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Université de Versailles – Saint-Quentin et CNRS - umr 7641

VERSAILLES (FRANCE)



On a Quantum Boltzmann
equation for a gas of photons

Abstract - We prove existence and uniqueness of the solution of a homogeneous quantum
Boltzman equation describing the photon-electron interaction. We study the asymptotic
behaviour of the solutions, and show in particular, that the photon density distribution
condensates at the origin asymptotically in time when the total number of photons is larger
than a given positive constant. We also recover the Kompaneets equation as a Fokker-Planck
type limit of this Boltzman model.
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Abstract - We prove existence and uniqueness of the solution of a homogeneous quantum Boltzman equation
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1. Introduction.

We are concerned in this paper with the Boltzmann-Compton equation

(1.1) k2 ∂f

∂t
=

∫ ∞

0

(
f ′ (1 + f)B(k′, k; θ)− f (1 + f ′)B(k, k′; θ)

)
dk′.

Following A.S. Kompaneets and others (see [24], [16], [8]), this equation describes the dynamics of a low
energy, homogeneous, isotropic photon gas that interacts via Compton scattering with a low energy electron
gas, at low temperature θ > 0 and with a Maxwellian distribution of velocities e−k/θ. The scalar quantity
f(t, k) ≥ 0 represents the density of photons which at time t ≥ 0 have energy k ≥ 0. In equation (1.1)
we have adopted the usual notations f = f(t, k) and f ′ = f(t, k′). The cross section B(k, k′; θ)/k2 is the
probability for a given particle at energy state k to be scattered to the energy state k′. This one must satisfy
the detailed balance law

(1.2) ek/θ B(k′, k; θ) = ek′/θ B(k, k′; θ).

In all the sequel we take θ = 1 without any loss of generality.
For a given state f ≥ 0 we introduce the two following ”macroscopic” quantities: the total number of

photons N(f) and the entropy S(f) defined by

(1.3) N(f) =
∫ ∞

0

f(k) k2 dk and S(f) =
∫ ∞

0

s(f(t, k), k) k2 dk,

where s(x, k) = (1 + x) ln(1 + x)− x lnx− k x is the entropy density. The fundamental physical properties
of a solution f to (1.1) is that, formally at least,

(1.4)
d

dt
N(f(t, .)) = 0 and

d

dt
S(f(t, .)) ≥ 0 ∀t ≥ 0,

so that the total number of photons is preserved and the entropy is increasing along the trajectory of (1.1).
A large part of the physic described by this model is contained in these only two properties in (1.4).
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The Boltzmann-Compton equation (1.1) is a spatially homogeneous Boltzmann equation and its study
is therefore simplified by the absence of a transport term. But on the other hand, as a quantum kinetic
equation, it has received much less attention in the mathematical literature than the classical (which means
non quantic) equations. The classical Boltzmann equation in an spatially homogeneous framework has been
extensively studied since the precursor work by L. Arkeryd [3]. For recent development in this direction
and further references, we refer to [38] for existence results, to [32] for uniqueness results and to [37] for
the asymptotic trend to the equilibrium. Let us just emphasize that the Quantum Boltzmann equation
for a gas of Fermi particles has been addressed by J. Dolbeault [15] and P.-L. Lions [26], and also linear
version arising in semi-conductor theory have been studied, see [31] for more references. But, concerning the
Quantum Boltzmann equation for Bose gases (remember that photons are a particular type of Bose particles)
we only know the very recent work of X. Lu [30]. As we show in this work, classic and quantum Boltzmann
equations may exhibit solutions with quite different behaviors. This can already be seen in the expression
of the collision kernel appearing in (1.1), f ′ (1 + f)B(k′, k; θ) − f (1 + f ′)B(k, k′; θ), while in the classical
equations the kernel takes the form f ′ f B(k′, k; θ) − f f ′B(k, k′; θ). The reason for that difference comes
from the following. The particles whose density is to be described by the function f , i.e. the photons, are
quantum particles. They obey Bose statistics and thus tend to be all at the same energy level. Therefore, if
there is already a particle at energy level k, this enhances the probability for another particle, at an energy
level k′, to jump to the same energy level k. This accounts for the terms in 1+ f and 1+ f ′. One interesting
mathematical consequence, which has also been observed by X. Lu in [30], is that an uniform bound of the
entropy S(fj), for a family of suitable functions fj , does not provide weak convergence of that family in
L1 as it does for the classical homogeneous Boltzmann equation. The fact that the entropy is not super-
linear makes more difficult the statement of existence theory, but it is strongly related to the condensation
phenomena that we will introduce below.

The purposes of this paper is, first, to study the existence of solutions for the Cauchy problem associated
to (1.1). We show that under “reasonable” conditions on the cross section B and for a large class of initial
datum fin there exists a global (in time) solution to (1.1) associated to fin, which furthermore is unique.
Moreover, if fin is a measurable function (not a singular measure) then f(t, .) is also a measurable function.
Next, we can consider the long time behavior, as t→ +∞, of these solutions. Thanks to (1.4) it is expected
that f(t, .) converges, as t → +∞, to an equilibrium state which is uniquely associated to the number of
photons N = N(f(t, .)) ∀t ≥ 0. Heuristically, the equilibrium state must be the maxima of the entropy S(f)
for all the densities f with prescribed total number of photons N(f) = N .

This is the first main question we are interested in, and we would like now to concentrate us on this
maximum entropy problem which is simple and very enlightening both in a physic point of view and for the
mathematical analysis of equation (1.1). Moreover the maximisation entropy problem is physically relevant,
since the statistical physics says that the solution of this problem is the most probably state of the gas: it is
the thermodynamical equilibrium. Let us first briefly see why the entropy S(f) is well defined. To this end
we remark that

∂s

∂x
= ln(1 + x)− lnx− k,

∂2s

∂x2
=

1
1 + x

− 1
x
< 0, ∀x > 0.

Then, for every fixed k > 0, s(k, ·) is a concave function of x with an unique maximum. That maximum
obviously depends on k and is usually denoted by f0(k). It is given by ∂s

∂x (k, f0(k)) = 0, or equivalently,

(1.5) f0(k) =
1

ek − 1
,

and is called the Planck distribution. Therefore, for every measurable and non negative function f , we have
s(f(k), k) ≤ s(f0(k), k) = ln ek

ek−1
and

(1.6) S(f) ≤ S(f0) ≡
∫ ∞

0

k2 ln
ek

ek − 1
dk <∞.

This shows that S(f) is well defined and S(f) ∈ [−∞, S(f0)]. Let us emphasize that (1.6) implies that f0 is
the global maximum of the entropy S; note moreover that N(f0) <∞.
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In order to get a better insight into the maximum entropy problem, we introduce the Bose-Einstein
distributions defined by

(1.7) ∀µ > 0, fµ(k) =
1

ek+µ − 1
.

Observe that the Planck distribution corresponds to µ = 0. We note Nµ = N(fµ). One easily checks that
the functions fµ are ordered (fν < fµ if ν > µ), that for any N ∈ (0, N0] there exists an unique µ ≥ 0 such
that Nµ = N , and that the corresponding distribution fµ solves the maximisation problem

(1.8) S(fµ) = max
N(f)=N

S(f).

One can also remark that fµ is a stationary solution of the equation (1.1), i.e. Q(fµ, fµ) = 0. More precisely,
whenever B satisfies the detailed balance condition (1.2) we have

f ′µ (1 + fµ)B(k′, k; 1)− fµ (1 + f ′µ)B(k, k′; 1) = 0, ∀ k > 0, k′ > 0.

Now since the the maximisation problem (1.8) has been solved for N ∈ (0, N0], one can then wonder
whether it has a solution or not when N > N0. That question was solved by R.E. Caflisch and C.D.
Levermore in [6] with the following remark. If ϕn is a regular approximation of δa, the Dirac mass at the
point k = a with a ≥ 0, then

(1.9) S(f + α
ϕn

k2
) −→

n→∞
S(f)− αa and N(f + α

ϕn

k2
) −→

n→∞
N(f) + α.

In order to be more precise we perform the change of variables: g = k2 f . Consider now a distribution F of
the form F = g + α δa where g ∈ L1(R+), α ∈ R and g, α ≥ 0. When α > 0, the singular part α δa has to
be interpreted as a Bose condensate: a macroscopic part of the gas of photons is concentrated in the single
energy level k = a. We define the ”total mass” M(F ) of such a distribution F as

(1.10) M(F ) :=
∫ ∞

0

dF (k) = M(g) + α =
∫ ∞

0

g(k) dk + α,

and its entropy

(1.11) H(F ) := H(g)− αa, with H(g) =
∫ ∞

0

h(g, k) dk,

where h(x, k) = (k2 + x) ln(k2 + x)− x lnx− k2 ln k2 − k x. By construction, if g is a measurable and non
negative function and f(k) = k−2g(k) we have

M(g) = N(f) and H(g) = S(f).

Therefore M(g) and H(g) are well defined for every nonnegative measurable function g and M(g) ∈ [0,+∞],
H(g) ∈ [−∞, S(f0)]. Finally, we define the Bose distributions

(1.12) Bm = gµ + α δ0

with α = 0 and µ ≥ 0 such that M(gµ) = m if m ≤ N0; µ = 0 and α = m − N0 if m > N0. Under these
notations, the result by R.E. Caflisch and C.D. Levermore may be stated as follows.

Theorem 1 ([6]). For every m > 0, H(Bm) = max
M(F )=m

H(F ).

It is fundamental to emphasize that when m > N0, the “thermodynamical equilibrium” condensates at
the origin since in this case Bm = g0 + (m−N0) δ0. From a physical point of view, this is known has a Bose
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condensation type phenomena. Of course, we will also show that the Bose-Einstein distribution Bm are the
only stationary solution of (1.1).

Coming back to the evolution equation (1.1), we will be able to prove that k2 f(t, k) converges, when
t → +∞ to the Bose-Einstein state Bm, with m = N(fin). As a first conclusion, this leads to our most
physical value result: starting from an initial regular state fin such that N(fin) > N0 no Bose condensation
appears in finite time as we have already mentioned it (the photon density distribution f does not concentrate
in a Dirac mass), but Bose condensation appears at the origin in infinite time. From the point of view of
the physical model, this indicates that part of the photons tend to concentrate at the zero energy state
and create a condensate as t → ∞. This condensation phenomena for a photons gas bears some similarity
with the classical Bose condensation phenomena for gas constitued of true Bose-Einstein particles (we mean
no photons). Nevertheless, it must be emphasized that this is an infinite time process while in the Bose
condensation, the condensate has been predicated to appear in finite time [25], [33], [35]. In his work [30],
X. Lu establish the existence of global L1-solution to the Boltzmann equation for Bose-Einstein particles
under strong troncature assumption (and somewhat not physical) on the cross-section: no more condensation
appears in finite time. X. Lu also studies the asymptotic behavior of the solutions in some specific cases.
We will come back on the questions in the forthcoming work [19], where we present some general and basic
properties of quantum and relativistic Boltzmann equation.

The question of convergence to the equilibrium state or more generally asymptotic behavior of solution
when t → ∞ is one of the main question in kinetic theory. It has been treated by many authors for the
homogeneous Boltzmann equation [4], [37] and for the unhomogeneous Boltzmann equation [26], [11], [28],
as for other models [34], [5], [13], [14].

We introduce now the second main goal of this paper: to justify rigorously the approximation of the
Boltzmann equation (1.1) by the Kompaneets equation

(1.13) x2 ∂f

∂t
=

∂

∂x

(
x4 (

∂f

∂x
+ f + f2)

)
, for t > 0, x > 0.

This equation is the well known Fokker-Planck approximation of the Boltzmann-Compton equation (1.1)
introduced by A. S. Kompaneets in [24], under the hypothesis that the energy transferred in each separate
act is small in comparison with the energy quantum: k′ − k << k.

It is a classical device to approximate classic Boltzmann equation with Coulomb interactions by Landau
equation. This corresponds physically to the fact that small angle collisions are much more important
than collisions resulting in large momentum changes (Chapman Cowling [7], second edition, pages 178-179).
This leads to the formal method often used for treating such systems, in which one expands the collision
integrand of the Boltzmann equation in powers of the momentum change per collision. With regard to the
classical Boltzmann equation, the Fokker-Planck limit, which corresponds to the asymptotic behavior when
the collisions become grazing, has been extensively studied in [10], [12], [21], [38] and we refer to [39] for a
general presentation of the problem and for more references.

Now, Compton scattering is not a long but a short range interaction. Nevertheless the formal expansion
argument in powers of the momentum change may still be performed but for a different reason. It actually
corresponds to consider that the main contribution in the collision integral of the equation (1.1) comes from
the region where k′− k is small (|k′− k| << k). This does not come from the type of interaction, which has
been said to be short range, but from the fact that b(k, k′) is very peaked arround k ∼ k′ and the presence
of the exponentially decaying terms. Remark that this is due to the fact that the electrons are decoupled
and supposed to be at equilibrium. Moreover, thanks to this last assumption, the formal expansion method
gives a partial differential equation which is the Kompaneets equation. In general, without the condition
of decoupling, the method gives an integro-(partial) differential equation, see [19] for a formal derivation of
this model.

In order to derive rigorously (1.13) from (1.1) we will consider a family (Bε) of cross-section which tends
to concentrate the interaction between particles on the pairs of particles of energy k and k′ with k′ ' k
(see Theorem 7 for precise assumptions on Bε). Then, for an initial datum fin such that 0 ≤ fin ≤ f0, we
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prove that the family of solutions fε of (1.1) (associated to fin and Bε) converges to a solution f of the
Kompaneets equation (1.13).

The associated mixed problem in R?
+ × R?

