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Abstract - We prove global stability results of DiPerna-Lions renormalized solutions to the
initial boundary value problem for kinetic equations. The (possibly nonlinear) boundary con-
ditions are completely or partially diffuse, which include the so-called Maxwell boundary con-
dition, and we prove that it is realized (it is not relaxed!). The techniques are illustrated
with the Fokker-Planck-Boltzmann equation and with the Vlasov-Poisson-Fokker-Planck sys-
tem, but can be readily extended to the Boltzmann equation and to the Vlasov-Poisson system
when linear and diffuse boundary condition are imposed. The proof uses some trace theorems of
the kind previously introduced by the author for the Vlasov equations, new results concerning
weak-weak convergence (the renormalized convergence and the biting L1 weak convergence),
as well as the Darroès-Guiraud information in a crucial way.

Keywords - Vlasov-Poisson, Boltzmann and Fokker-Planck equations, Maxwell or diffuse re-
flection, nonlinear gas-surface reflection laws, Darrozès-Guiraud information, trace Theorems,
renomalized convergence, Biting Lemma, Dunford-Pettis Lemma.

1. Introduction and main results.

This paper deals with the initial boundary value problem for kinetic equations with general
diffuse boundary conditions, which include the so-called Maxwell boundary condition. We
treat in detail the Fokker-Planck equation type, in particular the Fokker-Planck-Boltzmann
equation (FPB in short) and the Vlasov-Poisson-Fokker-Planck system (VPFP in short) for
which nonlinear boundary condition can be considered. Our results extend easily to the Vlasov
equation type such as the Boltzmann equation and the Vlasov-Poisson system (VP in short)
with linear boundary conditions. In fact, our result can be extend to very general kinetic
equation.

Our main result is a stability result from which one can deduce, in a very classical way, an
existence result. Precisely, considering a sequence fn of DiPerna-Lions renormalized solutions
to our equation which satisfies a physical a priori estimate and the boundary conditions, we
prove that, extracting a subsequence if necessary, fn converges to a function f which is also a
renormalized solution of the equation and satisfies the exact boundary condition.

The difficulty here is to pass to the limit at the boundary and to prove that the exact
boundary condition holds (until now only relaxed boundary condition had been obtained).
This difficulty is due to the very poor a priori estimate on the trace sequence (γfn). The
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a priori estimate that one can derive on (γfn) does not guarantee the L1-weak convergence
and worse, in the VP and VPFP cases, no L1 a priori bound can be get. In this work, we
are not able to prove any L1-weak convergence for the sequence (γfn), but, and this is our
main result, we are able to prove a weak L1-weak convergence in the velocity variable for the
sequence (γ+fn). This gives a strong enough information in order to pass to the limit at the
boundary.

The aim of this work is thus to introduce some efficient tools to deal with this boundary
value problem and to establish the above convergence. On one hand we develop a trace theory
adapted to the weak regularity of the force field and to the renormalized formulation of the
equation in the continuity of the previous works of the author [53], [54]. This allows us to give
sense to the trace function and thus to the boundary condition. As a back product, we obtain
the weak-weak convergence of the sequence (γfn). Our second tool is precisely the weak-weak
type convergence (namely the biting L1-weak convergence and the renormalized convergence)
that we introduce in a L0 setting. We say weak-weak convergence in order to express the
fact that they are extremely weak sense of convergence: weaker, for instance, to the L1-weak
convergence and to the a.e. convergence, which moreover are not associated to any topogical
structure. We establish new Functional Analysis results. In particular, our main convergence
result mentioned above follows from this analysis, using in a crucial way the Darrozès-Guiraud
information.

Let Ω be a smooth, open and bounded subset of RN and set O = Ω×RN . We consider a
gas confined in Ω ⊂ RN . The state of the gas is given by the distribution function f(t, x, ξ) ≥ 0
of particles, which at time t ≥ 0 and at the position x ∈ Ω, move with the velocity ξ ∈ RN .
The evolution of f is governed by a kinetic equation that we complement with boundary
conditions which take into account how the particles are reflected by the wall. We assume that
the boundary ∂Ω is sufficiently smooth; the exact regularity that we need is that there exists
a vector field n ∈

(
W 1,∞(Ω)

)N such that n(x) coincides with the outward unit normal vector
at x ∈ ∂Ω. We denote by dσx the Lebesgue surface measure on ∂Ω and by dλi the measure
on (0, T )× Σ± defined by dλi = |n(x) · ξ|i dξdσxdt, where the incoming/outgoing sets Σ± are
defined by

(1.1) Σ± = {(x, ξ) ∈ Σ;±n(x) · ξ > 0} with Σ = ∂Ω× RN .

The boundary conditions take then the form of a balance between the values of the traces
γ±f := 1Σ± γf of f on these sets. In order to describe the interaction between particles and
wall, J.-C. Maxwell [52] proposed in 1879 the following phenomenological law which splits into
a local reflection and a diffuse (or Maxwell) reflection

(1.2) γ−f = R(γ+f) = (1− α)Lγ+f + αD γ+f on (0,∞)× Σ−.

Here α ∈ [0, 1] is a constant, called the accommodation coefficient, the local reflection operator
L is defined by

(Lφ) (t, x, ξ) = φ(t, x,Rx ξ),

with Rx ξ = −ξ (inverse reflection) or Rx ξ = ξ− 2 (ξ ·n(x))n(x) (specular reflection), and the
diffuse reflection operator D is

(Dφ)(t, x, ξ) = M(ξ) φ̃(t, x), φ̃(t, x) =
∫

ξ·n(x)>0

φ(t, x, ξ) ξ · n(x) dξ,
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with M the normalized Maxwellian with temperature (of the wall) Θ > 0

(1.3) M(ξ) =
1

(2π)
N−1

2 Θ
N+1

2

e−
|ξ|2
2 Θ so that

∫
ξ·n>0

M(ξ)n · ξ dξ = 1 ∀n ∈ SN−1.

This was the only model for the gas/surface interaction that appeared in the literature before
the late 1960s. In order to describe with more accuracy the interaction between molecules
and wall, other models have been proposed [26], [27], [49]. The boundary condition is then
written γ−f = R (γ+f) where R is a general integral operator satisfying the so-called non-
negativity, normalization and reciprocity conditions, see [30] and Remark 4.2. We do not
know if our analysis can be adapted to this general kernel; however, the boundary condition
can be generalized in an other direction [31], [12], and we will assume that the following non
linear boundary condition holds

(1.4) Rφ = (1− α̃)Lφ+ α̃D φ, α̃ = α(φ̃),

where α : R → R is continuous and satisfies 0 < ᾱ ≤ α(s) ≤ 1 for all s ∈ R.
We focus our analysis on the two following situations. In the FPB model, the evolution

of f is governed by the equation

(1.5)
∂f

∂t
+ ξ · ∇xf − ν∆ξf = Q(f, f) in (0,∞)×O,

whereQ(f, f) is the quadratic Boltzmann collision operator describing the collision interactions
of the particles by binary elastic shock and ν > 0. We refer to [26] and [35], and the reference
therein, for a physical description of the Boltzmann collision operator and of the FPB model.

In the VPFP model, the evolution of f is governed by the system of equations

(1.6)
∂f

∂t
+ ξ · ∇xf − divξ

(
(∇xVf + λ ξ) f

)
−ν∆ξf = 0 in (0,∞)×O,

where λ ∈ R, ν > 0 and −∇xVf is a self-induced force (or mean field) which describes the fact
that particles interact by the way of the two-body long range Coulomb force, so that Vf is the
solution of the Poisson equation with the Dirichlet condition

(1.7) −∆Vf = ρf =
∫

R3
f(t, x, ξ) dξ on (0,∞)× Ω, Vf = 0 on (0,∞)× ∂Ω.

We refer to S. Chandreasekahar [20] for a physical presentation. Finally, we complement these
equations with a given initial condition

(1.8) f(0, .) = f0 ≥ 0 on O.

We have in mind to adapt the DiPerna-Lions stability theory to the boundary value
problem (1.2) or (1.4). In order to do so we have to collect a priori bounds that one can
obtain for this kind of problem. We study them in the simplest case: we assume that f is
governed by the free transport equation

(1.9)
∂f

∂t
+ ξ · ∇xf = 0 in (0,∞)×O.
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In this case, one can verify, using the Darrozès-Guiraud inequality [39], that

(1.10)
d

dt

∫ ∫
O
j(f/M)M dξdx = −

∫ ∫
Σ

j(γf/M)M ξ · n(x) dξdσx ≤ 0,

for any given j : R → R convex. This gives the only Lyapunov functionals which are compatible
with the diffuse boundary condition (1.2) and (1.4). Since we want to deal with the Vlasov-
Poisson term or the Boltzmann collision term, the chose of j reduces to j(s) = s and j(s) =
h(s) := s log s. Taking j(s) = s we get the conservation of mass, and taking j(s) = h(s) we
obtain, coming back to (1.10),

(1.11)

∫
RN

h(γf/M)M ξ · n(x) dξ =
∫
{ξ·n(x)>0}

[
h(γ+ f/M)− h(Rγ+ f/M)

]
M ξ · n(x) dξ

≥
∫
{ξ·n(x)>0}

[
h(γ+ f/M)− (1− α̃)h(Lγ+ f/M)− α̃ h(Dγ+ f/M)

]
M ξ · n(x) dξ

≥ ᾱ E(
γ+f

M
)

with

E
( φ
M

)
=

∫
ξ·n(x)>0

[
h(φ/M)− h(Dφ/M)

]
dµx(ξ)

=
∫

ξ·n(x)>0

h
( φ
M

)
dµx − h

(∫
ξ·n(x)>0

φ

M
dµx

)
,

where dµx(ξ) := M ξ · n(x) dξ is a measure of probability for any x ∈ ∂Ω, thanks to (1.3).
We obviously deduce, by the Jensen inequality, that E is a nonnegative functional. When we
assume that f0 satisfies the following natural bounds

(1.12)
∫ ∫

O
f0

(
1 + |ξ|2 + | log f0|

)
dξdx <∞,

i.e. f0 has finite mass, energy and entropy, we obtain from (1.10) and (1.11) that, at least
formally, a solution of (1.9)-(1.4)-(1.8) satisfies the ”physical” a priori bound

(1.13) sup
[0,T ]

∫ ∫
O
f

(
1 + |ξ|2 + | log f |

)
dξdx+

∫ T

0

∫
∂Ω

E
(γ+f

M

)
dσxdt ≤ CT .

