We conclude this section by alluding briefly to the proof of Theorem 1, 2 and 3. This uses rather

standard (and tedious) approximation arguments that are exposed in [23], [2] and [40]. The idea of
the proof is to regularise the VPB system. Take a sequence of smooth approximations fn

0 and φn
−

of f0 and φ−. Consider a sequence of operators Qn which “approximate” Q, map L1 ∩ Lp into itself
for all p ∈ (1,∞], satisfy the remarkable properties (2.9), (2.10). Regularise E, by convolution for
instance. Then prove by Banach fixed point Theorem the existence of a solution fn to the modified
VPB system, for which all the manipulation in section 2 are correct and then which satisfies the bound
(4.4). Last, use the Proposition 2, 3 and 4 to conclude.

5. Proof of the stability result.
First we remark that the bound (4.4) and the Dunford-Pettis lemma imply that fn is weakly

compact in Lp(0, T ;L1(O)) for all p ∈ [1,∞) and T ∈ (0,∞) and then there is a subsequence, not
relabeled, such that

(5.1) fn ⇀
n→∞

f weakly in Lp(0, T ;L1(O)).

One can show essentially by a convexity argument, see [17], that f still satisfies the bound (2.11).
We aim to prove that f is a renormalized solution of the VPB system. We have thus to prove that f

is a solution of the renormalized equation (4.1) and that its trace γf , which is uniquely defined thanks
to the trace Theorem 3 and the Green formula (4.3), satisfies the boundary conditions, possibility
relaxed.

We prove the propositions in two steps and the strategy of the proof is based on the one that was
introduced in [28]. In step 1, we consider βδ(fn) for δ ∈ (0, 1] and weakly pass to the limit as n goes
to ∞ in the equation satisfied by βδ(f). Then, we renormalize the resulting limit equation and let
δ go to 0 to recover (4.1). The same strategy is performed at the boundary in the second step. We
consider the sequence βδ(γfn), first pass to the limit n →∞, renormalize the obtained limit and then
let δ → 0.

Step 1. In this step we recall the main idea used in [28] to prove that f solves (4.1).
Extracting a subsequence if necessary, we may assume that for all δ > 0

(5.2) βδ(fn) ⇀
n→∞

β̄δ weakly ? in L∞((0, T )×O).

Furthermore, one can show that estimate (4.4) implies that Q(fn, fn)/(1 + fn) is weakly compact in
L1((0, T )× Ω×BR) for all R ∈ (0,∞), see [15], and thus we can also assume

(5.3)
Q(fn, fn)
(1 + δ fn)2

⇀
n→∞

Q̄δ weakly in L1((0, T )× Ω×BR).
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Last, P.L. Lions has proved in [28] that (4.4) and the averaging lemma of [19], [18] imply that ρn = ρfn

satisfies
sup
n≥0

sup
[0,T ]

∫
Ω

ρn (1 + | log ρn|) dx ≤ CT and ρn −→
n→∞

ρf in L1((0, T )× Ω)).

Thus, using (4.4) and a standard property of Poisson equation we obtain

(5.4) Efn −→
n→∞

E = Ef in Lp(0, T ;La(Ω))

for all T ∈ (0,∞), p ∈ [1,∞) and a ∈ [1, 2). We pass to the limit in the renormalized equation (4.1)
satisfied by fn with β = βδ and using (5.2), (5.3) and (5.4) we get

(5.5)
∂β̄δ

∂t
+ ξ · ∇x β̄δ + E · ∇ξ β̄δ = Q̄δ in (0, T )×O.

Let consider β ∈ B. Renormalizing equation (5.5) by β we find

(5.6)
∂

∂t
β(β̄δ) + ξ · ∇x β(β̄δ) + E · ∇ξ β(β̄δ) = β′(β̄δ) Q̄δ in (0, T )×O.

Since we have 0 ≤ s− βδ(s) = δ s2/(1 + δ s) ≤ δ sM + s1{s>M} for all M ∈ (0,∞) we deduce thanks
to the bound (4.4) that for all M ∈ (0,∞) and δ > 0

(5.7) 0 ≤ f − β̄δ ≤ δ M f + gM

where gM is the weak limit of fn 1{fn>M} and thus gM tends towards 0 in L1((0, T ) × O) when M
goes to ∞. One deduces

(5.8) β̄δ −→
δ→0

f strongly in L1((0, T )×O).

Furthermore, using the average lemma [19] and [15] (see also B. Perthame, P.E. Souganidis [34] for a
more general and recent result) one can prove the following lemma

Lemma (P.-L. Lions [28]). Under the previous assumption one has

(5.9)
Q̄δ

1 + β̄δ
−→
δ→0

Q(f, f)
1 + f

strongly in L1((0, T )× Ω×BR), ∀R ∈ (0,∞).

It is obvious from (5.8) and (5.9) that passing to the limit in (5.6) we find that f solves (4.1). We
also deduce f ∈ C([0,∞);L1(O)).

In order to shorten notation we set dµ1 = |n(x) · ξ| dξdσxdt.

Step 2 of Proposition 4. Without loss of generality, extracting a subsequence if necessary, we can
assume

(5.10) γ±fn ⇀
n→∞

f± weakly in L1((0, T )× Σ, dµ1)

with f± satisfying the bound (2.14) and

(5.11) βδ(γ±fn) ⇀
n→∞

β̄δ,± in L1((0, T )× Σ±, dµ1) weak and L∞((0, T )× Σ±) weak ? .