+

(1.14)


x2 ∂f

∂t
=

∂

∂x

(
x4 (

∂f

∂x
+ f + f2)

)
, for x > 0, t > 0,

f(0, x) = fin(x),

x4
(∂f
∂x

+ f + f2
)
→ 0 as x→ 0 and x→∞,

has received much more attention in the physic and mathematic literature than the Cauchy problem associ-
ated to (1.1) and has been widely studied; in particular, by G. Cooper [8], R.E. Caflisch & C. D. Levermore
[6], O. Kavian [23] and M. Escobedo, M. A. Herrero & J. J. L. Velazquez [17]. There is a lot of similarity
between Boltzmann-Compton equation (1.1) and Kompaneets equation (1.14). The flux condition at x = 0
and as x→∞ is natural from the following point of view. As we have already remarked, the total mass of
the solutions is preserved in the Boltzmann-Compton model. As a formal integration by parts shows, the
property of mass preserving in the Kompaneets model (1.13) requires the flux condition to be satisfied at
both x = 0 and x → ∞. Moreover, the function S defined in (1.3) is also an increasing entropy for the
solutions of (1.14) and the Planck and Bose-Einstein distributions are still stationary solutions of equation
(1.13).

But, on the other hand, it was proved in [17] that problem (1.14) is unstable in the following sense.
There are initial data fin (rather general) such that for a finite time T ∗ > 0, there exists an unique function
f , defined in R?

+ × R?
+, which is the unique classical solution of (1.14) for t ∈ [0, T ∗), which satisfies the

Kompaneets equation and the flux condition at x→∞ for all t > 0, and such that

lim
x→0

x4
(∂f
∂x

(x, t) + f(x, t) + f2(x, t)
)
> 0, ∀t ≥ T ∗,

i.e. it does not satisfy the flux condition at the origin for t ≥ T ∗. As we shall see, this implies that, for some
initial datum, the approximation of the Boltzmann equation by equation (1.14) breaks down in finite time.

2. Main results.
In this section, we present in details the new results that we have obtained and which were announced in
[18]. For that purpose we begin specifying the cross section we deal with. We introduce

(2.1) b(k, k′) = B(k′, k; 1) ek k−2 k′−2.

Note that assumption (1.2) on B implies that b is a symmetric function. We always assume that b satisfies

(2.2) ∃η ∈ [0, 1); b(k, k′) = eη k eη k′ σ(k, k′),

for some function 0 ≤ σ ∈ L∞(R2
+) symmetric. We will also need a more restrictive assumption on b,

precisely that for some σ?, σ
?, ν > 0, γ ∈ [0, 1)

(2.3) σ(k, k′) ≡ σ(k′ − k) and 0 < σ? e
−ν |z|γ ≤ σ(z) ≤ σ? ∀z ∈ R.

It is difficult to find in the literature the reasonable physic assumption that one has to make on b. The
question of physical relevance of the cross-section assumption will be addressed in a next work [19] where we
will see that the Compton scattering cross-section has a structure not so far to (2.2) or (2.3). We will also see
(in Theorem 7) that the Kompaneets equation (1.13) is a Fokker-Planck limit of the Boltzmann-Compton
equation (1.1) for a cross-section B satisfying (2.2) with η = 1/2.

From a mathematical point of view these assumptions are uniquely used in the proof of existence (and
uniqueness) of solutions to the Boltzmann-Compton equation (1.1) with unbounded cross-section b and for
a general class of initial data fin (including the case N(fin) > N0).
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Let us now introduce the space of distributions where we look for solutions to (1.1). Theorem 1 shows
that the natural space for the solutions of equation (1.1) is the set of bounded and not negative measures
M1(R+) =

(
Cb(R+)

)′. In the sequel, for a given 0 ≤ F ∈M1 we note

(2.4)

{
F = g +G, with

g ∈ L1(R+), G a singular measure with respect to the Lebesgue measure in R+.

With these notations and the change of variables F = g = k2 f (so that G = 0) the equation (1.1) writes

(2.5)
∂F

∂t
= Q(F, F ) =

∫
R+

b(k, k′)
(
F ′ (k2 + F ) e−k − F (k′2 + F ′) e−k′

)
dk′.

But in fact, Q(F, F ) is also well defined for all nonnegative measures F of M1(R+) (at least when b is
bounded); therefore, equation (2.5) makes sense for such general states. Equation (2.5) can also be written
as the following system of equations for the regular part g and the singular part G

(2.6)


∂g

∂t
= Q1(g,G) = Q+

1 (g,G)−Q−1 (g,G) = (k2 + g) e−k L(F )− g L
(
(k2 + F ) e−k

)
,

∂G

∂t
= Q2(g,G) = Q+

2 (g,G)−Q−2 (g,G) = G
[
L(F ) e−k − L

(
(k2 + F ) e−k

)]
,

with L(φ) :=
∫

R+

b(k, k′)φ′ dk′.

On the other hand, since we are interested in the Cauchy problem, we add an initial datum

(2.7) F (0, .) = g(0, .) +G(0, .) = Fin = gin +Gin.

Due to the particular form of equation (2.5), when the cross section b is a bounded function, a natural space
to look for solutions is

E0 = {F ∈M1(R+), F ≥ 0, M((1 + k)F ) <∞}.

Since we want to consider more general cross sections b of the form (2.2), we also introduce the spaces

Eη = {F ∈M1(R+), F ≥ 0, Yη(F ) := M(eη k F ) <∞} if η > 0.

Recall that M(F ) denote the mass of F defined by M(F ) =
∫

R+

dF (k). We shall then assume that Fin ∈ E0

if η = 0 and Fin ∈ Eθ for some θ > 0 if η ∈ (0, 1)

Two basic properties of the solutions of (2.5) are the conservation of mass and the fact that a suitably
defined entropy is increasing. The formal proofs of these facts are simple calculations and so they will be
done here. The validity of these calculations under the assumptions of our theorems will be checked in each
case.

To show the conservation of mass we integrate equation (2.5) over R+ with respect to k. Then, by the
change of variables (k, k′) → (k′, k) we obtain

d

dt
M(F ) =

∫
R+

Q(F, F ) dk = 0,

which means that the number of photons is conserved and

(2.8) M(F (t, .)) = M(Fin) =: m for all t ≥ 0.
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On the other hand, we define the entropy for a general state F = g +G by

(2.9) H(F ) = H(g)−M(k G),

where H(g) is defined in (1.11). By (2.9), H(F ) is well defined for every distribution F given by (2.4) and
H(F ) ∈ [−∞, S(f0)].

We now show that the entropy H(F ) is not decreasing along the trajectories of (2.5), precisely

(2.10)
d

dt
H(F ) =

1
2
D(F ),

where D(F ) ≥ 0 is a the so-called dissipation entropy rate that we define below. Let j be the function

(2.11) j(u, v) =


(v − u)(ln v − lnu) if u > 0, v > 0,
0 if u = v = 0
+∞ elsewhere.

Whenever Q±1 (g,G)h′(g, k) ∈ L1 and Q±2 (g,G) k ∈M1, we state that

(2.12)

∫
R+

{
Q1(g,G)h′(g, k)−Q2(g,G) k

}
dk =

=
∫

R+

{
(k2 + g) e−k L(g)− g L

(
(k2 + g) e−k

}
h′(g, k) dk

+
∫

R+

{[
(k2 + g) e−k L(G)− g L

(
Ge−k

)]
h′(g, k)−G

[
L(g) e−k − L

(
(k2 + g) e−k

)]
k
}
dk

−
∫

R+

G
[
L(G) e−k − L

(
Ge−k

)]
k dk =:

1
2
D1(g) +D2(g,G) +

1
2
D3(G) =:

1
2
D(F ),

where the dissipation of entropy terms Di are given by

D1(g) =
∫∫

R2
+

b j
(
(k2 + g) e−k g′, (k′2 + g′) e−k′ g

)
dk′dk,

(2.13) D2(g,G) =
∫∫

R2
+

b j
(
(k2 + g) e−k, g e−k′

)
dG(k′)dk,

D3(G) =
∫∫

R2
+

b j
(
e−k, e−k′

)
dG(k′)dG(k).

Indeed, we just make the following computation:∫
R+

{
(k2 + g) e−k L(g)− g L

(
(k2 + g) e−k

}
h′(g, k) dk =

=
∫∫

R2
+

b
{
(k2 + g) e−k g′ − g (k′2 + g′) e−k′

[
ln

(
(k2 + g) e−k

)
− ln g

]
dk′dk

=
∫∫

R2
+

b
{
(k′2 + g′) e−k′ g − g′ (k2 + g) e−k

[
ln

(
(k′2 + g′) e−k′

)
− ln g′

]
dkdk′

=
1
2

∫∫
R2

+

b j
(
(k2 + g) e−k g′, g (k′2 + g′) e−k′

)
dk′dk =

1
2
D1(g),
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∫
R+

{[
(k2 + g) e−k L(G)− g L

(
Ge−k

)]
h′(g, k)−G

[
L(g) e−k − L

(
(k2 + g) e−k

)]
k
}
dk =

=
∫∫

R2
+

b
[
(k2 + g) e−k − g e−k′

] [
ln

(
(k2 + g) e−k

)
− ln g)

]
dG(k′)dk

+
∫∫

R2
+

b
[
g e−k′ − (k2 + g) e−k

]
ln e−k′ dG(k′)dk = D2(g,G),

and
−

∫
R+

[
L(G) e−k − L

(
Ge−k

)]
k dG(k) =

∫∫
R2

+

b (e−k − e−k′) (−k) dG(k)dG(k′)

=
∫∫

R2
+

b (e−k − e−k′) (−k′) dG(k)dG(k′) =
1
2
D3(G).

Then, from (2.12), we get, at least formally,

(2.14)
d

dt
H(F ) =

∫
R+

{
h′(g, k)

∂g

∂t
− k

∂G

∂t

}
dk =

∫
R+

{
Q1(g,G)h′(g, k)−Q2(g,G) k

}
dk =

1
2
D(F ).

We may now state our main results. As it is typical in the study of Boltzmann equations, we first
consider the set of stationary solutions of (2.5) and give different characterizations of them.

Theorem 2. Assume (2.2) with b > 0. Let F be a bounded non negative measure such that M(F ) = m.
The following assertions are equivalent:

F = Bm,(2.15)
F is the solution of the maximisation problem H(F ) = max

M(F ′)=m
H(F ′)(2.16)

D(F ) = 0,(2.17)
Q(F, F ) = 0 and F ∈ Eη.(2.18)

Our next step is to consider the existence of solutions for the evolution problem. We say that a
distribution F ∈ C([0,∞);M1(R+)) is an entropy solution of the Cauchy problem (2.5)−(2.7) if

(2.19)
∫

R+

F (t, k)φ(t, k) dk =
∫

R+

Fin(k)φ(0, k) dk +
∫ t

0

∫
R+

Q(F, F )φdkds,

∀φ ∈ Cc([0,∞)× R+), and satisfies either the entropy inequality

(2.20)
∫ t2

t1

D(F (s, .)) ds ≤ H(F (t2, .))−H(F (t1, .)) for all t2 ≥ t1 ≥ 0,

or the entropy dissipation bound

(2.21)
∫ ∞

0

D(F (t, .)) dt ≤ H(Bm)−H(Fin);

this will be specified in each case.

Theorem 3 (First existence result). Assume that b satisfies (2.2) with η = 0. Then for any initial
datum Fin = gin +Gin ∈ E0 there exists an unique entropy solution to (2.5), (2.7) and (2.20), F = g +G ∈
C([0,∞), E0). Moreover, F satisfies (2.8) and is such that

(2.22) suppG(t, .) ⊂ suppGin.
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In particular, if Fin = gin ∈ L1(R+) then G(t, .) = 0 for every t ≥ 0 and thus F (t, .) = g(t, .) ∈ L1(R+) for
every t ≥ 0.

Theorem 4 (Second existence result). Assume that b satisfies (2.3). Then, for all initial datum
Fin = gin +Gin ∈ Eθ′ with θ′ > 0 there exists an unique global entropy solution to equation (2.5)-(2.7) and
(2.20), F = g +G ∈ C([0, T ), Eθ) ∩ L1(0, T ; Eη+θ) for all T > 0 and all 0 < θ < min(θ′, η, 1− η). Moreover,
it satisfies (2.20) and (2.22).

Theorem 5 (Third existence result). Assume that b satisfies (2.2) for some η ∈ [0, 1) and that the
initial datum has the special shape

(2.23) Fin = gin + αin δ0, with 0 ≤ gin ≤ g0 and αin ≥ 0.

Then there exists an entropy solution to (2.5), (2.7) and (2.21), F = g + α δ0 ∈ C([0, T ), E1). Moreover, F
satisfies (2.8) and

(2.24) 0 ≤ α(t) ≤ αin, 0 ≤ g(t, .) ≤ g0 ∀t ≥ 0.

Remark 2.1. Theorem 3 has to be seen as a first simple step in the existence theory: we deal with
general initial data and bounded cross-section but without the (may be) artificial assumption (2.3). In fact,
the assumption of boundedness of the croos-section b seems to be more unphysical that assumption (2.3).
Theorem 4 provide a good framework in order to investigate long time behavior for unbounded cross-section
and initial data fin such that N(fin) > N0. Theorem 5 allow us to get inside the Kompaneets asymptotic.
Observe that the solutions obtained in Theorems 3 and 4, i.e. under the more restrictive conditions on b,
are unique and satisfy the entropy inequality (2.20). Under the less restrictive condition (2.2), the solution
constructed satisfies the weaker entropy dissipation bound (2.21) and moreover we do not know whether it
is unique. We believe that it should be possible to adapt the results of X. Lu [29], [30] in order to prove that
equality holds in (2.20) in all the cases. Concerning the uniqueness see also Remarks 5.1 and 5.2.