Of course when we consider the FPB model or the VPFP model the a priori bound is
slightly different (additional terms in (1.13) appear due to the additional terms in (1.5) and
(1.6)), but it is fundamentally of the same kind. In particular, we do not have any global a
priori estimate on the Lp norm with p > 1. This is an important difference with what happen
for the VP and VPFP models written in the all space or provided with purely locally boundary
conditions (α ≡ 0). This implies that we must deal with the weaker sense of solution, namely
the renormalized DiPerna-Lions solutions.

Our main result is the following stability or compactness result.
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Theorem 1.1. Let (fn) be a sequence of renormalized solutions to the FPB equation (or to
the VPFP system) which satisfies the physical bound (uniformly in n) and such that the trace
γ+fn satisfies the boundary condition (1.4) and the uniform bound

(1.14)
∫ T

0

∫
∂Ω

E
(γ+fn

M

)
dσxdt ≤ CT ∀n ≥ 0.

Then, up to the extraction of a subsequence, fn → f strongly in Lp(0, T ;L1(O)) for all T > 0
and p ∈ [1,∞), and f is a renormalized solution to the FPB equation (or to the VPFP
system) which satisfies the physical a priori estimate. Furthermore, for all ε > 0 there exists
a measurable set A ⊂ (0, T )× ∂Ω such that meas ((0, T )× ∂Ω \A) < ε and

(1.15) γ+fn −→ γ+f stongly in L1(A× RN , dλ1).

As a consequence we can pass to the limit in the boundary condition (1.4), so that the trace
condition holds.

This result can be adapted to the VP system and to the Boltzmann equation with the linear
boundary conditions (1.2).
Theorem 1.2. Let (fn) be a sequence of renormalized solutions to the Boltzmann equation
(or to the VP system) which satisfies the physical bound (uniformly in n) and such the trace
γ+fn satisfies the boundary condition (1.2) and the uniform bound (1.14). Then, up to the
extraction of a subsequence, fn ⇀ f weakly in Lp(0, T ;L1(O)) for all T > 0 and p ∈ [1,∞),
and f is a renormalized solution to the Boltzmann equation (or to the VP system) which
satisfies the physical a priori estimate. Furthermore, for all ε > 0 there exists a measurable
set A ⊂ (0, T )× ∂Ω such that meas ((0, T )× ∂Ω \A) < ε and

(1.16) γ+fn ⇀ γ+f weakly in L1(A× RN , dλ1).

Then, we can pass to the limit in the linear boundary condition (1.2), so that the trace condition
holds.

We do not present the proof of this second stability result since the arguments are similar
to the ones we use in the proof of Theorem 1.1. We just have to combine the trace Theorem
and arguments introduced in [54] with the weak convergence result presented in the section 2
(Corollary 2.4). As a standard consequence of Theorem 1.1 and 1.2, we obtain the existence
of a global renormalized solution to the boundary value problem for initial data satisfying the
natural ”physical” bound.

The Boltzmann equation and the FPB equation for initial data satisfying the natural
bound (1.12) was first studied by R. DiPerna and P.-L. Lions [35,37,38] who proved stability and
existence results for weak global solutions in the case of the entire space (Ω = RN ). Afterwards,
the corresponding boundary value problem with (partially) diffuse boundary conditions has
been extensively studied in the case of the Boltzmann model [45], [4], [5], [6], [7], [28], [41], [46],
[29], [54]. It has been proved, in the partial absorption case γ−f = θ Rγ+f with θ ∈ [0, 1) and
in the completely local reflection case (i.e. (1.2) holds with α ≡ 0), that there exists a global
renormalized solution. But in the most interesting physical case (when θ ≡ 1 and α ∈ (0, 1]),
it has only been proved that the boundary condition (1.2) hold in the relaxed form

(1.17) γ−f ≥ R(γ+f) on (0,∞)× Σ−.
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With regard to existence results for the initial value problem for the VPFP system set in
the whole space, we refer to [14], [15], [16], [19], [22], [23], [34], [57], [64] and [24], [59]. The
initial boundary value problem has been addressed by [13], [21]. We also refer to [6] [3], [11],
[44], [56], [66] for the initial boundary value problem for the VP system and to [56] for the
corresponding stationary problem. We emphasize that in all these works only local reflection
or prescribed incoming data are treated, and to our knowledge, there is no result concerning
the diffuse boundary condition for the VP system or for the VPFP system.

We also mention that there is a great deal of information for the boundary value problem
in an abstract setting in [65], [43] with possibly non linear conditions [10], [55]. Finally, the
Boltzmann equation with non linear boundary conditions has been treated in the setting of a
strong but non global solution framework in [42].

Before explaining the main ideas behind our stability result, Theorem 1.1, we want to
emphasize that a first fundamental question is the sense we give to the trace. The so-called
trace problem has been studied by [9], [32], [2], [62], [43], [18] for the Vlasov equation with a
Lipschitz force field and extended to the Vlasov-Fokker-Planck equation in [21]. In the case
of the VP and the VPFP systems, the a priori estimate on the force field does not guarantee
Lipschitz regularity but only Sobolev regularity. We follow the trace theory developed in [53],
[54] for the solutions of the Vlasov equation with a force field in Sobolev space that we extend
to the solutions of the Vlasov-Fokker-Planck equation. The trace is then defined by a Green
formula written on the renormalized equation.

The main difficulty when we deal with this problem is the lack of a good a priori bound
on the trace. Additionally to the a priori bound of the Darozès-Guiraud information (1.13),
we can prove an L1 a priori bound in the case of the Boltzmann equation and an L1/2 a priori
bound in the case of the VP system: in both cases, we do not have an a priori information
on the local equi-integrability of the trace. In other words, considering a sequence of solution
(fn) satisfying the uniform natural bound, we can not say that γfn is weakly compact in
L1((0, T )×Σ, dλ1). In order to prove (1.16), which clearly implies that γ̃+fn ⇀ γ̃+f , and then
allows to pass to the limit in the boundary condition (at least in the linear case), we proceed in
several steps. First, we deduce from our trace theory that γfn converges, up to the extraction
of a subsequence, to γf in the renormalized sense. Let emphasize that this convergence yet
ensures that the relaxed boundary condition (1.17) holds. Using the boundary condition and
the a priori boundary estimate we deduce that (γ̃+fn) converges in the renormalized sense
and that its limit belongs to L0. Next, we extend the so-called Biting Lemma to this context,
namely we prove that γ̃+fn also converges in the biting L1-weak sense. Last, using the uniform
boundedness of the Darozès-Guiraud information and some convexity argument we prove a
kind of Dunford-Pettis Lemma in the ξ variable; namely, we obtain the weak L1 convergence
in the ξ variable of (γ+fn), which precisely states (1.16). Finally, for Fokker-Planck type
equations we propagate the a.e. convergence in the interior due to the hypoelipticity of the
equation up to the outgoing boundary set. We obtain that γ+fn → γ+f a.e. and then deduce
(1.15).

The paper is organized as follows. In section 2, we introduce the weak-weak convergence
and prove the main compactness results concerning renomalized convergence and the biting
L1-weak convergence. In section 3, we state some trace theorems and prove a general stability
result in the interior and ”up to the boundary” for sequence of solutions to the Vlasov-Fokker-
Planck equation. In section 4, we state the a priori estimates, make precise the notion of
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solution we deal with, and then prove Theorem 1.1. Section 5 is devoted to the proof of
the trace theorems. In the Appendix we state and prove some elementary results concerning
renormalized convergence which are used through away this paper.

2. From weak-weak convergence to weak convergence.

In this section we present some Functional Analysis results which make possible to gain
L1-weak convergence in the ξ variable from weak-weak convergence and boundedness of the
Darrozès-Guiraud information. The first notion of weak-weak convergence we deal with is
the biting L1-weak convergence. It seems to have been introduced by Kadec and Pelzyński
[48] and rediscovered and developed in a L1 and bounded measure framework by Chacon and
Rosenthal in the end of the 1970’s, see [40], [17]. Let us first recall the definition of biting
L1-weak convergence that we extend to an L0 framework.

In the following Y stands for a closed and σ-compact topological space, i.e. Y = ∪kYk

where (Yk) is an increasing sequence of compact sets, that we provide with its σ-ring of Borel
sets and with ν a Borel measure. We denote by L(Y ) the space of all measurable functions
φ : Y → R̄ and by L0(Y ) the subset of all measurable and almost everywhere finite functions.
In order to simplify the exposition, we are only concerned with nonnegative functions of L and
L0. Thus, in this section, we also denote by L and L0 the cone of nonnegative functions in
these spaces, and we do not anymore specify it.

Definition 2.1. We say that a sequence (ψn) of L(Y ) converges in the biting L1-weak sense
to ψ ∈ L(Y ), and we write ψn

b
⇀ψ, if for every k ∈ N we can find A = Ak ⊂ Yk in such a

way that (Ak) is increasing, ν(Yk\Ak) < 1/k, ψn ∈ L1(A) for all n large enough and ψn ⇀ ψ
weakly in L1(A). In particular, this implies ψ ∈ L0(Y ).

The fundamental result concerning the biting L1-weak convergence is the so-called Biting
Lemma that we recall know. We refer to [25], [8], [17], [40] and [48] for a proof of this Lemma.
We also refer to [1] and [33] for other developments related to the biting L1-weak convergence.
Extension of this theory to multivalued function has been done by Balder, Castaing, Valadier
and others; we refer to [58] for precise references.