Of course, one can pass to the limit in the boundary conditions satisfied by γ±fn. One finds

(5.12) f− = (1− α)
(
λ Lf+ + (1− λ) D f+

)
+ α φ− on (0,∞)× Σ−.
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We have only to prove that γ±f = f± to conclude. But, on one hand, by the same equiintegrability
argument used in the proof of (5.7) we can prove that β̄δ,± → f± strongly in L1((0, T )×O, dµ1) when
δ → 0 and therefore we also have

(5.12) β(β̄δ,±)−→
δ→0

β(f±) strongly in L1((0, T )× Σ±, dµ1).

On the other hand, β̄δ,± = γ±β̄δ as one can see easily passing to the limit n →∞ in the Green formula
(4.3) written for βδ(fn). But, by Theorem 2, β1(β̄δ,±) = γ±β1(β̄δ) which converges to γ±β1(f) passing
to the limit in the Green formula (4.3) and using (5.7). Combining with (5.12) we have thus proved
that β1(γ±f) := γ±β1(f) = β1(f±) a.e. and, since β1 is strictly increasing, that γ±f = f±.

Step 2 of Proposition 5. We now want to prove that γf satisfies the relaxed boundary condition (1.13).
The main difficulty is that (5.10) does not hold anymore. As noticed by T. Goudon in [20], one can
use the bit lemma [7] and prove that γfn converges in the sense of Chacon to a limit f± which is the
trace of f and satisfies the relaxed boundary condition. We give here a slightly different and simpler
proof which does not use the bitting lemma. This one is in fact related to the Chacon’s convergence,
see [4].

As in the previous case, considering the sequence βδ(γfn), we have
(5.13)

βδ(γ±fn) ⇀
n→∞

β̄δ,± = γ±β̄δ weakly ? in L∞((0, T )× Σ±) and weakly in L1((0, T )× Σ±, dµ1).

Furthermore, the sequences β̄δ,± are increasing when δ → 0 and are uniformly bounded in L1((0, T )×
Σ±, (1 + |ξ|2) dµ1) thanks to (4.6). By Fatou lemma there exists f± such that

(5.14) β̄δ,±−→
δ→0

f± strongly in L1((0, T )× Σ±, dµ1).

We show as in Step 2 that γ±β̄δ → γ±f a.e. and that γ±f = f±.
We now have to pass to the limit in the relaxed boundary condition (1.13). Since βδ is concave

and βε(s) ≤ s we have

(5.15) βδ(γ−fn) ≥ λ βδ(Lγ+fn) + (1− λ) βδ(D βε(γ+fn)) on (0, T )× Σ−,

for all ε, δ ∈ (0, 1]. Up to extracting a subsequence we can assume

βδ(D βε(γ+fn)) ⇀
n→∞

D̄δ,ε weakly ? in L∞((0, T )× Σ−).

Furthermore, βδ(Lγ+fn) = Lβδ(γ+fn) and then letting n go to ∞ in (5.15) we get

(5.16) β̄δ,− ≥ λ L β̄δ,+ + (1− λ) D̄δ,ε on (0, T )× Σ−.

The L1 continuity of D implies that for every fixed ε > 0 we have

(5.17) Dβε(γ+fn) ⇀
n→∞

Dβ̄ε,+ weakly in L1((0, T )× Σ−, dµ1)

and therefore using the same argument as the one used to prove (5.8) we have that Dδ,ε is increasing
when δ → 0 and

(5.18) Dδ,ε−→
δ→0

Dβ̄ε,+ strongly in L1((0, T )× Σ−, dµ1).

Passing first to the limit δ → 0 in (5.16) we obtain

(5.19) f− ≥ λ Lf+ + (1− λ) Dβ̄ε on (0, T )× Σ−,
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and then passing to the limit ε → 0 in (5.19) we get

(5.20) f− ≥ λ Lf+ + (1− λ) D f+ on (0, T )× Σ−,

which is precisely (1.13).

Step 2 of Proposition 6. Here the proof is simplified by the fact that renormalization and pure local
reflection commute. Indeed, the trace γ βδ(fn) = βδ(γ fn) satisfies the boundary condition (1.5) and
passing to the limit n → ∞ we find that γβ̄δ satisfies (1.5). Then renormalizing by β and passing to
the limit δ → 0 we see that β(γ f) = γ β(f) also satisfies (1.5) for all β ∈ B. Therefore, the trace of f
satisfies the boundary condition. In order to prove strong convergence we follow Lions’ proof [27] and
[28]. By a convexity argument one proves that β(fn) = log(1+fn) converges weakly in L1((0, T )×O)
to β̄ ≤ β(f) and that β̄ satisfies the boundary condition (1.5) and also satisfies the inequation

∂

∂t
β̄ + ξ · ∇x β̄ + E · ∇ξ β̄ ≥ Q(f, f)

1 + f
in D′((0, T )×O).

But since β(f) = log(1 + f) is a solution to the renormalized VPB system (4.1) we have

(5.21)
∂

∂t
(β̄ − β(f)) + ξ · ∇x (β̄ − β(f)) + E · ∇ξ (β̄ − β(f)) ≥ 0 in D′((0, T )×O),

with γ (β̄−β(f)) satisfying the boundary condition (1.5). Then, just as in [27], we integrate (5.21) and

find
∫ ∫

O

{
β̄t − β(ft)

}
dξdx ≥ 0 for all t ∈ [0, T ]. Therefore, we have proved that log(1 + fn) weakly

converges to log(1 + f) and by standard convexity argument we find that fn → f in Lp(0, T ;L1(O))
for all T ∈ (0,∞) and p ∈ [1,∞). We refer to [28] for the uniform convergence in the t variable.
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