Remark 2.2. The main difficulty in the proofs of Theorems 3, 4 and 5 with respect to the classic
Boltzmann equation is that an uniform bound on the entropy does not provide weak convergence in L1. In
the existence proof we use two different strategies. On one hand, in Theorems 3 and 4, we do restrictive
assumption on the cross section but we deal with (quite) general initial data. In this case, we are able to
prove that a sequence of solutions to a regularized problem is a Cauchy sequence in some appropriate space.
When η = 0 we just follow the method of Arkeryd [3]. When η > 0, the collision operator Q does not map
M1 into itself. In this case, we follow the spirit of the moment method developed for the classical Boltzmann
with hard potential. Using the specific shape (2.3) we prove that exponential momentum of the solution (or
of a sequence of regularized solutions) can be bounded; condition (2.3) is used in order to gain momentum,
which is crucial in the proof. A similar method has been already used in [32]. On the other hand, in Theorem
5, we deal with general cross section but we make strong restriction on the initial data. In this case, we are
able to prove the maximum principle (2.24) and then we can use a L∞ compactness argument.

We next consider the asymptotic behavior of our global solutions. Our main result is the following.

Theorem 6 (Asymptotic behavior). Assume that 0 < b and Fin satisfy the assumptions of one of the
existence Theorems 3, 4 or 5. Let be m = M(Fin), Bm = gµ + αδ0 the Bose distribution of mass m defined
in (1.12) and F ∈ C([0,∞);M1) the corresponding solution. Then we have

(2.25)

F (t, .) ⇀
t→∞

Bm weakly ? in
(
Cc(R+)

)′
lim

t→∞
‖g(t, .)− gµ‖L1((k0,∞)) = 0 ∀k0 > 0.

Moreover if m ≤ N0 or 0 ≤ gin ≤ g0 we can take k0 = 0.

Remark 2.3. Let us observe the following consequence of the above results. Assume we start with a regular
initial data Fin ≡ gin ∈ L1. Then, the solution F remains regular for all time: F (t) ≡ g(t) ∈ L1. Moreover,
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suppose that M(Fin) ≡ M(gin) = m > N0. Then F (t, ·) ≡ g(t, ·) ⇀ Bm where Bm = k2f0 + (m − N0)δ0.
This precisely shows that a regular initial state of total mass greater that N0 does not condense in finite
time (Theorem 3 or 4) but does condense at the origin in infinite time (Theorem 6).

Remark 2.4. Suppose now that we start with an initial datum which already has a condensate, say
Fin = gin + α0δ. By Theorem 6, if m = M(Fin) ≤ N0 then g(t, .)→ gµ in L1(R+) and α(t) → 0 as
t → ∞. It is an interesting question to know what happens if m > N0. We know by Theorem 6 that
g(t) + α(t)δ ⇀ g0 + (m−N0)δ in σ

(
M1(R+), Cc(R+)

)
weak ? and g(t, .)→ g0 in L1([k0,∞)) for all k0 > 0.

But this does not tell us anything about the asymptotic behavior of α(t) and of g(t) near k = 0. If for
instance, M(gin) > N0, then part of the mass of g(t) must be transferred to the condensate. Does this
happens continuously at all times t > 0 or does it happens only asymptotically as t→∞ ? i.e. do we have

α ≡ lim
t→∞

α(t) = m−N0 and lim
t→∞

‖g(t)− g0‖1 = 0

or

α ≡ lim
t→∞

α(t) < m−N0 and g(t) ⇀ g0 + (m−N0 − α) δ in σ
(
M1(R+), Cc(R+)

)
weak ? ?

If gin ≤ g0 (but nevertheless m > N0), we know by Theorem 6 that g(t) ≤ g0 for all t > 0, and g(t) → g0
in L1(R+). Then we must have, α = m − N0 and we are in the first case. This and related questions are
considered in a forthcoming work [20].

We finally turn to the Kompaneets limit. Our result is the following

Theorem 7 (Kompaneets limit). Assume that b(k, k′) = ek/2 ek′/2 and consider σ ∈ D(R) even,
suppσ ⊂ [−2, 2], σ > 0 over [−1, 1] with

∫
R σ(z) dz = 1,

∫
z2σ(z) dz = 2. We define

(2.26) bε(k, k′) = b(k, k′)
σε(k′ − k)

ε2
with σε(z) =

1
ε
σ
(z
ε

)
.

For a given initial datum 0 ≤ gin ≤ g0 we denote by gε ∈ C([0,∞), L1(R+)) the solution to the Boltzmann
equation (2.6) corresponding to the cross-section bε and the initial datum gin which is given by Theorem 5.
Then, for all T > 0,

(2.27) lim
ε→0

||gε − g||C([0,T ],L2(R+)) = 0,

where g ≡ k2 f , and f ∈ C([0, T ];L1(R+)) is the unique solution to the Cauchy problem

(2.28)

 k2 ∂f

∂t
= Q0(f, f) =

∂

∂k

{
k4

(
f2 + f +

∂f

∂k

)}
in D′((0, T )× R+) ∀T > 0,

f(x, 0) = k−2gin(x) for x > 0

such that 0 ≤ f ≤ f0.

Remark 2.5. The existence and uniqueness of such a solution f was proved in [17]. The existence of
a solution f ∈ C([0,∞);L1(R∗+)) for all T > 0 also follows from the proof of Theorem 7, but not the
uniqueness. More generally, we can consider cross sections b satisfying

(2.29) 0 ≤ b e−ηke−ηk′ ≡ σ(k − k′) with η ∈ [0, 1)

and σ ∈ D(R) even, suppσ ⊂ [−2, 2], σ > 0 over [−1, 1] with
∫
σ(z) dz = 1,

∫
R z

2 σ(z) dz = Σ. We prove in
that case, for every T > 0
(i) the existence of a function h such that h = k2ϕ with 0 ≤ ϕ ≤ f0, ϕ ∈ C([0,∞);L1(R∗+)) solution to

(2.30)

 k2 ∂ϕ

∂t
=

∂

∂k

{
α(k)k4

(
ϕ2 + ϕ+

∂ϕ

∂k

)}
in D′((0, T )× R+) ∀T > 0,

ϕ(x, 0) = k−2gin(x) for x > 0
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where

(2.31) α(k) :=
Σ
2
b(k, k) e−k;

(ii) the existence of a subfamily (gε`
)`∈N such that

lim
`→∞

‖gε`
− h‖L2((0,T )×R+) = 0.

Since we do not know whether such a solution ϕ to problem (2.30) is unique or not, the function h may
depend on the subfamily (gε`

)`∈N and the time T . In particular we can not be sure that all the family (gε)
converges to h in L2((0, T )× R+) for every T > 0.

Remark 2.6. Theorem 7 shows that, under a suitable hypothesis on b, the Cauchy problem for the equation
(1.1) may be approximated by the Cauchy problem for the Kompaneets equation with the same initial datum
fin, whenever 0 ≤ fin ≤ f0. In that case, the solution of the Kompaneets equation fK also satisfies the flux
conditions:

lim
k→0

x4
(∂fK

∂x
+ fK + f2

K

)
= lim

k→∞
x4

(∂fK

∂x
+ fK + f2

K

)
= 0

for all time. Notice that the flux condition is already taken into account in the formulation (2.28). The
function fK satisfies therefore the problem (1.10) with the total mass preserved (see [17]).

Remark 2.7. Note that from [17] one can find initial data gin such that the solution f of the Kompaneets
equation associated to fin = gin/k

2 satisfies m(t) = N(f(t)) is decreasing and m(t) < N(fin) for t ≥ T ? > 0.
Of course, gin does not satisfy 0 ≤ gin ≤ g0. Therefore,

‖gε(t)− k2 f(t)‖L1 ≥ ‖gε(t)‖L1 − ‖k2 f(t)‖L1 = N(fin)−m(t) > 0,

for every t ≥ T ?, ε > 0. As a conclusion, the Kompaneets equation is not an approximation of the Boltzmann
Compton equation after T ?. It is an open problem to understand what happens to the sequence (gε) built
in the statement of Theorem 7 when the initial datum does not satisfy 0 ≤ fin ≤ f0.

In the next Section we study the stationary states and prove Theorem 2. The detailed analysis of the
entropy and the entropy dissipation terms is done in Section 4. Section 5 is devoted to the proofs of the
existence results stated in Theorem 3, Theorem 4 and Theorem 5. The long time behavior of the solutions is
studied in Section 6. Finally the approximation by the Kompaneets equation is studied in Section 7, where
we prove Theorem 7.
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3. The stationary problem: proof of Theorem 2.
We start studying the stationary states of the equation (2.2). These are particular solutions of the

equation which, moreover, are important for the dynamics of the general solutions of the Cauchy problem.
We only consider stationary states which are bounded non negative measures. This section is devoted to the
proof of Theorem 2. It is divided in three steps.

Step 1. We begin with the equivalence of (2.15) and (2.16) and so give an alternative proof to the proof of
Theorem 1 presented in [6]. For that purpose we use the following Lemma.

Lemma 3.1. Let F = g + G be given as in (2.4) such that M(F ) = m and Bm = gµ + α δ0 be the Bose
state of mass m. Then,

H(g|gµ) ≡
∫

R+

[
(k2 + g) ln

k2 + g

k2 + gµ
− g ln

g

gµ

]
dk,

is well defined, H(g|gµ) ∈ [−∞, 0] and

(3.1) H(F )−H(Bm) = H(g|gµ)−M(G (k + µ)).

We accept this Lemma for the moment and end the proof of Step 1. We remark that the function

ψ(x, y) = (k2 + x) ln
k2 + x

k2 + y
− x ln

x

y
(with fixed k and y) has an unique maximum which is x = y, and

ψ(y, y) = 0. Therefore, for any non negative measurable function g and all k > 0, ψ(g(k), gµ(k)) ≤ 0,
H(g|gµ) is well defined and H(g|gµ) ≤ 0 with equality, if, and only if g = gµ. We deduce that for any
F = g + G such that M(F ) = m we have H(F ) ≤ H(Bm). Moreover, if H(F ) = H(Bm) then g = gµ and
M(G (k + µ)) = 0, so that G = α δ0 and αµ = 0. This exactly means that F = Bm. It is clear on the other
hand that if F = Bm, H(F ) = H(Bm), which shows (2.16).

Proof of Lemma 3.1. We start writing

(3.2)

H(F )−H(Bm) =
∫

R+

(
g ln

(k2 + g) e−k

g
+ k2 ln(k2 + g)− k2 ln k2

)
dk −M(k G)

−
∫

R+

(
gµ ln

(k2 + gµ) e−k

gµ
− k2 ln(k2 + gµ) + k2 ln k2

)
dk.

We remark that (k2 + gµ) e−k/gµ = eµ and, since by (1.15), µα = 0, we have

(3.3)
∫

R+

gµ ln eµ = µ
[
M(Bm)− α

]
≡ µM(Bm) = µM(F ) =

∫
R+

g ln eµ + µM(G),

Finally, (3.1) follows from (3.2) and (3.3).

Step 2. Equivalence of (2.15) and (2.17). From the expression for D given in (2.13), it is clear that
D(Bm) = 0. Assume now that F = g + G and M(F ) = m. Since all the terms Di(F ), i = 1, 2, 3 are well
defined and non negative, D(F ) is also well defined. Assume moreover that

D(F ) = D1(g) + 2D2(g,G) +D3(G) = 0.

All the terms are non negative, and so must be zero. In particular

D1(g) =
∫∫

R2
+

b(k, k′) j
(
g′ (k2 + g) e−k, g (k′2 + g′) e−k′

)
dk′dk = 0.

But, since b > 0, we have

g′ (k2 + g) e−k = g (k′2 + g′) e−k′ a.e. k, k′ ≥ 0,
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and so
g

k2 + g
ek =

g′

k′2 + g′
ek′ a.e. k, k′ ≥ 0.

This shows that
g

k2 + g
ek is independent of k and is then a constant say, γ. We deduce that either g ≡ 0 or

γ > 0. In the last case, we may write γ = e−µ, so that g = gµ with µ ≥ 0, since g ∈ L1(R+). Moreover, from

D4(G) =
∫∫

R2
+

b j
(
e−k, e−k′

)
dG(k) dG(k′) = 0,

we deduce that G = α δa for some a ≥ 0 and α ≥ 0. Finally, since (k2 + gµ) e−k = gµ e
µ, we deduce

D2(g,G) =
∫∫

R2
+

b j
(
(k2 + g) e−k, g e−k′

)
dG(k′)dk = α j

(
eµ, e−a

)
La(gµ) = 0,

which may only happen when α = 0 or µ = −a = 0.

Step 3. Equivalence of (2.15) and (2.14). It is clear that Bm ∈ E1 ⊂ Eη and Q(Bm,Bm) = 0. Let be now
F = g +G ∈ Eη such that M(F ) = m and Q(F, F ) = 0, which implies

(3.4) Q1(g,G) = (k2 + g) e−k L(F )− g L
(
(k2 + F ) e−k

)
= 0

and

(3.5) Q2(g,G) = G
[
L(F ) e−k − L

(
(k2 + F ) e−k

)]
= 0.

Define the continuous function µ : R+ → R by

eµ(k) :=
L((k2 + F ) e−k)

L(F )
,

so that, from (3.4), we get (k2 + g) e−k = g eµ for almost every k ≥ 0. Then

g(k) =
k2

ek+µ − 1
a.e. k ≥ 0.