Theorem 2.1 (Biting Lemma). Let (ψn) be a bounded sequence of L1(Y ). Then, there
exists ψ ∈ L1(Y ) and a subsequence (ψn′) such that ψn′

b
⇀ψ in the biting L1-weak sense.

Our first result is a kind of intermediate result between the Biting Lemma and the
Dunford-Pettis Lemma. More precisely, we prove a Dunford-Pettis Lemma in the ξ vari-
able for bounded sequences (φn) of L1 which has a Darrozès-Guiraud information uniformly
(in n) bounded. It is based on the Biting Lemma and a convexity argument.

Theorem 2.2. Let consider j : R+ → R a convex function of class C2(0,∞) such that
j(s)/s → +∞ when s ↗ +∞ and such that the application J from (R+)2 to R defined by
J(s, t) = (j(t)− j(s)) (t− s) is convex, ω a non negative function of RN such that ω(ξ) →∞
when |ξ| → ∞ and, for any y ∈ Y , a probability measure µy on RN . Assume that (φn) is a
sequence of non negative measurable functions on Y × RN such that

(2.1)
∫

Y

∫
RN

[
φn(y, ξ) (1 + ω(ξ)) + E(φn(y, .))

]
dµy(ξ) dν(y) ≤ C1 <∞,
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where E = Ej,y is the non negative Jensen information functional defined by

(2.2) E(φ) =
∫

RN

j(φ) dµy − j
(∫

RN

φdµy

)
if 0 ≤ φ ∈ L1(RN , dµy).

Then, there exists φ ∈ L1(Y ×RN ) and a subsequence (φn′) such that for every k ∈ N we can
find A = Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

(2.3) φn′ ⇀ φ weakly in L1(A× RN ).

Furthermore, E is a convex and weakly L1 l.s.c. functional, and thus

(2.4)
∫

Y

∫
RN

[
φ(y, ξ) (1 + ω(ξ)) + E(φ(y, .))

]
dµy(ξ) dν(y) ≤ C1.

As we say in the introduction, in general, the sequence of traces (γfn) does not satisfy a
L1 a priori bound, but only an L0 a priori bound (for instance L1/2), so that Theorem 2.2 can
not be applied (with φn = γfn). Of course, the L0 a priori bound is a very weak information
which do not imply compactness of any kind for the sequence (γfn). But, as we shall see in the
next section, we have one more key information about our sequence of traces (γfn) due to the
fact that precisely γfn is the trace of a solution fn of a VFP equation and that (fn) converges.
This additional information is that (γfn) converges in the renormalized sense, another weak
weak convergence, that we define now.
Definition 2.2. We define TM (s) := s ∧M = min(s,M), for any M ∈ N. We say that a
sequence (φn) of L(Y ) converges in the renormalized sense to φ ∈ L(Y ), and we write φn

r
⇀φ

or φ = r-limφn, if there exists a sequence (T̄M ) of L∞(Y ) such that

(2.5) TM (φn) ⇀ T̄M σ(L∞(Y ), L1(Y )) ? and T̄M ↗ φ a.e. in Y.

We refer to the Appendix for the definitions of the lim inf and lim sup in the renormalized
sense as well as basic properties concerning the renormalized convergence.

Combining renormalized convergence with the L0 a priori bound, we can prove that
γfn

r
⇀γf with γf ∈ L0, and we can then deduce γ̃+fn

r
⇀ψ with ψ ∈ L0. Our second Functional

Analysis result gives a extension of the Biting Lemma in the L0 framework.

Theorem 2.3. Let (ψn) be a sequence of L0(Y ) and assume that ψn
r
⇀ψ in the renormalized

sense with ψ ∈ L0(Y ). Then, there exists a subsequence (ψn′) which converges in the biting
L1-weak sense to ψ and moreover (ψn) is asymptotically bounded in L0(Y ): for any k ∈ N
there exists δk : R+ → R+ such that δk(M) ↘ 0 when M ↗ +∞ and for any M there is nk,M

such that

(2.6) meas {y ∈ Yk, ψn(y) ≥M} ≤ δk(M) ∀k ∈ N, ∀n ≥ nk,M .

Remark 2.1. In the L1 framework, J. Ball & F. Murat [8] have already proved that the biting
L1-weak convergence implies, up to the extraction of a subsequence, the convergence in the
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renormalized sense. Their proof readily extends to the L0 framework. As a consequence,
combining Ball & Murat’s result with Theorem 2.3 we get the equivalence between the biting
L1-weak convergence and the renormalized convergence. More precisely, considering a sequence
(ψn) of L(Y ), it is equivalent to say that, up to the extraction of a subsequence,

ψn
b
⇀ψ in the biting L1-weak sense (so that ψ ∈ L0(Y )),(2.7)

ψn
r
⇀ψ in the renormalised sense and ψ ∈ L0(Y ).(2.8)

Furthermore, in both cases, the full sequence (ψn) is asymptotically bounded in L0.
Remark 2.2. Let emphasize that, if (ψn) satisfies (2.8) then there is a subsequence (ψn′)
which biting L1-weak converges to ψ, but in general, the full sequence do not biting L1-weak
converges. A similarly situation holds for the implication (2.7) to (2.8) and we refer to the
Appendix for details.

Let also emphasize that the hypothesis ψ ∈ L0(Y ) in (2.8) is fundamental, since for
example, the sequence (ψn) defined by ψn ≡ +∞ ∀n does converge in the renormalized sense
to ψ ≡ +∞, but (ψn) does not converge (and none of its subsequence!) in the biting L1-weak
sense.

Let emphasize once more, that the (asymptotically) boundedness of (ψn) in L0 does
not guarantee that (ψn) satisfies, up to the extraction of a subsequence, (2.7) or (2.8). An
instructive example is the following: we define u(y) = 1/y on Y = [0, 1] that we extend by
1-periodicity to R, and we set ψn(y) = u(n y) for y ∈ Y . Therefore, (ψn) is obviously bounded
in La(Y ) for all a ∈ [0, 1) and converges to ψ ≡ +∞ in the renormalized sense.

A simple consequence of the two preceding results is the following.

Corollary 2.4. Consider a function m : RN → R and a family of measures d$y on RN such
that

(2.9)
∫

RN

m(ξ) d$y(ξ) = 1,
∫

RN

m(ξ)1/4 d$y(ξ) ≤ C4 ∀y and m(0) ≥ m(ξ) −→
|ξ|→∞

0.

Let (φn) be a sequence of L0(Y × RN ) which satisfies

(2.10)
∫

Y

E
(φn(y, .)

m(.)

)
dν(y) ≤ C1 <∞,

with E just like in Theorem 2.2 with dµy(ξ) = m(ξ) d$y(ξ), and assume that

(2.11) ψn(y) :=
∫

RN

φn(y, ξ) d$y(ξ) r
⇀ ψ with ψ ∈ L0(Y ).

Then, there exists φ ∈ L1(Y × RN , dνd$) and a subsequence (φn′) such that for every k ∈ N
we can find A = Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

(2.12) φn′ ⇀ φ weakly in L1(A× RN , dνd$).

As a consequence ψ =
∫

RN

φd$ and E(φ/m) ∈ L1(Y ).
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Proof of Theorem 2.2. From bound (2.1) and the Biting Lemma we know that there exists
a subsequence n′ such that for every k ∈ N we can find a Borel set A = Ak ⊂ Yk with
ν(Yk\A) < 1/k such that

(2.13)
∫

RN

φn′ dµy(ξ) weakly converges in L1(A).

Thanks to the Dunford Pettis Lemma and (2.13) there is a convex function Φ = Φk such
that Φ(s)/s→∞ when s→∞ and

(2.14)
∫

A

Φ
(∫

RN

φn′ dµy(ξ)
)
dν(y) ≤ C2 = C2(k) <∞.

Furthermore, we can assume that Φ(0) = 0, Φ′ = am in [m,m + 1] with j′(s0) ≤ am ↗ +∞,
where s0 ∈ N? is such that j(s0) ≥ 0 and j′(s0) ≥ 0.

Then we define Ψ = Ψk by Ψ(s) = j(s) for s ∈ [0, s0] and by induction on m ∈ N, we
consider tm such that j′(tm) = am − Ψ′(sm) + j′(sm) and we set sm+1 = [tm] + 1, Ψ′′ := j′′

on [sm, tm] and Ψ′′ := 0 on [tm, sm+1] so that tm ≥ sm ≥ m and Ψ′(sm+1) ≥ am ≥ Ψ′(sm).
Therefore, we have built a convex function Ψ such that the function s 7→ j(s)−Ψ(s) is convex,
Ψ(s)/s↗∞ since Ψ′(s) ↗∞, and Ψ ≤ Φ since Ψ′ ≤ Φ′, so that

(2.15)
∫

A

Ψ
(∫

RN

φn′ dµ
)
dν ≤ C2.

The Jensen inequality, written for the function s 7→ j(s)−Ψ(s), gives∫
RN

Ψ(φn′) dµ−Ψ
(∫

RN

φn′ dµ
)
≤ E(φn′),

and combining it with (2.1) and (2.15) we get∫∫
A×RN

Ψ(φn′) dµ dν ≤ C1 + C2,

and thus

(2.16)

∫∫
A×RN

Ψ+(φn′) dµy dν ≤ C1 + C2 +
∫∫

A×RN

Ψ−(φn′) dµy dν

≤ C3(k) := C1 + C2 + ν(A) sup j− <∞.

Therefore, thanks to estimates (2.1) and (2.16) and thanks to the Dunford-Pettis Lemma we
get that (φn′) falls in a relatively weakly compact set of L1(Ak × RN ) for any k ∈ N. We
conclude, by a diagonal process, that there is a function φ ∈ L1(Y × RN ) and a subsequence
(φn′′) which converges to φ in the sense stated in Theorem 2.2.