Since g ≥ 0 and g ∈ L1 we deduce µ ≥ −k. We observe that

g eµ ≤ g e1{µ≤1} +
k2

ek − e−µ
1{µ≥1} belongs to L1(R+)

and therefore that
g |µ| ≤ g k 1{µ≤0} + g eµ 1{µ≥0} belongs to L1(R+),

since F ∈ Eη, and in particular, k g ∈ L1(R+).

On the other hand, since
h′(g, k) = ln(k2 + g)− ln g − k = µ

we have

(3.6)

{
Q−1 (g,G)h′(g, k) ≡ g L((k2 + F ) e−k)h′(g, k) = g µL(Ge−k + g eµ) ∈ L1

Q+
2 (g,G)k ≡ GL(F ) e−k k ∈M1.

Finally, from Q1(g,G) = 0 et Q2(g,G) = 0 we deduce
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(3.7)

{
Q+

1 (g,G)h′(g, k) ≡ (k2 + g) e−k L(F )h′(g, k) ∈ L1

Q−2 (g,G)k ≡ GL
(
(k2 + F ) e−k

)
k ∈M1.

Therefore, the formal calculations performed in Section 2 leading to (2.12) are allowed, so that we get

1
2
D(F ) =

∫
R+

{Q1(g,G)h′(g, k)−Q2(g,G) k} dk = 0.

We conclude using step 2.

4. Analysis of the entropy term and of the entropy dissipation term.

This section is devoted to a detailed analysis of the entropy (1.14), (2.9) and the entropy dissipation
(2.12) defined for a distribution F given by (2.4). For that purpose we need some results about convex
functions of measures. These questions have already been studied by R. Temam [36], F. Demangel &
R. Temam [9] and T. Hadhri [22]. We briefly show that their results extend to the more general functions
that are needed for our purposes.
We start with the following elementary result.

Lemma 4.1. There exists a constant C1 such that for every state F = g+G defined in (2.4) and for which
H(F ) and M((1 + k)F ) are well defined, the following inequalities hold

(4.1) M(k F ) ≤ C1(1 +M(g)−H(F ))

(4.2) |H(F )| ≤ C1M((1 + k)F ).

Proof of Lemma 4.1. We show only the proof of (4.1); the proof of (4.2) is similar. We first write

(4.3)
∫

R+

k g dk +
∫

R+

k dG(k) = H0(g)−H(F ),

where we have defined

(4.4) H0(g) =
∫

R+

[
(g + k2) ln(g + k2)− g ln g − k2 ln k2

]
dk.

We use, without proof, the following elementary estimates.

Lemma 4.2.

(i) For every s ∈ (0, 1) and k > 0

(4.5) 0 ≤ (s+ k2) ln(s+ k2)− k2 ln k2 ≤ s (1 + ln(1 + k2)).

(ii) There exists a positive constant C1 such that, for all s ≥ 1 and k > 1,

(4.6) 0 ≤ (s+ k2) ln(s+ k2)− s ln s− k2 ln k2 ≤ 2s (C1 + ln(1 + k2)).

(iii) For all δ ∈ (0, 1) there exists a positive constant Cδ such that, for all s ≥ 1 and k ∈ (0, 1]

(4.7) 0 ≤ (s+ k2) ln(s+ k2)− s ln s ≤ δs+ Cδ.
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Thanks to Lemma 4.2, we have:∫
R+

((g + k2) ln(g + k2)− k2 ln k2) dk −
∫

R+

g ln g 1{g≥1} dk =

=
∫

R+

((g + k2) ln(g + k2)− k2 ln k2 − g ln g)1{g≥1,k>1} dk

+
∫

R+

((g + k2) ln(g + k2)− k2 ln k2 − g ln g)1{g≥1,0<k≤1} dk

+
∫

R+

((g + k2) ln(g + k2)− k2 ln k2)1{0<g<1} dk

≤ 2
∫

R+

g (C1 + ln(1 + k2)) dk + δ

∫
R+

g dk + Cδ

−
∫ 1

0

k2 ln k2 dk +
∫

R+

g (1 + ln(1 + k2)) dk,

from where, for some positive constant C,

(4.8)
∫

R+

((g + k2) ln(g + k2)− k2 ln k2) dk −
∫

R+

g ln g 1{g≥1} dk ≤ C

∫
R+

g (1 + ln(1 + k2)) dk + C.

On the other hand, since s 7→ −s ln s is increasing over [0, e−1] and s 7→ − ln s is decreasing, we have

(4.9)

−
∫

R+

g ln g 1{0≤g≤1} dk = −
∫ 1

0

g ln g 1{0≤g≤1} dk

−
∫ ∞

1

g ln g 1{0≤g≤e−
√

k} dk −
∫ ∞

1

g ln g 1{e−
√

k≤g≤1} dk

≤ C1 +
∫ ∞

1

e−
√

k
√
k dk +

∫ ∞

1

g
√
k dk

≤ C1 + C2 +M(g) +
1
4

∫
R+

g k dk,

where C2 =
∫∞
1
e−

√
k
√
k dk. Using (4.3), (4.4), (4.8) and (4.9) we obtain (4.1)

In order to analyze the different terms of the entropy dissipation defined in (2.13) we first remark that
they are all defined by mean of the convex, proper lower semi continuous (l.s.c.) function j defined in (2.11).
As usual we denote j? its conjugate function, i.e.

j?(a) = sup
b∈R2

(a · b− j(b)).

Since j is homogeneous of degree 1, we have j? = IK , with IK(a) = 0 if a ∈ K and IK(a) = +∞ if a /∈ K,
where K is a closed, convex subset of R2. We can also verify, for example, that

(−∞, 0]× (−∞, 0] ⊂ K ⊂
(
R2

+\{(0, 0)}
)c
,

but in fact, we do not need in the sequel, the exact description of K. As a consequence, we have

j(b) = j??(b) = sup
a∈R2

(b · a− j?(a)) = sup
a∈K

b · a.
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We consider now F ∈M1(R+), F = g+G satisfying (2.4). Let us define the following measures of M1(R2
+):

(4.10)



A = (k2 + F ) e−k F ′, B = (k′2 + F ′) e−k′ F

A1 = (k2 + g) e−k g′, B1 = (k′2 + g′) e−k′ g

A2 = Ge−k g′, B2 = (k′2 + g′) e−k′ G

A3 = (k2 + g) e−k G′, B3 = G′ e−k′ g

A4 = GG′ e−k, B4 = GG′ e−k′ ,

in such a way that

(4.11) A = A1 +A2 +A3 +A4, B = B1 +B2 +B3 +B4.

Finally, for all A,B ∈M1(R2
+) we define

(4.12) JX(A,B) = sup
(u,v)∈K

< bA, u > + < bB, v >,

where
K := {(u, v) ∈ X2, (u(x), v(x)) ∈ K ∀x ∈ R2

+} and X = Cb(R2
+).

Theorem 4.3. Let F ∈M1(R+) be defined as in (2.4). With the preceding notation we have

(4.13) JX(A,B) = JX(A1, B1) + JX(A2, B2) + JX(A3, B3) + JX(A4, B4).

Moreover,

JX(A1, B1) = D1(g),(4.14)
JX(A2, B2) = JX(A3, B3) = D2(g,G),(4.15)
JX(A4, B4) = D3(G),(4.16)

and therefore

(4.17) JX(A,B) = D(F ).

Remark 4.4. We obtain that Theorem 4.3 also holds with X = Cc(R2
+) by standard troncature arguments.

Proof of Theorem 4.3. We divide the proof in three steps.

Step 1: proof of (4.13). By the definition (4.12), for all (u, v) ∈ K we have

< bA, u > + < bB, v > ≤ JX(A1, B1) + JX(A2, B2) + JX(A3, B3) + JX(A4, B4),

so that
JX(A,B) ≤ JX(A1, B1) + JX(A2, B2) + JX(A3, B3) + JX(A4, B4).

It is then enough to show the reverse inequality in order to prove (4.13). For any ε > 0 fixed, there exist
(ui, vi) ∈ K such that

(4.18) JX(Ai, Bi) ≤ < bAi, ui > + < bBi, vi > + ε for i = 1, 2, 3, 4.

Consider now a sequence (θn) ∈ X such that 0 ≤ θn ≤ 1, θn = 1 over suppG and θn → 0 a.e. in R2
+. Define

wn := (1− θn) (1− θn′)u1 + θn (1− θn′)u2 + (1− θn) θn′ u3 + θn θn′ u4,

zn := (1− θn) (1− θn′) v1 + θn (1− θn′) v2 + (1− θn) θn′ v3 + θn θn′ v4.
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Observe that, for every n, (wn, zn) ∈ K. Since (wn, zn) → (u1, v1) strongly in L1(R2
+), we have

(4.19) < bA1, wn > + < bB1, zn > → < bA1, u1 > + < bB1, v1 > .

Moreover,

< bA2, wn > + < bB2, zn >=< bA2, (1− θn′)u2 + θn′ u4 > + < bB2, (1− θn′) v2 + θn′ v4 >,

because Gθn = G and G (1− θn) = 0. Using the fact that ((1− θn′)u2 + θn′ u4, (1− θn′) v2 + θn′θn′ v4) →
(u2, v2) strongly in L1(R2

+) we obtain

(4.20) < bA2, wn > + < bB2, zn > → < bA2, u2 > + < bB2, v2 > .

We show in the same way:

(4.21) < bA3, wn > + < bB3, zn > → < bA3, u3 > + < bB3, v3 > .

Finally, for every n

(4.22) < bA4, wn > + < bB4, zn > = < bA4, u4 > + < bB4, v4 > .

We deduce from (4.18) and (4.19)–(4.22) that, for n sufficiently large, one has

< bA,wn > + < bB, zn > =
4∑

i=1

< bAi, wn > + < bBi, zn >

≥
4∑

i=1

< bAi, ui > + < bBi, vi > −4 ε ≥
4∑

i=1

JX(Ai, Bi)− 8 ε,

which implies

JX(A,B) ≥
4∑

i=1

JX(Ai, Bi)− 8 ε.

We let ε→ 0 to get the conclusion.

In the following steps we identify the different terms JX(Ai, Bi). Identity (4.14) is classical and we refer to
F. Demengel & R. Temam [9] for the proof which is anyway very similar to those we give here to identify
the other terms. We first need the following Lemma that will be proved later.

Lemma 4.5. Let φ : R2 × R2
+ → R ∪ {+∞} be such that:

- for every ξ ∈ R2, x 7→ φ(ξ, x) is measurable,

- for almost every x ∈ R2
+, ξ 7→ φ(ξ, x) is a proper, l.s.c., strictly convex function,

- there exists φ0 : R2 → R ∪ {+∞} such that φ0(ξ) → ∞ when ξ → ∞ and φ(ξ, x) ≥ φ0(ξ) for all ξ ∈ R2

and almost every x ∈ R2
+.

Then, for almost every x ∈ R2
+, there exists an unique ξx such that φ(ξx, x) ≤ φ(ξ, x) for every ξ ∈ R2, and

the map x 7→ ξx is measurable.

Moreover, if φ is l.s.c. in the two variables ξ and x, and if for every ξ ∈ R2, x 7→ φ(ξ, x) is continuous, then
x 7→ ξx is also continuous.

Finally, if x = (k, k′), k 7→ φ(ξ, k, k′) is continuous for every ξ ∈ R2 and almost every k′ ∈ R+ and
(ξ, k) 7→ φ(ξ, k, k′) is l.s.c. for almost every k′ ∈ R+ then k 7→ ξ(k,k′) is continuous for almost every k′ ∈ R+.
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Step 2: proof of (4.16). We first remark that

JX(A4, B4) = sup
(u,v)∈K

∫∫
R2

+

b (e−k u+ e−k′ v) dG(k)dG(k′)

≤
∫∫

R2
+

b j(e−k, e−k′) dG(k)dG(k′) = D4(G),

so that we only have to prove the reverse inequality. We denote ξ = (s, t) and x = (k, k′). Let us define

j?
n(ξ) = j?(ξ) +

|ξ|2

n
Hn(ξ) with Hn(ξ) =

{
1 if |ξ| ≤ n

∞ elsewhere.

Then, the function φ : R2 × R2
+ → R ∪ {+∞} defined by

φ(ξ, x) = j?
n(ξ)− a s− b t, a(x) = e−k, b(x) = e−k′ ,

is a l.s.c., proper convex function such that φ(ξ, x) = +∞ if |ξ| ≥ n. By Lemma 4.5, there exists an unique
ξx = (un(x), vn(x)) such that

(4.23) sup
ξ∈R2

a s+ b t− j?
n(ξ) ] = [ a un(x) + b vn(x)− j?

n(ξx) ].

Moreover, the map x 7→ ξx is continuous with respect to x, and

(un(x), vn(x)) ∈ K, |(un(x), vn(x))| ≤ n for every x ∈ R2
+.

We deduce that
jn(a, b) = a un + b vn − j?

n(un, vn) for every x ∈ R2
+,

since j? ?
n = jn. On the other hand, by definition of j?

n, we have jn ↗ j pointwise, and then by monotone
convergence

D4,n(G) :=
∫∫

R2
+

b jn(a, b) dG(k)dG(k′) ↗ D4(G).

Fix now ε > 0, choose n large enough, we have

D4(G)− ε ≤ D4,n(G) ≤
∫∫

R2
+

[
a un + b vn − j?

n(un, vn)
]
dG(k)dG(k′)

≤
∫∫

R2
+

[
a un + b vn − j?(un, vn)

]
dG(k)dG(k′) ≤ JX(A4, B4),

and we let ε→ 0 to conclude.