In order to prove that E is a convex functional, we begin by assuming that j ∈ C1(R+,R),
so that E is Gâteaux differentiable. By definition of the G-differential

∇E(φ) · ψ := lim
t→0

E(φ+ t ψ)− E(φ)
t

=
∫

RN

j′(φ)ψ dµ− j′
(∫

RN

φdµ
) ∫

RN

ψ dµ,
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for any 0 ≤ φ, ψ ∈ L∞(RN ). Therefore, by the Jensen inequality, we have

< ∇E(ψ)−∇E(φ), ψ − φ > =
∫

RN

J(φ, ψ) dµ− J
(∫

RN

φdµ,

∫
RN

ψ dµ
)
≥ 0,

so that ∇E is monotone and thus E is convex on L∞(RN ): for any 0 ≤ φ, ψ ∈ L∞(RN ) and
any t ∈ (0, 1)

(2.17) E(φ+ (1− t)ψ) ≤ t E(φ) + (1− t) E(ψ).

When j /∈ C1(R+,R) we define, for any ε > 0, the function jε(s) = j(s + ε) − j(ε) which
belongs to C1(R+,R), and the above computations for the associated functional Eε are correct,
so that inequality (2.17) holds for E replaced by Eε. Then, writing inequality (2.17) for Eε and
fixed 0 ≤ φ, ψ ∈ L∞(RN ), t ∈ (0, 1) and passing to the limit ε → 0 we obtain that E is
convex on L∞(RN ). Now let 0 ≤ φ, ψ ∈ L1(RN ), t ∈ (0, 1). If j(φ) or j(ψ) /∈ L1(RN ) then
t E(φ)+(1− t) E(ψ) = +∞ and the convex inequality (2.17) obviously holds. In the other case,
we have j(φ), j(ψ) ∈ L1(RN ), we can choose two sequences 0 ≤ (φn), (ψn) of L∞(RN ) such
that φn ↗ φ and ψn ↗ ψ a.e., and passing to the limit ε→ 0 in the convex inequality (2.17)
written for φε and ψε we get, by the Lebesgue convergence dominated Theorem and the Fatou
Lemma, ∫

RN

j(t φ+ (1− t)ψ) ≤ lim inf
ε→0

∫
RN

j(t φε + (1− t)ψε)

≤ t E(φ) + (1− t) E(ψ) + j
(∫

RN

t φ+ (1− t)ψ
)
,

which exactly means that E is a convex functional in L1(RN ). Finally, if 0 ≤ φ, ψ ∈ L1(Y ×RN )
and t ∈ (0, 1), then φ(y, .), ψ(y, .) ∈ L1(RN ) for almost every y ∈ Y and, integrating the convex
inequality (2.17), we obtain that the functional

0 ≤ φ ∈ L1(Y × RN ) 7→ F(φ) =
∫

Y

E(φ) dν

is convex. Furthermore, by Fatou Lemma, F is l.s.c. and then F is l.s.c. for the biting L1-weak
convergence, so that (2.4) holds.

Proof of Theorem 2.3. We first prove the asymptotic L0 bound. To do so, we argue by
contradiction. For an arbitrary ε > 0 we know that there exists B ⊂ Yk such that ν(Yk\B) <
ε/2 and ψ ∈ L1(B). If there is no m ∈ N such that meas {ψn ≥ m} < ε/2 for all n large
enough, this means that there exists an increasing sequence (nm) such that

meas {ψnm ≥ m} ≥ ε/2 ∀m ≥ 0.

Therefore, for any ` ∈ N and any m ≥ ` we have∫
B

T`(ψnm
) ≥ meas {ψnm

≥ `} ` ≥ ε

2
`,
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and passing to the limit m→∞ we get∫
B

ψ ≥
∫

B

T̄` ≥
ε

2
` ∀` ≥ 0.

Letting `↗∞ we get a contradiction with the fact that ψ ∈ L1(B).
Next, we pass to the convergence in the biting L1-weak sense. For any k ∈ N we can

choose A′′ such that ν(Yk\A′′) < 1/3k and ψ ∈ L1(A′′). Setting
∫

A′′
ψ dy = C0 we construct

a first subsequence (n`) such that∫
A′′

T`(ψn`
) dy ≤ C0 +

1
`
.

Then, for any M ∈ N we have TM (ψn`
) ≤ T`(ψn`

) for ` ≥M so that T̄M ≤ lim inf T`(ψn`
) and

thus
ψ ≤ lim inf T`(ψn`

).

Here, the lim inf of T`(ψn`
) is taken in the biting L1-weak sense, what we can do since (T`(ψn`

))`

is a bounded sequence of L1. But since∫
A′′

lim supT`(ψn`
) dy ≤ lim sup

∫
A′′

T`(ψn`
) ≤

∫
A′′

ψ dy,

we see that T`(ψn`
) b
⇀ψ in L1(A′′). Using Theorem 2.1 there is A′ such that |A′′\A′| < 1/3k

and
T`(ψn`

) ⇀ ψ weakly in L1(A′).

Furthermore, since (ψn) is asymptotically bounded in L0(Y ) we have, up to the extraction of
a subsequence again,

meas{ψn`
6= T`(ψn`

)} = meas{ψn`
> `} ≤ δk(`) −→

`→∞
0.

Therefore, we can choose an other subsequence, still noted (ψn`
), such that ZL := {∀` ≥

L / ψn`
6= T`(ψn`

)} and satisfies

meas(ZL) ≤
∑
`≥L

meas{ψn`
> `} −→

L→∞
0.

Finally, choosing L large enough such that meas (ZL) < 1/3k and setting Ak := A′ ∩ Zc
L, we

have |Yk\A| < 1/k, ψn`
∈ L1(A) for all ` ≥ L and

ψn`
= T`(ψn`

) ⇀ ψ weakly in L1(A).

We conclude thanks to a diagonal process.

Proof of Corollary 2.4. Thanks to Theorem 2.3 we know that there exists a subsequence
(ψn′) such that for every k ∈ N we can find A = Ak ⊂ Yk satisfying (Ak) is increasing,
ν(Yk\Ak) < 1/k and

(2.18) ψn′ is weakly compact in L1(A).
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Next, we come back to the proof of Theorem 2.2, and estimates (2.16). Written with the new
notation, we have

(2.19)
∫∫

A×RN

φn′ Ξ
( φn′

m(ξ)
)
d$ydν ≤ C3,

where we have set Ψ+(s) = sΞ(s). Of course we can assume, without loss of generality, that
Ξ is not decreasing, Ξ(s) ↗∞ when s↗∞ and Ξ(s) ≤ s1/2. Then, we deduce from (2.19)

(2.20)
∫∫

A×RN

φn′ Ξ
( φn′

m(0)
)
d$y dν ≤ C3,

and

(2.21)

∫∫
A×RN

φn′ Ξ(m(ξ)−1/2) d$y dν ≤

≤
∫∫

A×RN

φn′ Ξ(m(ξ)−1/2)
(
1{φn′≤m(ξ)1/2} + 1{φn′≥m(ξ)1/2}

)
d$y dν

≤
∫∫

A×RN

m(ξ)1/4 d$y dν +
∫∫

A×RN

φn′ Ξ
( φn′

m(ξ)
)
d$y dν ≤ C4 |Yk|+ C3.

Combining (2.18), (2.20) and (2.21), we deduce by the Dunford-Pettis Lemma that (φn′)
belongs to a weak compact set of L1(A × RN , dνd$), and we conclude as in the end of the
proof of Theorem 2.2.

3. Trace theorems for solutions of the Vlasov-Fokker-Planck equation.

In this section we extend to the VFP equation the trace results established in [53], [54]
for the Vlasov equation. Given a vector field E = E(t, x, ξ), a source term G = G(t, x, ξ), a
constant ν ∈ R and a solution g = g(t, x, ξ) of the Vlasov-Fokker-Planck equation

(3.1) ΛE g =
∂g

∂t
+ ξ · ∇xg + E · ∇ξg − ν∆ξg = G in D,

we show that g has a trace γg on the boundary (0, T ) × Σ and a trace γtg on the section
{t} × O for all t ∈ [0, T ]. These trace functions are defined thanks to a Green formula. We
note indifferently γtg = g(t, .).

The meaning of equation (3.1) is of two kinds. In the first case, we assume that g ∈
L∞(0, T ;Lp

loc(Ō)) with p ∈ [1,∞] is a solution of (3.1) in the sense of distributions, i.e.,

(3.2)
∫∫∫

D

(gΛ?
Eφ+Gφ) dξdxdt = 0,

for all test functions φ ∈ D(D), where we have set

(3.3) Λ?
E φ =

∂φ

∂t
+ ξ · ∇xφ+ E · ∇ξφ+ ν∆ξφ+ (divξE)φ.
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In this case we assume

(3.4)
E ∈ L1

(
0, T ;W 1,p′

loc (O) ∩W 1,1
loc (Ō) ∩ Lp′

loc(Ō)
)
,

divξE ∈ L1
(
0, T ;Lp′

loc(Ō)
)
, G ∈ L1

loc([0, T ]× Ō),

where p′ ∈ [1,∞] stands for the conjugate exponent of p, given by 1/p + 1/p′ = 1, and we
make one of the two additional hypothesis∫ T

0

∫
OR

|∇ξg|2 dξdxdt ≤ CT,R(3.5)

or ∫ T

0

∫
OR

|∇ξg|2 1{M≤|g|≤M+1} dξdxdt ≤ CT,R ∀M ≥ 0.(3.6)

Remark 3.1. The bound (3.6) is the natural bound that appears when we consider, for example,
the initial value problem with initial datum g0 ∈ Lp(O) when Ω = RN or when Ω is an open
subset of RN and specular reflections are imposed at the boundary.