Step 3: proof of (4.15). By the definition of j? we have

JX(A2, B2) ≤ J(A2, B2) :=
∫∫

R2
+

b(k, k′)Gj((k′2 + g′) e−k′ , g′ e−k) dkdk′.

We only need to show the reverse inequality. We use again the notations of step 2 with a = (k′2 + g′) e−k′

and b = g′ e−k. By Lemma 4.5, there exists an unique ξx = (un(x), vn(x)) satisfying (4.23). This function is
continuous with respect to k for almost every k′, measurable in k′ for every k and satisfies

jn(a, b) = a un + b vn − j?
n(un, vn) for every k ∈ R+ and a.e. k′ ∈ R+.
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If

K′ :=

{
(u, v) : R2

+ → R2, bounded and measurable ; (u(x), v(x)) ∈ K ∀k ∈ R+,

a.e. k′ ∈ R+, k 7→ (u(k, k′), v(k, k′)) is continous for almost every k′ ∈ R+.

}
we obtain as in step 2

J(A2, B2) = sup
(u,v)∈K′

< A2, u > + < B2, v > .

Finally, (4.15) follows by a density argument: if ρε is an approximation of the identity, for every (u, v) ∈ K′,
the pair

uε(k, k′) = (u(k, ·) ∗k′ ρε)(k′), vε(k, k′) = (v(k, ·) ∗k′ ρε)(k′),

satisfies, (uε, vε) ∈ K (this is trivial for step functions and follows in general by density). Moreover, as ε→ 0,
< A2, uε >→< A2, u >, < B2, vε >→< B2, v > and therefore

J(A2, B2) = sup
(u,v)∈K′

< A2, u > + < B2, v >= sup
(u,v)∈K

< A2, u > + < B2, v > .

Proof of Lemma 4.5. For every n ∈ N?, we define the dyadic grid

Dn := ∆2
n, ∆n = {λ ∈ Q, |λ| ≤ 2n and 2n λ ∈ Z},

and
Rn

x = {s ∈ Dn, φ(s, x) = inf
s∈Dn

φ(s, x)}.

This is a non empty set with, at most, four elements (in a given horizontal, vertical or diagonal line of Dn

only two elements of Dn can belong to Rn
x because of the convexity of φ(., x)). We finally define rn

x as the
center of mass of the elements of Rn

x , so that we have built a measurable application rn : R2
+ → R2 such that

φ(rx, x) ≤ φ(r, x) ∀r ∈ Dn.

Moreover, for almost every x ∈ R2
+, the minimum ξx of φ(., x) exists, is unique and, if n is large enough,

satisfies |ξx| ≤ 2n. Therefore, by the construction above we deduce that

|ξx − rn
x | ≤ 2−n−1.

This shows that, for almost every x ∈ R2
+, ξx = lim

n→∞
rn
x , so that the map x 7→ ξx is measurable application

from R2
+ to R2.

Assume now that x 7→ φ(x, ξ) is continuous and that φ is l.s.c. with respect to the two variables x ∈ R2
+ and

ξ ∈ R2. Let (xn) ⊂ R2
+ be a sequence such that xn → x ∈ R2

+, denote ξn = ξxn
. Due to the condition of

uniform lower bound at infinity, we know that (ξn) is bounded. Therefore, there exists a subsequence, still
denoted by (ξn), and ξ̄ ∈ R2 such that ξn → ξ̄ and φ(ξ̄, x) ≥ φ(ξx, x). Let us prove that the equality holds.
If not, for some ε > 0 we have φ(ξ̄, x) ≥ φ(ξx, x) + 3 ε. Then, by lower semicontinuity in both variables we
have, for n large enough,

φ(ξn, xn) ≥ φ(ξx, x) + 2 ε.

By continuity in x we have, for n large enough:

φ(ξn, xn) ≥ φ(ξx, xn) + ε,

which contradicts the definition of ξn. We have thus proved that φ(ξ̄, x) = φ(ξx, x), which implies ξ̄ = ξx.
Therefore, the whole sequence ξn converges to ξ̄ and the map x 7→ ξx is continuous.
The last part of the Lemma is proved in a similar way; we have to consider the maps k 7→ φ(ξ, k, k′) which
are continuous for every ξ ∈ R2 and k′ ∈ B where B is a Borel set of R+ such that Bc has measure zero.
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We summarize the results obtained in this section in the following

Theorem 4.6.

(i) Let F be a non negative measure such that M(F ) <∞. Then, M(k F ) <∞ if and only if −H(F ) <∞.
Moreover, F 7→ −H(F ) is a continuous and convex function from E0 to R.

(ii) Assume that (Fn) is a bounded sequence of L∞(0, T ;M1(R+)) which satisfies

(4.24)
∫

R+

ψ dFn(k) −→
n→∞

∫
R+

ψ dF (k)

strongly in L1(0, T ) for any ψ ∈ Cc(R+). Then we have

(4.25)
∫ T

0

D(F ) dt ≤ lim inf
n→∞

∫ T

0

D(Fn) dt.

Proof of Theorem 4.6. The point (i) of the Theorem is an immediate consequence of Lemma 4.1. Let us
prove the point (ii) and assume that (4.24) holds. Then, there exists a subsequence (Fn′) of (Fn) such that
(with obvious notation)

(4.26) < bAn′(t), u > + < bBn′(t), v > −→
n′→∞

< bA(t), u > + < bB(t), v >

for any (u, v) ∈ K and for a.e. t ∈ [0, T ]. Moreover, Theorem 4.5 and the Remark 4.4 imply that for a.e.
t ∈ [0, T ] and every ε > 0 there exists (uε, vε) ∈ K such that

D(F (t, .)) = JX(A(t), B(t)) ≤ < bA(t), uε > + < bB(t), vε > + ε.

Therefore, from (4.26) we get

D(F (t, .)) ≤ lim inf
n′

< bAn′(t), uε > + < bBn′(t), vε > + ε ≤ lim inf
n′

D(Fn′(t, .)) + ε,

for any ε > 0, so that D(F (t, .)) ≤ lim inf D(Fn′(t, .)) for a.e. t ∈ [0, T ]. We conclude thanks to Fatou’s
Lemma.

5. Existence and Uniqueness: proofs of Theorems 3, 4 and 5.

This section is devoted to the existence and uniqueness of solutions to the Cauchy problem (2.2)−(2.7).

Proof of Theorem 3. We follow the proof of L. Arkeryd [3]. We divide the proof in two steps. In the first
we assume that the initial data is “well prepared”, i.e. satisfies a technical hypothesis. In the second step
we remove this unnecessary condition.

First Step: Assume Fin to be well prepared. Assume that the initial data Fin = gin +Gin ∈M1 satisfies

(5.1)

{
∃θ ∈ (0, 1), ∃(γ0,Γ0); 0 < γ0 ≤ Γ0 such that γ0 e

−k ≤ gin ≤ Γ0 e
−θ k ∀k > 0,

suppGin is a compact subset of R+.

Define the auxiliary space

(5.2) ET :=

{
F ∈ C([0, T ],M1); suppG(t) ⊂ suppGin, M(F (t)) = M(Fin),

γ(t) e−k ≤ g(k, t) ≤ Γ(t) e−θ k, G(t) ≥ 0, ∀t ∈ [0, T ], ∀k > 0

}
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where

(5.3)

 γ(t) := γin e
−C0 t, C0 := b? (M(k2 e−k) +m)

Γ(t) := Γin e
C0 t + C1 (eC0 t − 1), C1 := sup

k≥0
k2 e(θ−1) k.

It is a closed subset of C([0, T ];M1(R+)).

Given F ∈ ET let F̄ be the solution to

(5.4)


∂F̄

∂t
+ C0 F̄ = (k2 + F ) e−k L(F ) +

(
C0 − L((k2 + F ) e−k)

)
F,

F̄ (0, .) = Fin.

It is clear that F̄ = ḡ + Ḡ with ḡ ∈ C([0, T ], L1), Ḡ ∈ C([0, T ],M1), supp Ḡ ⊂ suppGin. If we integrate the
differential equation and the initial condition in (5.4), we obtain

d

dt
M(F̄ ) + C0M(F̄ ) = C0M(Fin), M(F̄ )(0) = M(Fin),

and so M(F̄ ) = M(Fin) for every t ∈ [0, T ]. Moreover, M(F ) = M(Fin) implies C0 − L((k2 + F ) e−k) ≥ 0
and

∂F̄

∂t
+ C0 F̄ ≥ 0.

It follows that Ḡ ≥ 0 and ḡ ≥ e−C0 t γin e
−k. Finally, if ū := supk≥0 ḡ e

θ k we obtain, by definition of Γ(t),
dū

dt
+ C0 ū ≤ C1 C0 + 2C0 Γ =

dΓ
dt

+ C0 Γ,

u(0) ≤ Γin = Γ(0),

which implies ū ≤ Γ for all t ∈ [0, T ]. This shows that F̄ ∈ ET .
On the other hand, for every F1, F2 ∈ ET , the corresponding solutions F̄1, F̄2 to (5.4) satisfy

d

dt
‖F̄2 − F̄1‖+ C0 ‖F̄2 − F̄1‖ ≤ 6C0 ‖F2 − F1‖,

where here and below ‖ ‖ = ‖ ‖M1 stands for the total variation norm in M1(R+). We get

(5.5) sup
[0,T ]

‖F̄2 − F̄1‖ ≤ 6
(
1− e−C0 T

)
sup
[0,T ]

‖F2 − F1‖.

This implies that for T small enough so that

(5.6) 6
(
1− e−C0 T ) < 1 ⇐⇒ T <

ln 6− ln 5
C0

,

the map F 7→ F̄ is a contraction from ET into itself. This map admits an unique fixed point that we denote
by F , which is the unique solution of (2.2) belonging to ET . Observe moreover that, by (5.6), the time

existence interval [0, T ] of this solution is such that T >
ln 6− ln 5

2C0
. Therefore, by iteration of this argument

we obtain a global solution F of (2.2) satisfying F (t) ∈ ET for all T ≥ 0. This solution is actually unique in
C([0,∞),M1). If our solution has the form F = g +G, then

e−k ≤ g + k2

g
e−k ≤ e−k + γ−1 k2.

21



Therefore the function h′(g, k) ≡ ln(
g + k2

g
e−k) satisfies

−1 ≤ h′(g, k)
k

≤ ln(e−k + γ−1k2)
k

∈ L∞(R+), Q±(F, F ) k ∈M1(R+).

and so
h′(g, k)
k

∈ L∞(R+).

Using that b ∈ L∞, it is then trivial to check, that

Q±1 (g,G)h′(g, k) ∈ L1 and Q±2 (g,G) k ∈M1.

Therefore, formulas (2.12), (2.13) and (2.14) hold actually (the calculation in Section 2 makes sense) true
for our solution F and

(5.7) H(F )(t2)−H(F )(t1) =
1
2

∫ t2

t1

D(F )(τ) dτ,

for every t1, t2 ≥ 0.

Second Step: General initial data. Suppose now that Fin ∈ E0, i.e. M(Fin) <∞ and −H(Fin) <∞. Define
Fn

in := gn
in +Gn

in where gn
in := gin ∧ (n e−k) + 1

n e
−k et Gn

in := Gin 1k∈[0,n]. By the first step, there exists a
solution Fn with initial datum Fn

in and M(Fn) = M(Fn
in) with

(5.8) H(Fn)(t2)−H(Fn)(t1) =
1
2

∫ t2

t1

D(Fn)(τ) dτ,

for every t1, t2 ≥ 0. Since Fn
in → Fin in E0, we have H(Fn

in) → H(Fin). Therefore, for n large enough,

H(Fn) ≥ H(Fin)− 1 and
∫ ∞

0

D(Fn) ds ≤ 2 (S(f0) + 1−H(Fin)).

By Lemma 4.1 we deduce that for some positive constant C3

M(k Fn) ≤ C3, ∀t > 0, ∀n.

Moreover,

∂

∂t

(
(1+k) (Fm−Fn)

)
=(1+k) (k2+Fm) e−k L(Fm−Fn) + (1+k) e−k (Fm−Fn)L(Fm)

+L((k2+Fm) e−k) (1+k) (Fm−Fn) + (1+k)Fm L((Fm−Fn) e−k),

so that
d

dt
‖(1 + k) (Fm − Fn)‖ ≤ C2

(
1 + ‖(1 + k)Fm‖

)
‖(1 + k) (Fm − Fn)‖

≤ C2

(
1 + C3

)
‖(1 + k) (Fm − Fn)‖.

Finally
‖(1 + k) (Fm − Fn)(t)‖ ≤ ‖(1 + k) (Fm

in − Fn
in)‖ eC2 (1+C3)t.

This shows that (Fn) is a Cauchy sequence in C([0,∞); E0) and thus converges to a limit F ∈ C([0,∞); E0).
This function F trivially satisfies M(F (t)) = M(Fin) for every t > 0.

On the other hand, by construction, for every n, the function Fn satisfies

(5.9)
∫

R+

Fn(t, k)φ(t, k) dk =
∫

R+

Fn
in(k)φ(0, k) dk +

∫ t

0

∫
R+

Q(Fn, Fn)φ(t, k) dkds,
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∀φ ∈ Cc([0,∞)× R+) and

(5.10) H(Fn(t2, .))−H(Fn(t1, .)) =
∫ t2

t1

D(Fn(s, .)) ds for all t2 ≥ t1 ≥ 0.

Passing to the limit in the equation (5.9) we deduce first that F satisfies (2.19) with initial datum Fin.
Moreover, by lower semi continuity, we deduce (2.20) from (5.10). As a consequence, F is an entropy
solution of (2.2)−(2.7).

Remark 5.1. When b satisfies (2.2) with η ∈ [0, 1/4) and Fin ∈ E2 η we can prove the existence of a solution
F ∈ C([0, T ]; Eη)∩L∞(0, T ; E2 η) of (2.5). Indeed, performing the same kind of computation that we present
in the proof of Theorem 4 we get the (formal) a priori bound

(5.11) sup
[0,T ]

Y2 η(F ) ≤ CT .

Then, we establish that the sequence we introduce in (5.12) satisfies (5.11) and we prove that (Fn) is a
Cauchy sequence in C([0, T ]; Eη).

Remark 5.2. Using Gronwall Lemma we establish without difficulty that (2.5) has at most one solution
in the class C([0, T ]; Eη) ∩ L∞(0, T ; E2 η) when η ∈ [0, 1/2). This provides uniqueness result under general
assumption (2.2) on the cross-section b in the following two cases:

- if η ∈ [0, 1/4) then there exists an unique solution to (2.5);
- if η ∈ [0, 1/2) and 0 ≤ gin ≤ g0 then there exists an unique solution g to (2.5) such that 0 ≤ g ≤ g0.

Proof of Theorem 4. We follow in this demonstration the arguments introducing in [32]. Let τ > 0 satisfy
θ + 3τ < min(θ′, η, 1− η), and assume that

Yθ′(F ) :=
∫

R+

eθ′ k d|F |(k) <∞.

We define Fn
in as in the previous step and consider the cross section bn(k, k′) := σ(k′ − k) eη kn eη k′n , kn =

k ∧ n = min(k, n). Let Fn ∈ C([0,∞),M1(R+)) be the solution to

(5.12)


∂Fn

∂t
= eη kn−k (k2 + Fn) `(eη kn Fn)− eη kn Fn `(eη kn−k (Fn + k2))

Fn(0, .) = Fn
in,

given by Step 1; with the notations `(φ) =
∫

R+

σφ′ dk′. We also may assume that

(5.13) Yθ′(Fn
in) ≤ Yθ′(Fin) + 1.

If we multiply equation (5.12) by e(θ+3τ) k and integrate with respect to k we obtain

d

dt
Yθ+3τ (Fn) ≤ σ? ‖k2 e(θ+3τ+η−1) k + Fn‖ ‖eη kn Fn‖ − σ?‖In(k) e(θ+3τ) k+η kn Fn‖,

where we have set
In(k) :=

∫
R+

k′2 eη k′n−k′ e−ν |k′−k|γ dk′.

It is clear that there exists a positive constant ατ such that In(k) ≥ ατ e
−τ k, so that

(5.14) ‖In(k) e(θ+3τ) k+η kn Fn‖ ≥ ατ ‖e(θ+2τ) k+η kn Fn‖.
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Moreover,

‖eη kn Fn‖ =
∫ R

0

eη kn Fn dk +
∫ ∞

R

eη kn+(θ+2τ) k e−(θ+2τ) kFn dk

≤
∫ R

0

eη kn Fn dk + e−(θ+2τ) R

∫ ∞

R

eη kn+(θ+2τ) k Fn dk,

so that, for every ε > 0 there exists Cε > 0 such that

(5.15) ‖eη kn Fn‖ ≤ ε ‖eη kn+(θ+2τ) k Fn‖+ CεM(Fn).

Therefore, for ε > 0 sufficiently small we obtain, for some positive constants C1 and C2

(5.16)
d

dt
Yθ+3τ (Fn) + C1 ‖e(θ+2τ) k+η kn Fn‖ ≤ C2.

We deduce

(5.17) sup
[0,T ]

‖e(θ+2τ) k+τ kn) Fn‖ ≤ CT and
∫ T

0

‖e(θ+2τ) k+η kn Fn‖ dt ≤
CT

C1
,

where CT := C2 T + Yθ+3τ (Fin) + 1.
We prove now that (Fn) is a Cauchy sequence in the Yθ+τ norm. For every m > n

∂

∂t
(Fm − Fn) = (k2 + Fm) e−k Ln(Fm)− Fm Ln((k2 + Fm) e−k)

− (k2 + Fn) e−k Ln(Fn) + Fn Ln((k2 + Fn) e−k)

+ (k2 + Fm) e−k Lm(Fm)− Fm Lm((k2 + Fm) e−k)

− (k2 + Fm) e−k Ln(Fm) + Fm Ln((k2 + Fm) e−k)

= (Fm − Fn) e−k Ln(Fm) + (k2 + Fn) e−k Ln(Fm − Fn)

+ (Fn − Fm)Ln((k2 + Fm) e−k) + Fn Ln((Fn − Fm) e−k)

+ (k2 + Fm) e−k (eη km − eη kn) `(eη km Fm) + (k2 + Fm) eη kn−k `((eη km − eη kn)Fm)

+ Fm eη km `((eη kn − eη km) (k2 + Fm) e−k) + Fm (eη kn − eη km) `(eη kn (k2 + Fm) e−k),

with the obvious notations Ln(φ) =
∫

R+

bn φ
′ dk′. Then, we compute

d

dt
Yθ+τ (Fm − Fn) ≤ σ? ‖Fm − Fn‖ ‖eη kn Fm‖+ σ? C1 ‖eη kn (Fm − Fn)‖

− σ? ατ ‖eθ k+η kn (Fm − Fn)‖+ σ? ‖e(θ+τ) k+η kn Fn‖ ‖Fm − Fn‖
+ σ? ‖(k2 + Fm) bm,n e

(θ+τ−1) k‖ ‖eη km Fm‖+ σ? C1 ‖bm,n Fm‖
+ σ? ‖bm,n (k2 + Fm) e−k‖ ‖Fm e(θ+τ) keηkm‖+ σ? C1 ‖bm,n e

(θ+τ) k Fm‖

where we have set C1 := Yθ+τ+η−1(k2)+M(Fin), which is finite since θ+2τ < 1−η, and bm,n := eη km−eη kn .
We estimate now each of the terms of the right hand side.

First, it is clear that

(5.18)

{
‖Fm − Fn‖ ‖eη kn Fm‖ ≤ ‖e(θ+τ) k(Fm − Fn)‖ ‖eη kn+(θ+2τ) k Fm‖
‖Fm − Fn‖ ‖e(θ+τ) k+η kn Fn‖ ≤ ‖e(θ+τ) k(Fm − Fn)‖ ‖eη kn+(θ+2τ) k Fn‖.

Using the same argument as in the proof of (5.15) it is clear that for every ε > 0 there exists a positive
constant Cε such that

(5.19) ‖eη kn (Fm − Fn)‖ ≤ ε ‖eθ k+η kn (Fm − Fn)‖+ Cε ‖(Fm − Fn) e(θ+τ) k‖
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We observe now that bm,n ≤ eη km+τ k e−τ n, so that

(5.20)


‖bm,n (k2 + Fm) e(θ+τ−1) k‖ ≤ e−τ n C1,

‖bm,n Fm‖ ≤ e−τ n ‖eη km+(θ+2τ) k Fm‖,
‖bm,n Fm e(θ+τ) k‖ ≤ e−τ n ‖eη km+(θ+2τ) k Fm‖.

From (5.18)−(5.20) we deduce

d

dt
Yθ+τ (Fm − Fn) ≤ gm,n

(
Yθ+τ (Fm − Fn) + e−τ n

)
,

where gn,m := C4 (1 + ‖Fne
(θ+2τ)k+ηkn‖+ ‖Fme

(θ+2τ) k+ηkm‖). Finally, since gn,m is bounded in L1([0, T ])
uniformly with respect to n and m, we obtain, by Gronwall’s lemma

sup
[0,T ]

Yθ+τ (Fm − Fn) −→
n,m→∞

0.

Therefore, (Fn) is a Cauchy sequence for the Yθ+τ norm and converges to a limit, say, F . We easily pass to
the limit in (5.12) and we get that F is an entropy solution to (2.2)–(2.7). Furthermore, passing to the limit
in (5.16), we get

d

dt
Yθ+2τ (F ) + C1 Yθ+2τ+η(F ) ≤ C2 on (0, T ),

where Ci do not depend on T . We deduce of this differential inequality that

sup
[0,∞)

Yθ+2τ (F ) <∞ and
∫ ∞

0

Yθ+2τ+η(F ) dt <∞.

Remark 5.3. In fact, when η < 1/2, we can also prove (see [32])

sup
[0,∞)

Yη(F ) <∞ if Yη(Fin) <∞.

Proof of Theorem 5. Assume now that

Fin = gin + αin δ0, with 0 ≤ gin ≤ g0 and αin ≥ 0.

First Step. Suppose first that b ∈ L∞ and define the space

FT := {F = g + α δ0, g ∈ C([0, T ];L1), 0 ≤ g ≤ g0, α ∈ C([0, T ]), α ≥ 0}.

For every F ∈ FT consider the solution F̄ ∈ C1([0, T ],M1) to the equation

(5.21)


∂F̄

∂t
+ F̄

[
L((k2 + F ) e−k)− e−k L(F )

]
= k2 e−k L(F ),

F̄ (0, .) = Fin.

We remark that g ≤ g0 and F = g + α δ0 implies that F ≤ (k2 + F ) e−k. Therefore,

L((k2 + F ) e−k)− e−k L(F ) ≥ L((k2 + F ) e−k)− L(F ) ≥ 0.

25



Multiplying the equation by −1F̄≤0, we get, after integration,

d

dt

∫
R+

F̄− dk ≤ 0,
∫

R+

F̄−(0, k) dk = 0.

This implies F̄− ≡ 0 and F̄ ≥ 0. We then rewrite equation (5.21)

∂F̄

∂t
= (k2 + F̄ ) e−k L(F )− (k2 + g0) e−k L(F ) + (k2 + g0) e−k L(F )

− g0 L((k2 + F ) e−k) + g0 L((k2 + F ) e−k)− F̄ L((k2 + F ) e−k),

so that

(5.22)
∂

∂t
(F̄ − g0) + (F̄ − g0)

[
L((k2 + F ) e−k)− e−k L(F )

]
= g0

[
L(F )− L((k2 + F ) e−k)

]
,

since (k2 + g0) e−k = g0. Multiplying (5.22) by 1F̄−g0≥0 we obtain

d

dt

∫
R+

(F̄ − g0)+ dk ≤ −
∫

R+

(F̄ − g0)+
[
L((k2 + F ) e−k)− e−k L(F )

]
dk

+
∫

R+

g0
[
L(F )− L((k2 + F ) e−k)

]
dk ≤ 0,

which implies ḡ ≤ g0 and ᾱ ≤ αin. This shows that the application F 7→ F̄ maps FT into itself. Moreover,
for F1, F2 ∈ FT we have

∂

∂t
(F̄2 − F̄1) + (F̄2 − F̄1)

[
L((k2 + F2) e−k)− e−k L(F2)

]
≤

≤ F̄1

[
L((F1 − F2) e−k)− e−k L(F1 − F2)

]
+ k2 e−k L(F2 − F1).

Therefore,
d

dt
‖F̄2 − F̄1‖M1 ≤ b? (2M(g0 + αin δ0) +M(k2 e−k)) ‖F2 − F1‖M1 .

By the Banach contraction Theorem the map F 7→ F̄ has an unique fixed point in FT .

Second Step. Assume now that the cross section b satisfies the condition 0 ≤ b e−η k e−η k′ ∈ L∞ with
η ∈ [0, 1). Let us define

bn(k) = b(k) ∧ n.

From the first step we know that for any n ≥ 0, there exists a solution Fn ∈ FT to

∂Fn

∂t
=

∫
R+

bn(k, k′)
(
F ′n (k2 + Fn) e−k − Fn (k′2 + F ′n) e−k′

)
,

with initial datum Fin. Moreover Fn satisfies

0 ≤ Fn ≤ g0 + αin δ0 and
∫ T

0

D(Fn) dt ≤ H(Bm)−H(Fin).

We can pass to the limit n → ∞ using the fact that F 7→ D(F ) is s.c.i. and that the averages in k of Fn

strongly converge. We obtain a solution F which satisfies

0 ≤ F ≤ g0 + αin δ0 and
∫ T

0

D(F ) dt ≤ H(Bm)−H(Fin),
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but we do not know whether the entropy is not decreasing or F is unique.

6. Asymptotic behavior when t→∞.

We consider in this section the solution F (t) of (2.2) given by Theorem 3, 4 or 5 and associated to the
initial datum Fin with M(Fin) = m > 0. For a given sequence (tn) such that tn ↗ +∞ and T > 0 we set

Fn(t, k) := F (t+ tn, k).

We first prove, following the arguments introduced by Arkeryd [3], [4], that Fn weakly converges to the
appropriate Bose-Einstein state (the one corresponding to the mass of the initial datum). It is clear that Fn

is still a solution of (2.2) and satisfies

(6.1)


M(Fn(t, .)) = m ∀t ∈ [0, T ], ∀n ≥ 0,
−H(Fn(t, .)) ≤ −H(Fin) ∀t ∈ [0, T ], ∀n ≥ 0,∫ T

0

D(Fn(s, .)) ds −→
n→∞

0.

Moreover if η ∈ (0, 1), there exists 0 < θ < min(η, 1− η) and Cθ such that

sup
[0,T ]

Yθ(Fn) ≤ Cθ,

∫ T

0

Yη+θ(Fn) dt ≤ Cθ.

Lemma 6.1 The sequence (Fn) with Fn = gn +Gn satisfies

Gn → 0 in
(
Cc([0, T ]× R+)

)′ and Fn ⇀ Bm weakly in
(
Cc([0, T ]× R+)

)′
.