In the second case, we assume that g is a renormalized solution of (3.1). In order to
make precise the meaning of such a solution, we must define some notation. We denote by
B1 the class of all functions β ∈ W 2,∞(R) such that β′ has a compact support and by B2 the
class of all functions β ∈ W 2,∞

loc (R) such that β′′ has a compact support. Remark that for
every u ∈ L(Y ) and β ∈ B1 one has β(u) ∈ L∞(Y ). We shall write g ∈ C([0, T ];L(O)) if
β(g) ∈ C([0, T ];L1

loc(Ō)) for every β ∈ B1.
We say that g ∈ L((0, T )×O) is a renormalized solution of (3.1) if for all β ∈ B1 we have

(3.7) E ∈ L1
(
0, T ;W 1,1

loc (Ō)
)
, β′(g)G ∈ L1

loc([0, T ]× Ō), β′′(g) |∇ξ g|2 ∈ L1
loc([0, T ]× Ō),

and β(g) is solution of

(3.8) ΛE β(g) = β′(g)G− ν β′′(g) |∇ξ g|2 in D′(D).

We can now state the trace Theorems that we use in this paper and that we prove in
section 5.
Theorem 3.1. (The case p = ∞). Let g ∈ L∞([0, T ] ×O) be a solution of equation (3.2)-
(3.4)-(3.5). Then for every t ∈ [0, T ] there exists γtg ∈ L∞(O) and γg defined on (0, T )× Σ)
such that

(3.9) γtg ∈ C([0, T ];La
loc(Ō)) ∀a ∈ [1,∞) and γ g ∈ L∞([0, T ]× Σ),

and satisfying the Green formula

(3.10)

∫ t1

t0

∫∫
O

(
β(g) Λ?

Eφ+ (β′(g)G− ν β′′(g) |∇ξ g|2)φ) dξdxdt =

=
[ ∫∫

O
β(g(τ, .))φdxdξ

]t1

t0
+

∫ t1

t0

∫∫
Σ

β(γ g)φ n(x) · ξ dξdσxdτ,
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for all t0, t1 ∈ [0, T ], all β ∈W 2,∞
loc (R) and all test function φ ∈ D([0, T ]× Ō).

Remark 3.2. A fundamental point, which is a consequence of Green formula (3.10), is the
possibility of renormalizing the trace function, i.e.

(3.11) γ β(g) = β(γ g)

for all β ∈ W 2,∞(R). More generally, (3.11) holds as soon as γ β(g) is defined. This is the
property that will allow us to define the trace of a renormalized solution.
Theorem 3.2. (The case p ∈ [1,∞)). Let g ∈ L∞(0, T ;Lp

loc(Ō)) be a solution of equation
(3.2)-(3.4)-(3.6). Then for every t ∈ [0, T ] there exists γtg ∈ Lp(O) and γg defined on (0, T )×
Σ such that

(3.12) γtg ∈ C([0, T ];L1
loc(O)) and γ g ∈ L1

loc

(
[0, T ]× Σ, dλ2

)
,

and which satisfies the Green formula (3.10) for every t0, t1 ∈ [0, T ], every β ∈ B1 and every
test function φ ∈ D([0, T ]× Ō), and also for every t0, t1 ∈ [0, T ], every β ∈ B2 and every test
functions φ ∈ D0([0, T ] × Ō), the space of functions φ ∈ D([0, T ] × Ō) such that φ = 0 on
(0, T )× Σ0.
Theorem 3.3. (The renormalized case). Let g ∈ L((0, T ) × O) satisfy (3.7) and the
equation (3.8). Then for every t ∈ [0, T ] there exists γtg ∈ C([0, T ];L(O)) and γg ∈ L([0, T ]×
Σ), satisfying the Green formula (3.10) for all t0, t1 ∈ [0, T ], all β ∈ B1 and all test functions
φ ∈ D([0, T ] × Ō). Furthermore, if (3.8) make sense for at least one function β such that
β(s) ↗∞ when s↗∞, then of course γtg ∈ L0(O) for any t ∈ [0, T ] and γg ∈ L0([0, T ]×Σ).

We present now a quite general stability result in both the interior and at the boundary
for a sequence of renormalized solutions to the Vlasov-Fokker-Planck equation on a bounded
domain. This will be a key argument in the proof of Theorem 1.1. In some sense, this result
says that renormalized convergence, as well as a.e. convergence, can be propagated from the
interior to the boundary. Notice that this propagation property does not obviously hold for
the L1-weak convergence.
Theorem 3.4. Consider three sequences (gn), (En) and (Gn) which satisfy, for all β ∈ B3

the class of functions of W 2,∞
loc (R) such that |β′(s)| (1 + s)−1 ∈ L∞(R) and |β′′(s)| (1 + s)−2 ∈

L∞(R),

gn → g strongly in L1(0, T )×O) and is uniformly bounded in L∞(0, T ;L1(O)),(3.13)
En ⇀ E weakly in L1(0, T ;W 1,1

loc (Ō)),(3.14)
β′(gn)Gn ⇀ β′(g)G weakly in L1((0, T )×OR) ∀β ∈ B3, ∀R ≥ 0,(3.15) ∫ T

0

∫
O

|∇ξgn|2

1 + gn
dξdxdt ≤ CT ,(3.16)

and the renormalized Vlasov-Fokker-Planck equation

(3.17) ΛEn β(gn) = β′(gn)Gn − β′′(gn) |∇ξgn|2 in D′((0, T )×O),

for which clearly each term make sense thanks to (3.13)–(3.16). Then g ∈ L∞(0, T ;L1(O)) is
a solution of

(3.18) ΛE β(g) = β′(g)G− β′′(g) |∇ξg|2 in D′((0, T )×O)
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for all β ∈ B3. Furthermore, the traces γgn and γg defined thanks to the Theorem 3.3 satisfy

(3.19) γgn
r
⇀γg in the renormalized sens, and γ+gn → γ+g a.e.

We shall need the following auxiliary results in the proof of Theorem 3.4.
Lemma 3.1. Let (un) be a bounded sequence of L2(Y ) such that un ⇀ u weakly in L2(Y ).
Then, there exists µ ∈ (Cc(Y ))′, a nonnegative measure, such that, up to the extraction of a
subsequence,

|un|2 ⇀ |u|2 + µ weakly in (Cc(Y ))′.

We note Cc(Y ) the space of continuous functions on Y with compact support and Cb(Y ) the
space of continuous and bounded functions on Y .
Lemma 3.2. For any θ ∈ (0, 1) and M ∈ (0,∞) we set

Φ(s) = ΦM,θ(s) :=
{

1/θ (eθ s − 1) if s ≤M
(s−M) eθ M + 1/θ (eθ M − 1) if s ≥M.

Then 
Φ′(s) ≥ 1, Φ ◦ β(s) ↗ s when M ↗∞, θ ↗ 1,

and 0 ≤ −(Φ ◦ β)′′(s) ≤ 1− θ + e(θ−1) M

1 + s

∀s ≥ 0.

Lemma 3.3. Let g ∈ L∞(0, T ;Lp
loc(O)) be a solution to the Vlasov-Fokker-Planck equation

ΛE g = G+ µ in D′((0, T )×O),

with E ∈ L1(0, T ;W 1,p′

loc (O)), G ∈ L1
loc((0, T ) × O)) and µ ∈ D′((0, T ) × O), µ ≥ 0. For a

given mollifer ρk in RN , we set

gk := g ∗t ρk ∗x ρk ∗ξ ρk and µk := µ ∗t ρk ∗x ρk ∗ξ ρk.

Then gk satisfies the Vlasov-Fokker-Planck equation

ΛE gk = Gk + µk in all compact set of (0, T )×O,

with Gk → G strongly in L1
loc([0, T ]×O)).

The proof of Lemma 3.1 is classical, the one of Lemma 3.2 is elementary, and we refer to [33,34]
for the proof of Lemma 3.3.
Proof of the Theorem 3.4. Step 1: Proof of (3.18). This step is inspired from [35] and it
is clear from the theory of renormalized solution [36] that it is enough to prove (3.18) only
for β(s) := log(1 + s). With the notation hn := β(gn) and h = β(g) we have ∇ξhn =√
−β′′(gn)∇ξgn ⇀

√
−β′′(g)∇ξg = ∇ξh weakly in L2((0, T )×O) so that, thanks to Lemma

3.1, there is a bounded measure µ ≥ 0 such that, up to the extraction of a subsequence,
|∇ξhn|2 ⇀ |∇ξh|2 + µ weakly in D′([0, T ]× Ō). Passing to the limit n→∞ in (3.17) we get

ΛE β(g) = β′(g)G− β′′(g) |∇ξg|2 + µ in D′((0, T )×O).
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We just point out that

En β(gn) ⇀ E β(g) weakly in L1((0, T )×O),

since β(gn) → β(g) strongly in L∞(0, T ;Lp(O)) for all p < ∞ and En ⇀ E weakly in
L1(0, T ;Lq(O)) for every q ∈ [1, N/(N − 1)). We prove now that µ = 0 in (0, T )×O.
With the notation introduced in Lemma 3.3 we have

ΛE Φ(hk) = Φ′(hk)
(
β′(g)G− β′′(g) |∇ξg|2

)
∗t,x,ξ ρk − Φ′′(hk) |∇ξhk|2 + Φ′(hk)µk.

Using that Φ′ ≥ 1 and passing to the limit k →∞ we get

ΛE (Φ ◦ β)(g) ≥ Φ′(β(g))β′(g)G− (Φ′(β(g))β′′(g) + Φ′′(β(g)) (β′(g))2) |∇ξg|2 + µ

and then

(3.20) ΛE (Φ ◦ β)(g)− (Φ ◦ β)′(g)G ≥ (Φ ◦ β)′′(g) |∇ξg|2 + µ in D′((0, T )×O).

In order to have an estimate of the left hand side we come back to equation (3.17), and we
write

ΛEn
Φ ◦ β(gn) = (Φ ◦ β)′(gn)Gn − (Φ ◦ β)′′(gn) |∇ξgn|2 in D′((0, T )×O)

since Φ ◦ β ∈ B3. Then, for all χ ∈ D((0, T )×O such that 0 ≤ χ ≤ 1 we have

∣∣∣∫ T

0

∫
O

(
Φ ◦ β(gn) ΛEn

χ+ (Φ ◦ β)′(gn)Gn χ
)
dξdxdt

∣∣∣ =

= −
∫ T

0

∫
O

(Φ ◦ β)′′(gn) |∇ξgn|2 χdξdxdt

≤ [1− θ + e(θ−1) M ]
∫ T

0

∫
O

|∇ξgn|2

1 + gn
dξdxdt.

Passing to the limit n→∞ we get, thanks to (3.16),∣∣∣∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dξdxdt

∣∣∣ ≤ [1− θ + e(θ−1) M ]CT .

Then, coming back to (3.20), we have∫ T

0

∫
O
χdµ ≤ −

∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ+ (Φ ◦ β)′′(g) |∇ξg|2

)
dξdxdt

≤ 2 [1− θ + e(θ−1) M ]CT ∀θ ∈ [0, 1], M > 0,

and letting M →∞ and then θ → 1 we obtain µ = 0 on suppχ, which is precisely to say that
µ = 0 in (0, T )×O.
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Step 2: Proof of (3.19). We fix φ ∈ D((0, T ) × Ō) such that 0 ≤ φ ≤ 1. By definition of γgn

we have∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β(γ gn)φ n(x) · ξ dξdσxdt

−
∫ T

0

∫
O

(
Φ ◦ β(gn) ΛEn

χ+ (Φ ◦ β)′(gn)Gn χ
)
dξdxdt

∣∣∣ =

=
∫ T

0

∫
O

(Φ ◦ β)′′(gn) |∇ξgn|2 χdξdxdt ≤ [1− θ + e(θ−1) M ]
∫ T

0

∫
O

|∇ξgn|2

1 + gn
dξdxdt.

We note Φ ◦ β the L1-weak limit of Φ ◦ β(γ gn). Passing to the limit n→∞ we get

∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β φ n(x) · ξ dξdσxdt−
∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dξdxdt

∣∣∣ ≤
≤ [1− θ + e(θ−1) M ]CT ,

and thus∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β φ n(x) · ξ dξdσxdt−
∫ T

0

∫
O

[
Φ ◦ β(g) ΛE χ

+
(
(Φ ◦ β)′(g)G− (Φ ◦ β)′′(g) |∇ξg|2

)
χ
]
dξdxdt

∣∣∣ ≤ 2 [1− θ + e(θ−1) M ]CT .

Once again, by definition of γg, we obtain∣∣∣∫ T

0

∫∫
Σ

(
Φ ◦ β − Φ ◦ β(γ g)

)
φ n(x) · ξ dξdσxdt

∣∣∣ ≤ 2 [1− θ + e(θ−1) M ]CT −→
M→∞,θ→1

0,

and Φ ◦ β ↗ r-limγgn since Φ ◦ β(s) ↗ s when M ↗∞, θ ↘ 1, so that γg = r-limγgn.
In order to prove the a.e. convergence we only have to show, thanks to Proposition 6.3.3,

that, up to the extraction of a subsequence,

(3.21) r-liminf β(γ+gn) ≥ β(γ+g).

Using Lemma 3.1 and the first step, we can pass to the limit in (3.17), up to the extraction of
a subsequence, and we get∫ T

0

∫∫
Σ

β φ n(x) · ξ dξdσxdt =
∫ T

0

∫
O

(
β(g) ΛE χ+ (β′(g)G+ β′′(g) |∇ξg|2 + µ)χ

)
dξdxdt

=
∫ T

0

∫∫
Σ

(β(γg) n(x) · ξ + µ)φ dξdσxdt,

where β = w-limβ(γgn) is the weak limit in L1((0, T ) × Σ) of β(γgn). We deduce that
β n(x) · ξ = β(γg) n(x) · ξ + µ on (0, T )× Σ, and in particular

β ≥ β(γ+g) on (0, T )× Σ+.
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Since r-liminf β(γ+gn) = β̄ this prove (3.21).

4. A priori estimates and proof of the main result.

In this section we derive the a priori physical bound, then make precise the exact meaning
of renormalized solution we deal with and finally present a proof of Theorem 1.1. In order to do
not repeat twice the exposition, we consider the full Vlasov-Poisson-Fokker-Planck-Boltzmann
system (VPFPB in short)

(4.1)
∂f

∂t
+ ξ · ∇xf − divξ

(
(∇xVf + λ ξ) f

)
− ν∆ξf = Q(f, f) in (0,∞)×O,

where Vf is given by the Poisson equation (1.7). We assume that f satisfies the boundary
condition (1.4) and the initial condition (1.8), where f0 is assumed to verify (1.12) and

(4.2)
∫

Ω

|∇Vf0 |2 dx <∞ with −∆Vf0 =
∫

R3
f0(x, ξ) dξ on Ω, V0 = 0 on ∂Ω.

We claim that a solution f of (4.1)-(1.4)-(1.8), which is sufficiently regular and decreasing at
the infinity in such a way that all integration (by parts) that we shall perform are allowed,
satisfies

(4.3)

sup
[0,T ]

{∫∫
O
f

(
1 + |ξ|2 + | log f |

)
dξdx+

∫
Ω

|∇ξVf |2 dx
}

+
∫ T

0

∫∫
O

(
e(f) +

|∇ξf |2

f

)
dξdxdt+

∫ T

0

∫
∂Ω

E
(γ+f

M

)
dσxdt ≤ CT < +∞,

where e(f) ≥ 0 denotes the usual entropy dissipation term. We do not give the explicit
expression for the Boltzmann collision operator that we find in [26] or [37] for example. The
precise assumptions we make on the cross section are those introduced in [37]. We only recall
that the collision operator has the following remarkable properties

(4.4)
∫

R3
Q(f, f)

 1
ξ
|ξ|2

 dξ = 0,

and the entropy production term e(f) satisfies

(4.5)
∫

R3
e(f) dξ = −

∫
R3
Q(f, f) log f dξ.

First, simply integrate equation (4.1) in all the variables, and we get the conservation of the
mass

(4.6)
∫∫

O
f(t, .) dξdx =

∫∫
O
f0 dξdx ∀t ≥ 0.
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Next, setting hM (s) = s log(s/M), we compute

∂

∂t
hM (f) + ξ·∇xhM (f) + divξ

(
(E + λ ξ)hM (f)

)
− ν∆ξhM (f) =

= h′M (f)Q(f, f)− ν h′′M (f) |∇ξf |2 − f (E + λ ξ) · ∇ξ(logM)
+ λ (hM (f)− f h′M (f)) + 2 ν∇ξf · ∇ξ(logM) + ν f ∆ξ(logM),

where we denote h′M (s) = 1 + log (s/M). We integrate this equation using collision invariants
(4.4) and entropy production (4.5), to obtain

(4.7)

d

dt

∫∫
O
hM (f) dξdx+

∫∫
O

(
e(f) + ν

|∇ξf |2

f

)
dξdx+

∫ ∫
Σ

hM (γf) ξ · n(x) dξdσx =

=
∫

Ω

E · j
Θ
dx+

∫∫
O

{
λ

( |ξ|2
Θ

− 1) +
ν

Θ

}
f dξdx,

where
j(t, x) =

∫
R3
ξ f(t, x, ξ) dξ.

We first remark that integrating equation (4.1) in the velocity variable we have

∂

∂t
ρ+ divx j = 0 on (0,∞)× Ω,

and therefore

(4.8) −
∫

Ω

E · j
Θ
dx =

∫
Ω

∇Vf ·
j

Θ
dx =

∫
Ω

Vf

Θ
∂ρ

∂t
dx =

d

dt

∫
Ω

|∇xVf |2

2 Θ
dx.

Next, combining (4.7), (4.8) and the boundary estimate (1.11) we obtain

(4.9)

d

dt

{∫∫
O
hM (f) dξdx+

∫
Ω

|Ef |2

2 Θ
dx

}
+

∫∫
O

[
e(f) +

|∇ξf |2

f

]
dξdx

+ ᾱ

∫
∂Ω

E(γ+ f) dσx ≤ Cλ,ν

∫∫
O

(1 + |ξ|2) f dξdx.

Finally, using the elementary estimate∫
RN

f
( |ξ|2
4 Θ

+ | log f |
)
dξ ≤ CM +

∫
RN

hM (f) dξ,

(that one can find in [51] for example), we obtain (4.3) thanks to the Gronwall Lemma.

We can now specify the sense of the solution we deal with. With DiPerna and Lions [35],
[37,38], [50] we say that 0 ≤ f ∈ C([0,∞);L1(O)) is a renormalized solution of (4.1)-(1.4)-(1.8)
if first f satisfies the a priori physical bound (4.3) and is a solution of

(4.10)
∂

∂t
β(f) + ξ·∇xβ(f) + (∇xVf + λ ξ) · ∇ξβ(f)− ν∆ξβ(f) =

= β′(f) (Q(f, f) + λN f)− ν β′′(f) |∇ξf |2 in D′((0, T )×O),
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for all time T > 0, and all β ∈ B4, the class of all functions β ∈ C2(R) such that |β′′(s)| ≤
C/(1 + s), |β′(s)| ≤ C/

√
1 + s, ∀s ≥ 0. Since for any R > 0 there is a constant CR such that∫

BR

|Q(f, f)|√
1 + f

dξ ≤ CR

∫
RN

[
(1 + |ξ|2) f + e(f)

]
dξ,

(we refer to [63] for the proof of this claim and to [50] for a related result), we see that each term
in equation (4.10) makes sense. Next, the trace functions f(0, .) and γf defined by Theorem
3.3 and the Green formula (3.10) must satisfy (1.8) and (1.4), say almost everywhere.

Before passing to the proof of Theorem 1.1, we would like to emphasize that γ+f satisfies an
additional bound which is a consequence of the a priori bound (4.3), the boundary conditions
(1.4) and the Green formula (3.10).
Proposition 4.1. If f is a renormalized solution of (4.1)-(1.4) then there exists a constant
C ′T which only depends on the physical bound CT in (4.3) such that

(4.11)
∫ T

0

∫
∂Ω

√
γ̃+f dσxdt ≤ C ′T .