Proof of Lemma 6.1. By (6.1) we know that, for a subsequence (tn′) there exists F1,∞, F2,∞ ∈ L∞(0, T ;M1)
such that

(6.2) gn′ ⇀ F1,∞ and Gn′ ⇀ F2,∞ weakly in
(
Cc([0, T ]× R+)

)′
,

with M(F1,∞) +M(F2,∞) = m for almost every t ∈ [0, T ]. Moreover, by lower semi continuity∫ T

0

D3(F2,∞) dt ≤ lim inf
n′→∞

∫ T

0

D3(Gn′) dt = 0,

which implies that F2,∞ is supported in a single point. By Theorem 3,∫ T

0

D(F1,∞ + F2,∞) dt ≤ lim inf
n′→∞

∫ T

0

D(Fn′) dt = 0.

Therefore, F1,∞+F2,∞ = Bm for almost every t ∈ [0, T ]. This implies suppF2,∞ ⊂ {0} andM(Gn′ 1[k0,∞)) →
0 for all k0 > 0. Moreover, since the limit is uniquely identified, the limits are taken by the whole sequences
(Fn) and (Gn).

Proof of Theorem 6. The first part of (2.25) has been proved in Lemma 6.1. In order to prove that
gn(t, ·) → gµ in L1([k0,∞)) for every k0 > 0, we follow the approach of P.-L. Lions [26]. We claim first that

(6.3)
Q+(gn, gn)
k2 + gn

= e−k L(gn) −→
n→∞

e−k L(gµ) strongly in L1([0, T ]× R+).

27



To show this we consider the system (2.3) and multiply the first equation by any function χ ∈ L∞(R+) to
obtain

d

dt

∫
R+

gn χdk =< Q1(gn, Gn), χ >,

which is bounded in L∞(0, T ). This implies that < gn, χ >→< gµ, χ > strongly in L1(0, T ). Moreover, if the
solution is given by Theorem 3, M(kgn) is bounded in L1(0, T ). If it is given by Theorem 4 or 5, Yθ+2τ (gn)
is bounded in L1(0, T ). Therefore,

‖e−k(L(gn)− L(gµ))‖L1((0,T )×R+) =
∫ T

0

∫
R+

e−k
∣∣∣∫

R+

b(k, k′)(gn(k′, t)− gµ(k′)) dk′
∣∣∣ dtdk

≤
∫ T

0

∫
R+

e−k
∣∣∣∫ R

0

b(k, k′)(gn(k′, t)− gµ(k′)) dk′
∣∣∣ dtdk

+ σ?

∫ T

0

∫
R+

e−k+ηk

∫ ∞

R

eηk′
∣∣gn(k′, t)− gµ(k′)

∣∣ dk′dtdk ≡ E1 + E2.

Observe that

(6.4)
E2 ≤ σ? e−(θ+2τ)R

∫ T

0

∫
R+

e−k+ηk

∫ ∞

R

eηk′+(θ+2τ)k′
∣∣gn(k′, t))− gµ(k′)

∣∣ dk′dtdk
≤ σ? e−(θ+2τ)R

∫
R+

e−k+ηk
(
Yθ+2τ+η(gn) + Yθ+2τ+η(gµ)

)
dk.

On the other hand, since (gn) is bounded in L1((0, T )×R+) we deduce from the above remark that for every
R > 0 and almost every k > 0,

(6.5) lim
n→∞

∫ T

0

|
∫ R

0

b(k, k′) (gn(k′, t)− gµ(k′)) dk′| dtdk = 0.

We deduce (6.3) from (6.4) and (6.5).

The same arguments prove that

(6.6) L((k2 + gn) e−k) −→
n→∞

L((k2 + gµ) e−k) strongly in L1([0, T ]× R+).

On the other hand, we use the elementary inequality

|b− a| ≤ ε b+
1

ln (1 + ε)
(a− b) (ln a− ln b) ∀a, b, ε > 0,

with a = (k2 + g) e−k g′ and b = (k′2 + g′) e−k′ = g. We obtain, for all ε > 0,

(6.7)

∥∥∥∥e−k L(gn)− gn

k2 + gn
L((k2 + gn) e−k)

∥∥∥∥
L1(R+)

≤ ε
∥∥e−k L(gn)

∥∥
L1(R+)

+
1

ln (1 + ε)
D(gn) a.e. t ∈ [0, T ].

Since e−k L(gn) converges in L1(R+) its L1-norm is bounded. Since D(gn) → 0 as n→∞ , we deduce from
(6.7) that

(6.8) lim
n→∞

|| gn

k2 + gn
L((k2 + gn) e−k)− e−k L(gµ)||L1((0,T )×R+) = 0.
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From (6.6) and (6.8) we deduce that there exists a subsequence (gn′) such that
gn′

k2 + gn′
L((k2 + gn′) e−k) → e−k L(gµ) for almost every k > 0, t ∈ (0, T ),

L((k2 + gn′) e−k) → L((k2 + gµ) e−k) for almost every k > 0, t ∈ (0, T ).

Therefore
gn′

k2 + gn′
→ e−k L(gµ)

L((k2 + gµ) e−k)

and
gn′ → gµ for almost every k > 0, t ∈ (0, T ).

In order to conclude we use the following classical lemma, which we state below and prove at the end of the
section.

Lemma 6.2. Let (X, d) be a metric space with its Borel sets. Assume that (un) is a sequence of L1

functions such that for a given u ∈ L1 one has

un ≥ 0, un → u a.e., un ⇀ u σ(M1, Cc).

Therefore, un → u strongly in L1
loc.

Using Lemma 6.2, we have thus proved that, for every k0 > 0

gn → gµ in L1((0, T )× [k0,∞).

We deduce that there exists t0 ∈ [0, T ] such that

gn(t0, .) → gµ in L1([k0,∞)).

Moreover,
Q1(gn, Gn) → 0 in L1((0, T )× [k0,∞)).

Therefore,

sup
[0,T ]

∥∥gn(t, .)− gµ

∥∥
L1([k0,∞))

≤
∥∥gn(t0, .)− gµ

∥∥
L1([k0,∞))

+ sup
[0,T ]

∥∥gn(t, .)− gn(t0, .)
∥∥

L1([k0,∞))

≤
∥∥gn(t0, .)− gµ

∥∥
L1([k0,∞))

+
∫ T

0

∥∥Q1(gn, Gn)(s, .)
∥∥

L1([k0,∞))
ds→ 0,

which ends the proof of Theorem 6.

Proof of the Lemma 6.2. Remark that −a ≤ b − |b − a| ≤ a for all a, b ≥ 0 so that we can apply the
dominated convergence theorem with vn := un− |un− u|. We deduce that vn → u strongly in L1(X). Then
for any given χ ∈ D(X), say 0 ≤ χ ≤ 1, one has∫

X

(
un − |un − u|

)
χ→

∫
X

uχ and
∫

X

un χ→
∫

X

uχ,

so that ∫
X

|un − u|χ→ 0.

7. The Kompaneets Limit: proof of Theorem 7.
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This section is devoted to the proof of Theorem 7. Let (gε) be the sequence of solutions of equation
(2.2) defined in the hypothesis of Theorem 7. It satisfies then the following properties

(7.1) 0 ≤ gε ≤ g0 ∀t ≥ 0, ∀ε > 0,

and

(7.2)
∫ T

0

Dε(gε) dt ≤ C0 := H(Bm)−H(Fin) ∀ε > 0, ∀T ≥ 0,

where

(7.3) Dε(g) =
∫∫

R2
+

b(k, k′)
1
ε2
σε(k′ − k) j

(
g′ (k2 + g) e−k, g (k′2 + g′) e−k′

)
dkdk′.

Finally we define

Qε(h, h) =
∫∫

R2
+

bε(k, k′)(h′ (k2 + h) e−k − h (k′2 + h′) e−k′)dk′.

Theorem 7 is now a direct consequence of the two following results.

Proposition 7.1. Let (hε) be a sequence such that 0 ≤ hε ≤ g0, hε → h in L2([0, T ] × R+), and define
f = k−2h. Then

(7.4)
∫

R+

Qε(hε, hε)ψ dk −→
ε→0

< Q0(f, f), ψ >,

for all ψ ∈ D((0, T )× R+).

Remark 7.1. With the notations and assumption of Proposition 7.1, and if αε is a bounded sequence of
R+, we can prove, following the same demonstration that we will present, that∫

R+

Qε(hε + αε δ0, hε + αε δ0)ψ dk −→
ε→0

< Q0(f, f), ψ > for all ψ ∈ D((0, T )× R+).

Therefore, combining this result with Proposition 7.2 we should be able to prove that when Fin = gin+αin δ0
with 0 ≤ gin ≤ g0, the corresponding solution Fε = gε +αε δ0 to the Boltzmann equation (2.5) satisfies (with
notations of Theorem 7) gε → g = k2 f strongly in C([0, T ];L2(R+)) and αε → αin strongly in C([0, T ]),
where f is the solution to the Kompaneets equation (1.14) corresponding to the initial datum fin = gin/k

2.

Proposition 7.2. The sequence of solutions (gε) defined in the statement of Theorem 7 which satisfy (7.1)
and (7.2) is relatively strongly compact in Lp([0, T ]× R+), for every 1 ≤ p <∞.

Remark 7.2. The fact that it is possible to get compactness or regularity using the dissipation of entropy
term is reminiscent in the literature on (classical) Boltzmann equation. It have first be obtained by P.-L.
Lions [27] and C. Villani [40] in the case of Boltzmann equation without cut-off, see also [1] for more precise
result. More recently, and independently to our work, R. Alexandre and C. Villani [2] have obtained a similar
result to Proposition 7.2, but in a much more complicated situation: they prove strong compactness for a
sequence of solutions to the Boltzmann equation with cut-off in the grazing collision asymptotic.

Proof of Proposition 7.1. We define
fε = k−2 hε,

and write∫ T

0

∫
R+

Qε(hε, hε)ψ dkdt =
1
2

∫ T

0

∫∫
R2

+

b k2 k′2 σε fε
′ fε

e−k − e−k′

ε

ψ − ψ′

ε
dk′dkdt (= Iε

1)

− 1
2

∫ T

0

∫∫
R2

+

b k2 k′2
σε

ε
fε (e−k + e−k′)

ψ − ψ′

ε
dk′dkdt (= Iε

2)

+
1
2

∫ T

0

∫∫
R2

+

b k2 k′2 σε fε
e−k − e−k′

ε

ψ − ψ′

ε
dk′dkdt (= Iε

3).
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In order to pass to the limit ε→ 0 in Iε
1 and Iε

3 , we remark that for all k > 0, k′ > 0, since ψ ∈ D((0, T )×R+),

(
e−k − e−k′

)
(ψ − ψ′) = −e−k (k′ − k)2

∂ψ

∂k
(k) + R2

+

(
(k′ − k)3

)
,

from where

(7.5)

Iε
3 =

1
2

∫ T

0

∫
R+

k2 fε e−k
{∫

R+

k′2 b(k, k′)σε

(k′ − k

ε

)2 [
−∂ψ
∂k

(k) + εO
(k′ − k

ε

) ]
dk′

}
dkdt

−→
ε→0

−Σ
2

∫ T

0

∫
R+

b(k, k) k4 f e−k ∂ψ

∂k
dkdt = −

∫ T

0

∫
R+

k4 α(k) f
∂ψ

∂k
dkdt,

since for all k > 0 we have ∫
R+

k′2 b(k, k′)
(k′ − k

ε

)2

σε dk
′ −→

ε→0
Σ k2 b(k, k).

In the same way, we write

Iε
1 =

1
2

∫ T

0

∫
R+

k2 f e−k
{∫

R+

k′2 b(k, k′) fε′σε

(k′ − k

ε

)2 [
−∂ψ
∂k

(k) + εO
(k′ − k

ε

) ]
dk′

}
dkdt,

and, since ∫
R+

k′2 b(k, k′) fε′
(k′ − k

ε

)2

σε dk
′ ⇀ Σ k2 b(k, k) f

weakly in L2
loc([0, T ]× R+), we obtain

(7.6) Iε
1 −→

ε→0
−

∫ T

0

∫
R+

k4 α(k) f2 ∂ψ

∂k
dkdt.

The limit of Iε
2 is slightly more delicate. First of all, since the support of σ is contained in [−2, 2],

(7.7)
−2 Iε

2 =
∫ T

0

∫ 3 ε

0

∫ 5 ε

0

b k2 k′2
σε

ε
fε (e−k + e−k′)

ψ − ψ′

ε
dk′dkdt (= Iε

4)

+
∫ T

0

∫ ∞

3 ε

∫ ∞

ε

b k2 k′2
σε

ε
fε (e−k + e−k′)

ψ − ψ′

ε
dk′dkdt (= Iε

5).

We first remark that Iε
4 → 0 since

(7.8) |I4| ≤ 5 ε ‖b‖L∞ 2
∥∥∥∂ψ
∂k

∥∥∥
L∞

∫ T

0

∫ 1

0

hε

(∫
R

|k − k′|
ε

σε(k′ − k) dk′
)
dkdt −→

ε→0
0.

Concerning Iε
5 , observe that

k′2 = k2 + 2 k (k′ − k) +O
(
(k′ − k)2

)
,

e−k + e−k′ = e−k (2− (k′ − k) +O
(
(k′ − k)2

)
, ψ′ − ψ = (k′ − k)

∂ψ

∂k
+

(k′ − k)2

2
∂2ψ

∂k2
+O

(
(k′ − k)3

)
.