Proof of Proposition 4.1. We fix χ ∈ D(RN ) such that 0 ≤ χ ≤ 1, χ = 1 onB1 and suppχ ⊂ B2.
Then, the Green formula (3.10) written with φ = n(x) · ξ χ(ξ) and β(s) =

√
1 + s gives∫ T

0

∫∫
Σ

√
1 + γf χ dλ2(t, x, ξ) ≤ C ′′T

with C ′′T which depends on CT . But, from (1.4) we have γ−f ≥ ᾱM(ξ) γ̃+f on (0, T ) × Σ−,
and therefore there is a constant κ > 0 such that

κ

∫ T

0

∫
∂Ω

√
γ̃+f dσxdt ≤

∫ T

0

∫∫
Σ−

√
γ̃+f ᾱ

1/2M1/2(ξ)χdλ2(t, x, ξ)

≤
∫ T

0

∫∫
Σ−

√
γ−f χ dλ2(t, x, ξ) ≤ C ′′T .

Proof of the Theorem 1.1. Let (fn) be a sequence of renormalized solutions to the VPFPB
system (4.1)-(1.4)-(1.8) such that for any T > 0 there is a constant CT

(4.12)

sup
[0,T ]

{∫ ∫
O
fn

(
1 + |ξ|2 + | log fn|

)
dξdx+

∫
Ω

|∇xVfn
|2 dx

}
+

∫ T

0

∫ ∫
O

(
ν
|∇ξfn|2

fn
+ e(fn)

)
dξdxdt+

∫ T

0

∫
∂Ω

E(γ+fn)dσxdt ≤ CT ;

thus, we may assume without loss of generality, and extracting a subsequence if necessary, that
fn converges weakly in Lp(0, T ;L1(O)) (∀p ∈ [1,∞)) to a function f . Furthermore, since the
renormalized term on the right hand side of equation (4.10) is bounded in L1, thanks to the
bound (4.12), and since ΛE is an hypoelliptic operator (see [35], [15], [47]), we obtain that, say,
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log(1 + fn) and next fn converge a.e.. We conclude that fn → f strongly in Lp(0, T ;L1(O)),
∀p ∈ [1,∞). Moreover, we can show from (4.12) that

sup
[0,T ]

∫
Ω

ρn(1 + | log ρn|) dx ≤ CT ,

(see [50]) and then that ∇xVfn
→ ∇xVf strongly in L1(0, T ;W 1,1(Ω)) (see for instance [50]

and [60]). It is also shown in [35] that

Q(fn, fn)
1 + fn

→ Q(f, f)
1 + f

strongly in L1((0, T )×O).

Therefore, we are able to apply Theorem 3.4, and we obtain that f satisfies the renormalized
equation (4.10) and that

(4.13) γfn
r
⇀γf in the renormalized sense, and γ+fn → γ+f a.e. on (0, T )× Σ+.

Next, from (1.4) we have

(4.14) γ̃+fn ≤ ᾱ−1M−1(ξ) γ−fn on (0, T )× Σ−,

so that
γ̃+fn

r
⇀ψ in (0, T )× ∂Ω, with ψ ≤ ᾱ−1M−1(ξ) γ−f.

Furthermore, repeating the proof of Proposition 4.1 we get ψ ∈ L1/2((0, T ) × ∂Ω). Now, we
can apply Corollary 2.4, which says that for every ε > 0 there is A = Aε ⊂ (0, T ) × ∂Ω such
that meas ((0, T )× ∂Ω\A) < ε and

γ+fn ⇀ γ+f weakly in L1(A× RN ).

Since we already know the a.e. convergence, this convergence is in fact strong in L1(A×RN ).
There is no difficulty in passing to the limit in the boundary condition so that f satisfies (1.4)
and f satisfies the same physical estimate (4.3) thanks the convexity argument of Corollary
2.4, [35], [38].

Remark 4.1. For the Boltzmann equation and the FPB equation, as well as for the VP system
and the VPFP system when the Poisson equation (1.7) is provided with Neumann condition,
we can prove the following additional a priori estimate on the trace

(4.15)
∫ T

0

∫∫
Σ

γf (1 + |ξ|2) |ξ · n(x)| dξdσxdt ≤ CT .

As a consequence, we also establish the a priori physical bound (4.3) for time and position
dependent wall temperature Θ = Θ(t, x) which satisfies

0 < Θ0 ≤ Θ(t, x) ≤ Θ1 <∞.

Therefore, the stability result and the corresponding existence result can be generalized to
these kind of boundary conditions. We refer to [6] and [54] for more details.
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Also notice that thanks to estimate (4.15) we can propose, in this case, a simpler proof of
Theorem 1.1, using directly Theorem 2.2 instead of the Corollary 2.4.

Remark 4.2. Just a word about the general reflection operator

(4.16) Rφ =
∫

ξ′·n(x)>0

k(ξ, ξ′)φ(ξ′) ξ′ · n(x) dξ′

when k satisfies the usual properties

k ≥ 0,(i) ∫
ξ·n(x)<0

k(ξ, ξ′) dξ = 1,(ii)

RM = M,(iii)

where M is the normalized Maxwellian (1.3). In this case, we can prove that a solution f
of (4.1)-(1.2) provided with the reflection condition (1.1)-(4.15) formally satisfies the a priori
physical estimate (4.3) with E replaced by

Ek(φ/M) :=
∫

ξ·n(x)>0

[
h
( φ
M

)
− h

(Rφ
M

) ]
M ξ · n(x) dξ.

By Jensen inequality one can prove that Ek is non negative, see [39], [30], [41]. It is not
so clear how to adapt the analysis of section 2 in order to get weak L1 convergence in the
ξ variable for sequence (φn) such that Ek(φn) is bounded in L1((0, T ) × ∂Ω). Nevertheless,
considering a sequence (fn) of solutions of one of the kinetic equations (Boltzmann, VP, FPB
or VPFP) just like in Theorem 1.1 and without assuming that (1.14) holds, we obtain, using
Proposition 3.4, that γfn

r
⇀γf . Passing to the limit n → +∞ thanks to Proposition 6.3.4

we have that γf satisfies the relaxed boundary condition (1.17). As a conclusion, with the
analysis presented here, we are able to prove existence result with relaxed boundary condition
(1.17) for all theses equations and for general collision operator k satisfying (i), (ii), (iii). This
extends and generalizes previous results known for the Boltzmann equation, see for instance
[6], [29], [54].

5. Proof of the trace theorems.

We begin with some notation. For a given real R > 0, we define BR = {y ∈ RN / |y| < R},
ΩR = Ω∩BR, OR = ΩR×BR, DR = (0, T )×OR, ΣR = (∂Ω∩BR)×BR and ΓR = (0, T )×ΣR.
We also denote by La,b

R the spaces La(0, T ;Lb(OR)) or La(0, T ;Lb(ΩR)), and La,b
loc the spaces

La(0, T ;Lb
loc(Ō)) or La(0, T ;Lb

loc(Ω̄)).
Proof of Theorem 3.1. First step: a priori bounds. In this step we assume that g is a solution of
(3.1) and is ”smooth”. Precisely, g ∈W 1,1

(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
, in such a way that the

Green formula (3.10) holds. The trace γg in (3.10) is defined thanks to the usual trace theorem
in the Sobolev spaces. We shall prove two a priori bounds on g. Let define β ∈ W 2,∞

loc (R) by

β(s) =
{
|s| − 1/2 if |s| ≥ 1
s2/2 if |s| ≤ 1 so that β′(s) =

{ 1 if s ≥ 1
s if |s| ≤ 1
−1 if s ≤ −1

and β′′(s) =
{

0 if |s| ≥ 1
1 if |s| ≤ 1 ,
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and thus β ∈ B1. Fix R > 0 and consider χ ∈ D(Ō) such that 0 ≤ χ ≤ 1, χ = 1 on OR and
suppχ ⊂ ŌR+1. We set φ = χ n(x) · ξ. The Green formula (3.10) is then written∫ T

0

∫∫
Σ

β(γ g)χ (n(x) · ξ)2 dξdσxdτ = −
[ ∫∫

O
β(g(τ, .))φdxdξ

]T

0

+
∫ T

0

∫∫
O

(
β(g) Λ?

Eφ+ (β′(g)G− ν β′′(g) |∇ξ g|2)φ) dξdxdt.

We deduce from it a first a priori bound: there are some constants γR and CR such that

(5.1)

γR

∫ T

0

∫∫
ΣR

|γ g| (n(x) · ξ)2 dξdσxdτ ≤
∫ T

0

∫∫
ΣR

β(γ g) (n(x) · ξ)2 dξdσxdτ

≤ CR

∫ T

0

∫∫
OR+1

(
g2 (1 + |E|) + |G|+ ν |∇ξ g|2

)
dξdxdt

+ CR

∫∫
OR+1

(
g2(0, .) + g2(T, .)

)
dxdξ,

where we have used the fact that for u ∈ L∞(YR) with YR = OR or ΣR one has

γR

∫
YR

|u| ≤
∫

YR

β(u) ≤ γ−1
R

∫
YR

u2.

Let K ⊂ O be a compact set and consider φ ∈ D(O) such that 0 ≤ φ ≤ 1, φ = 1 on K
and R > 0 such that suppφ ⊂ OR. We fix t0 ∈ [0, T ]. The Green formula (3.10) becomes

(5.2)

∫∫
O
β(g(t1, .))φdxdξ =

∫∫
O
β(g(t0, .))φdxdξ

+
∫ t1

t0

∫∫
O

(
β(g) Λ?

Eφ+ (β′(g)G− ν β′′(g) |∇ξ g|2)φ) dξdxdt,

and we get a second a priori bound

(5.3)

γR

∫∫
K

|g|(t1, .) dxdξ ≤ CR

∫∫
OR

g2(t0, .) dxdξ

+ CR

∫ T

0

∫∫
OR

(
g2 (1 + |E|) + |G|+ ν |∇ξ g|2

)
dξdxdt.