Under the current assumptions on b we also have

b(k, k′) = b(k, k) + (k′ − k)
∫ 1

0

∂b

∂k′
(k, θk′ + (1− θ)k)dθ.
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We deduce then by straightforward computation

Iε
5 =

∫ T

0

∫ ∞

2 ε

fε k2 e−k
{
b(k, k) k2 ∂

2ψ

∂k2
+

(
−b(k, k) k2 + b(k, k) 4 k)

∂ψ

∂k

}
×

∫
R

(k′ − k

ε

)2

σε dk
′ dkdt

+
∫ T

0

∫ ∞

2 ε

∫
R
fε k2 e−k k2 ∂ψ

∂k

(k′ − k

ε

)2

σε

∫ 1

0

∂b

∂k′
(k, θk′ + (1− θ)k)dθ dk′ dkdt

−
∫ T

0

∫ ∞

2 ε

b(k, k) k4 fεe−k ∂ψ

∂k

(∫
R

k′ − k

ε2
σε dk

′
)
dkdt + O(ε).

Since σ is even, the third term in the right hand side is zero. The second term satisfies

lim
ε→0

∫ T

0

∫ ∞

2 ε

∫
R
fε k2 e−k k2 ∂ψ

∂k

(k′ − k

ε

)2

σε

∫ 1

0

∂b

∂k′
(k, θk′ + (1− θ)k) dθ dk′ dkdt =

= lim
ε→0

∫ T

0

∫ ∞

2 ε

∫ 1

0

fε k2 e−k k2 ∂ψ

∂k

∫
R

(k′ − k

ε

)2

σε
∂b

∂k′
(k, θk′ + (1− θ)k) dk′ dθ dkdt

= 2Σ
∫ T

0

∫
R+

f e−k k4 ∂ψ

∂k
b′(k, k) dk dt,

where b′(k, k) = 1/2(d/dk)(b(k, k)). Then, since

d

dk
(k4 α) = Σ k4 b′(k, k) e−k − k4 α+ 4 k3 α,

we obtain

(7.9) Iε
5 −→

ε→0
2

∫ T

0

∫
R+

f
( d

dk
(k4 α)

∂ψ

∂k
+ k4 α

∂2ψ

∂k2

)
dkdt.

Finally, by (7.5)−(7.9) we have

lim
ε→0

∫ T

0

∫
R+

Qε(fε, fε)ψ dkdt =
∫ T

0

∫
R+

{
f
∂

∂k

(
k4 α

∂ψ

∂k

)
− (f + f2) k4 α

∂ψ

∂k

}
dkdt

=: < Q0(f, f), ψ > .

Proof of the Proposition 7.2. We proceed in three steps.

Step 1. We remark that (t − s) (ln t − ln s) ≥ 4 (
√
t −

√
s)2. This follows from the fact that the function

φ(u) = (u − 1) ln u − 4 (
√
u − 1)2 is strictly convex, φ′(1) = 0 and φ(u) ≥ φ(1) = 0. It follows from (7.2)

that

(7.10)

∫ T

0

∫∫
R2

+

b(k, k′)
1
ε2
σε(k′ − k)

×
(√

g′ε (k2 + gε) e−k −
√
gε (k′2 + g′ε) e−k′

)2

dk′dkdt ≤
∫ T

0

Dε(gε)dt ≤ C0,

and then, if we define

vε :=

√
gε ek

k2 + gε
,
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(7.11) 0 ≤ vε ≤ min

ek/2,

√
ek

ek − 1

 ,

and we have

(7.12)
∫ T

0

∫∫
R2

+

β(k, k′)σε

(v′ε − vε

ε

)2

dk′dkdt ≤ C0,

where β(k, k′) := b(k, k′) k2 e−k k′2 e−k′ .

We fix now k0 ∈ (0, 1), χ ∈ D(R+) such that χ = 1 on [k0, k
−1
0 ], 0 ≤ χ ≤ 1, suppχ ⊂ [k0/2, 2 k−1

0 ] and define
uε := χvε. It is clear that (uε) is bounded in L∞ and that for all ε > 0, suppuε ⊂ [k0/2, 2 k−1

0 ]. Moreover∫ T

0

∫∫
R2

+

β(k, k′)σε

(u′ε − uε

ε

)2

dk′dkdt ≤

≤
∫ T

0

∫∫
R2

+

β(k, k′)σε

{
χ′2

(v′ε − vε

ε

)2

+ v2
ε

(χ′ − χ

ε

)2}
dk′dkdt,

and since σε (χ′ − χ) = 0 if (k, k′) /∈ K0 := [k0/4, 1 + 2/k0]2 for every ε < k0/7, we deduce∫ T

0

∫∫
R2

+

β(k, k′)σε v
2
ε

(χ′ − χ

ε

)2

dk′dkdt ≤ ‖β ek‖L∞(K0) Σ
∥∥∥∥∂ψ∂k

∥∥∥∥
L∞

=: Cχ <∞.

On the other hand, for every η > 0 consider the function

(7.13) ρη(z) =
1
η
ρ
(z
η

)
and ρ(z) =

1
2

1[−1,1](z),

define β? := inf
K0
β > 0 and

(7.14) ∆η(u) :=
∫ T

0

∫∫
R2

(
u(t, x− z)− u(t, x)

)2
ρη(z) dzdx.

Finally for every ε ∈ (0, k0/8) one has

(7.15)

∆ε(uε) ≤ 1
σ?

∫ T

0

∫∫
R2
σε(z)

(
uε(x− z)− uε(x)

)2
dxdzdt

≤ 1
σ? β?

∫ T

0

∫∫
R2

+

β(k, k′)σε(k′ − k)
(
u′ε − u′ε

)2
dk′dkdt ≤ C1 ε

2,

where β? := inf
K0
β > 0, σ? is a positive constant such that σ ≥ σ? ρ and C1 := (C0 + Cχ)/(σ? β?).

Step 2. This step is dedicated in proving how one can deduce from (7.15) that the sequence (uε) is strongly
relatively compact in the x variable. More precisely, we prove the following.

Proposition 7.3. Let (uε) be a sequence of L2([0, T ]× R+) satisfying

∆ε(uε) ≤ C1 ε
2.

Therefore, for every α > 0 there exists hα > 0 such that∫ T

0

∫
R
|uε(t, x+ h)− uε(t, x)|2 dxdt ≤ α, for every |h| ≤ hα.
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We need the following two lemmas, which we state below and prove at the end of the section.

Lemma 7.1. For every u ∈ L2([0, T ]× R) and all η > 0 we have

(7.16) ‖ρη ∗x u− u‖2L2 ≤ ∆η(u).

Lemma 7.2. For every u ∈ L2([0, T ]× R) and all 0 < ε ≤ η/2

(7.17) ∆η(u) ≤ 64
(η
ε

)2

∆ε(u).

Proof Proposition 7.3. Fix α > 0 and write

uε = ρη ∗ uε + (uε − ρη ∗ uε).

Fix now η > 0 small enough to have, by Lemma 7.1, Lemma 7.2 and (7.15)

(7.18) ‖uε − ρη ∗x uε‖2L2 ≤ ∆η(uε) ≤ C2

(η
ε

)2

∆ε(uε) ≤ C1 C2 η
2 ≤ α/3.

We now observe that for every η > 0 fixed, the set (ρη ∗x uε)ε>0 is strongly relatively compact in the x
variable, i.e. given α > 0, there exists hα > 0 such that for every |h| ≤ hα

(7.19)
∫ T

0

∫
R
|(ρη ∗ uε)(t, x+ h)− (ρη ∗ uε)(t, x)|2 dxdt ≤ α/3.

Proposition 7.3 follows from (7.18) and (7.19).

Step 3 of the proof of Proposition 7.2. In this step we deduce from Proposition 7.3 that (gε) satisfies the
Frechet-Kolmogorov criteria in L2((0, T )×R+), and we start proving that it satisfies the following property
:

(7.20) ∀α ∈ (0, 1) ∃hα > 0 s.t.
∫ T

0

∫
Ωα

|gε(t, x+ h)− gε(t, x)|2 dxdt ≤ α for all |h| ≤ hα,

where we have set Ωα = [α, 1/α]. Let define wε and zε by

zε :=
gε

k2
and wε := v2

ε e
−k =

zε

1 + zε
.

We prove successively that (7.20) is satisfied by vε, wε, zε and then finally gε. It is quite easy to show that
(7.20) holds for vε using Proposition 7.3, and then for wε. We only show that if we already know that wε

satisfies (7.20) then so do zε since it is the only delicate step.
Remark that

zε =
wε

1− wε
so that

1
1− wε

= 1 + zε.

So that
τhwε

1− τhwε
− wε

1− wε
=

[ 1
1− τhwε

+
wε

(1− τhwε) (1− wε)

]
(τhwε − wε)

=
[
(1 + τhzε) + wε (1 + τhzε) (1 + zε)

]
(τhwε − wε).

34



Now, by (7.1), zε ≤ g0/k
2, and therefore∫ T

0

∫
Ωα

|zε(t, x+ h)− zε(t, x)|2 dxdt ≤ 2
(
1 +

∥∥ g0
k2

∥∥
L∞(Ωα)

)2
∫ T

0

∫
Ωα

|wε(t, x+ h)− wε(t, x)|2 dxdt,

and this ends the proof of (7.20) for zε. It is now easy to deduce that (gε) also satisfies (7.20). Finally, in
order to prove that it is relatively compact in Lp([0, T ]×R+) for every 1 ≤ p <∞ we argue as follows. For
every ψ ∈ D(R?

+),
d

dt

∫
R+

gε ψ dk =
∫

R+

Qε(gε, gε)ψ dkdt.

By (7.5), (7.6), (7.8) and (7.9) we deduce

(7.21)
d

dt

∫
R+

gε ψ dk ≤ C4

(
‖∂ψ
∂k
‖L∞ + ‖∂

2ψ

∂k2
‖L∞ + ‖∂

3ψ

∂k3
‖L∞

)
.

By (7.20) and (7.21), the family {∫
R+

gε(k′) ρη(k − k′)ψ(k′) dk′
}
{ε>0}

belongs to a compact subset of L∞((0, T )× Ωα) ∀T, α > 0. Now writing

gε = gε ∗x ρη + (gε − gε ∗x ρη),

we see that (gε) is relatively compact in L2((0, T )×Ωα) ∀α > 0 and therefore in Lp((0, T )×R+) ∀p ∈ [1,∞)
thanks to (7.1).

Proof of Lemma 7.1. For every u ∈ L2([0, T ]×R) and all η > 0 we have, for almost every x ∈ R and t ∈ [0, T ]

|u ∗x ρη(t, x)− u(t, x) |2 =
(∫

R
(u(t, x− z)− u(t, x)) ρη(z) dz

)2

≤
∫

R
(u(t, x− z)− u(t, x))2 ρη(z) dz,

by Cauchy-Schwartz; (7.16) follows.

Proof of Lemma 7.2. We start proving (7.17) when η = n ε, n ∈ N? and ε ≤ η/2. We have in that case

(7.22)

∆η(u) =
1

2n ε

∫ T

0

∫
R

[∫ n ε

−n ε

(u(t, x− z)− u(t, x))2 dz
]
dxdt

=
1

2n ε

n−1∑
k=−n

∫ T

0

∫
R

∫ ε

0

(u(t, x− (z + k ε))− u(t, x))2 dzdxdt,

and we are going to prove that for every k ∈ {−n, ..., n− 1} one has

(7.23)
∫

R

∫ ε

0

(u(x− z − k ε)− u(x))2 dzdx ≤ (2n)2
∫

R

∫ ε

−ε

(u(x− z)− u(x))2 dxdz.

We only treat in detail the case k = −n since the other cases can be handled in the same way. For the sake
of brevity we do not write the dependence on the t variable. We start writing

u(x+ n ε− z)− u(x) = (u(x+ n ε− z)− u(x+ (n− 1) ε))
+ (u(x+ (n− 1) ε)− u(x+ (n− 1) ε− z))

+ (u(x+ (n− 1) ε− z)− u(x+ (n− 2) ε)) + ...

... + (u(x+ ε)− u(x+ ε− z)) + (u(x+ ε− z)− u(x)),
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and, since the number of terms in the right hand side is 2 (n− 1),

(u(x+ n ε− z)− u(x))2 ≤ 2n
[
(u(x+ n ε− z)− u(x+ (n− 1) ε))2

+ (u(x+ (n− 1) ε)− u(x+ (n− 1) ε− z))2

+ (u(x+ (n− 1) ε− z)− u(x+ (n− 2) ε))2 + ...

... + (u(x+ ε)− u(x+ ε− z))2 + (u(x+ ε− z)− u(x))2
]
.

Now, it follows from a change of variables that for every ` ∈ Z∫
R

∫ ε

0

(u(x+ ` ε)− u(x+ ` ε− z))2 dzdx =
∫

R

∫ ε

0

(u(y − z)− u(y))2 dzdy,∫
R

∫ ε

0

(u(x+ ` ε− z)− u(x+ (`− 1) ε))2 dzdx =
∫

R

∫ 0

−ε

(u(y − θ)− u(y))2 dθdy.

We finally obtain (7.23). Then, by (7.22),

∆n ε(u) ≤ 4n2 ∆ε(u) ≡ 4(
η

ε
)2∆ε(u).

Consider now the general case, 0 < ε ≤ η. Let n ∈ N such that n ε ≤ η < (n+ 1) ε. Since n ε ≥ η − ε ≥ η/2
and (n+ 1) ε ≤ η + ε ≤ 2 η we have

∆η(u) ≤ 1
2n ε

∫
R

∫ (n+1) ε

−(n+1) ε

(u(x− z)− u(x))2 dzdx =
(n+ 1)
n

4(n+1) ε(u),

by the previous case, and moreover

(n+ 1)
n

4(n+1) ε(u) ≤ 4
(n+ 1)3

n
∆ε(u) ≤ 64

(η
ε

)2 ∆ε(u).
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