Second step: regularization and passing to the limit. Let us now consider a function g which
satisfies the assumption of Theorem 3.1. We define the mollifer ρk by

ρk(z) = kN ρ(k z) ≥ 0, k ∈ N?, ρ ∈ D(RN ), supp ρ ⊂ B1,

∫
RN

ρ(z) dz = 1,

and we introduce the regularized functions gk = g ?x,k ρk ∗ξ ρk, where ∗ stands for the usual
convolution and ?x,k for the convolution-translation defined by

(u ?x,k hk)(x) = [τ2 n(x)/k(u ∗ hk)](x) =
∫

RN

u(y)hk(x− 2
k
n(x)− y) dy,
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for all u ∈ L1
loc(Ω̄) and hk ∈ L1(RN ) with supphk ⊂ B1/k.

Lemma 5.1. With this notation one has gk ∈W 1,1
(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
and

(5.4) ΛEgk = Gk dans D′(D),

with Gk ∈ L1
loc((0, T )× Ō) for all k ∈ N. Moreover, the sequences (gk) and (Gk) satisfy

(5.5)

{
(gk) is bounded in L∞((0, T )×O), gk −→ g a.e. in (0, T )×O,
∇ξgk −→ ∇ξg in L2

loc([0, T ]× Ō) and Gk −→ G in L1
loc([0, T ]× Ō).

The proof of Lemma 5.1 is similar to the proof of Lemma 1 in [53] and of Lemma II.1 in [36].
We refer to [53] and [36] for details.

From Lemma 5.1 we have that for all k, ` ∈ N? the difference gk−g` belongs to W 1,1
(
0, T ;

W 1,∞(Ω;W 2,∞(RN ))
)

and is a solution of

(5.6) ΛE(gk − g`) = Gk −G` in D′(D).

We know, thanks to (5.5), that gk(t, .) converges to g(t, .) in L2
loc(Ō) for a.e. t ∈ [0, T ]; we fix

t0 such that gk(t0, .) → g(t0, .). Moreover, up to a choice for the continuous representation of
gk, we can assume that gk ∈ C([0, T ], L1

loc(Ō)). Therefore, the estimate (5.2) applied to gk−g`

in t0 and the convergence (5.5) imply that for all compact sets K ⊂ O we have

(5.7) sup
t∈[0,T ]

‖(gk − g`)(t, .)‖L1(K) −→
k,`→+∞

0.

We deduce from this, that there exists, for any time t ∈ [0, T ], a function γtg such that gk(t, .)
converges to γtg in C([0, T ];L1

loc(O)); in particular,

g(t, x, ξ) = γtg(x, ξ) for a.e. (t, x, ξ) ∈ D.

Thus, we also have gk(t, .) = (γt g) ?x,k ρk ∗ξ ρk a.e. in D, and since these two functions are
continuous, the equality holds for all (t, x, ξ) ∈ [0, T ]× Ō and k ∈ N?, so that gk(t, .) → γtg in
Lp

loc(Ō) for all t ∈ [0, T ].

Using now the estimate (5.1), applied to gk − g`, and the convergence (5.5) and (5.7) we
get that ∫ T

0

∫∫
ΣR

|γgk − γg`| (n(x) · ξ)2 dξdσxdt −→
k,`→+∞

0,

for all R > 0. We deduce that there exists a function γg ∈ L1
loc([0, T ]×Σ, (n(x) · ξ)2 dξdσxdt),

which is the limit of γgk in this space. Moreover, since ‖γgk‖L∞ ≤ ‖gk‖L∞ is bounded, we
have γg ∈ L∞((0, T )×O).

Finally, we obtain the Green formula (3.10) writing it first for gk and then passing to the
limit k →∞ thanks to the convergence previously obtained. Uniqueness of the trace function
follows from the Green formula.
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Proof of Theorem 3.3. The proof is based on Theorem 1 and on an monotony argument. This
is exactly the same as the one presented in [54] in the case of Vlasov equation. Let (βM )M≥1

be a sequence of odd functions of B1 such that

βM (s) =
{
s if s ∈ [0,M ]
M + 1/2 if s ≥M + 1,

and |βM (s)| ≤ |s| for all s ∈ R. The function αM (s) := βM (β−1
M+1(s)) is well defined, with

the convention αM (s) = M + 1/2 if s ≥ M + 3/2 and αM (s) = −M − 1/2 if s ≤ −M − 3/2,
and also belongs to B1. Furthermore, one has αM (s) ≤ s for all s ≥ 0 and αM (s) ≥ s for all
s ≤ 0. We will construct the trace function γg as the limit of (γβM (g)) when M → ∞, that
one being defined thanks to Theorem 3.1. Indeed, the condition (3.6) implies that

∇ξg 1|g|≤M+1 ∈ L2
loc([0, T ]× Ō),

and then ∇ξβM (g) = β′M (g)∇ξg ∈ L2
loc([0, T ] × Ō) in such a way that βM (g) satisfies the

assumption on Theorem 3.1. We define Γ(±)
M = {(t, x, ξ) ∈ (0, T ) × Σ,±γβM (g)(t, x, ξ) > 0}

and Γ(0)
M = {(t, x, ξ) ∈ (0, T ) × Σ, γβM (g)(t, x, ξ) = 0}. Thanks to the definition of αM

and the renormalization property (3.11) of the trace, one has γ βM (g) = γ αM (βM+1(g)) =
αM (γ βM+1(g)). We deduce that, up to a set of measure zero,

Γ(+)
M = Γ(+)

1 , Γ(−)
M = Γ(−)

1 and Γ(0)
M = Γ(0)

1 for all M ≥ 1.

Therefore the sequence (γ βM (g))M≥1 is not decreasing on Γ(+)
1 and not increasing on Γ(−)

1 .
This implies that γ βM (g) converges a.e. to a limit denoted by γg and which belongs to
L([0, T ]×Σ). Obviously, if (3.8) holds for one function β such that β(s) ↗ +∞ when s↗ ±∞,
then β(γg) ∈ L1((0, T ) × Σ, dλ2) and γg ∈ L0((0, T ) × Σ). In order to establish the Green
formula (3.10) we fix β ∈ B1 and φ ∈ D((0, T ] × Ō). We write the Green formula for the
function β(βM (g)), and using the fact that γ

[
β ◦ βM (g)

]
= β(γβM (g)), we find

∫ T

0

∫∫
O

(
β ◦ βM (g) (

∂φ

∂t
+ ξ · ∇xφ+ E · ∇ξφ) + (β ◦ βM )′(g)Gφ

)
dξdxdt =

=
∫ T

0

∫∫
Σ

β(γ βM (g))φn(x) · ξ dξdσxds.

We get (3.10) by letting M →∞ and noting that β ◦ βM (s) → β(s) for all s ∈ R.

Remark 5.1. Theorem 3.2 is now a quite simple consequence of Theorem 3.3 using the a priori
bounds stated in the proof of Theorem 3.1. We emphasize that with the additional assumption
(3.5), it is possible to give a ”direct” proof of Theorem 3.2 (following the proof of Theorem
3.1) instead of passing by the renormalization step. See [53]for details.

Proof of Theorem 3.2. For all β ∈ B1 it is clear that β(g) ∈ L∞, ∇ξβ(g) ∈ L2 and that β(g) is
solution of (1.6) using Lemma 3.3 (we just have to multiply equation (5.9), in the case µ ≡ 0,
by β′(gk) and pass to the limit k →∞). Thanks to Theorem 3.3, we already know that g has
a trace γtg ∈ L(O) and γg ∈ L((0, T ) × O) which satisfies the Green formula (3.10) for all
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β ∈ B1 and φ ∈ D([0, T ]×Ō). We just have to prove that γg and γtg belong to the appropriate
space. On one hand, for all β ∈ B1 such that |β(s)| ≤ |s| one has

‖β(γtg)‖Lp
R
≤ sup

k
sup
[0,T ]

‖β(gk(t, .))‖Lp
R
≤ sup

[0,T ]

‖gk(t, .)‖Lp
R
≤ ‖g‖L∞,p

R
,

and thus, choosing β = βM , defined in the proof of Theorem 3.3, one gets, passing to the limit
M →∞,

sup
[0,T ]

‖γtg‖Lp
R
≤ ‖g‖L∞,p

R
<∞.

In the same way and using (5.1), we show that

‖γg‖L1([0,T ]×ΣR,dλ2) <∞.

We still have to prove that γtg ∈ C([0, T ], L1
loc(Ō)), which is an immediate consequence of the

following Lemma.

Lemma 5.2. Let (un) be a bounded sequence of L1
loc(O) such that β(un) ⇀ β(u) in

(
Cc(O)

)′
for all β ∈ B2. Then un → u in L1

loc(O).
Proof of Lemma 5.2. We fix j : R → R a nonnegative function of class C2, strictly convex on
the interval [−M,M ] and such that j′′(t) = 0 for all t /∈ [−M,M ]; in particular j ∈ B2. We
also consider χ ∈ Cc(O) such that 0 ≤ χ ≤ 1. By assumption

(5.10)
∫
O
j(un)χ→

∫
O
j(u)χ

and by convexity of j one also has

(5.11) lim inf
n→∞

∫
O
j
(un + u

2
)
χ ≥

∫
O
j(u)χ since

un + u

2
⇀ u in

(
Cc(O)

)′
.

Remarking that

(5.12)
1
2
j(t) +

1
2
j(s)− j

( t+ s

2
)
≥ 0 ∀t, s ∈ R,

we deduce from (5.10) and (5.11) that

(5.13)
∫
O

[1
2
j(un) +

1
2
j(u)− j

(un + u

2
)]
χ→ 0.

From the fact that in (5.12) the inequality is strict whenever t, s ∈ [−M,M ] and t 6= s,
we obtain from (5.13) that there exists a subsequence (unk

) such that unk
→ u a.e. on

suppχ∩ [ |u| < M ]. The preceding argument being valuable for arbitrary M and χ, we obtain,
by a diagonal process, a subsequence of (un), still denoted by (unk

), such that unk
→ u a.e.

in O.
We now set j±(s) = s±. We first remark that we can write j± = j±,1+j±,2 with j±,1 ∈ B2

and j±,2 ∈W 2,∞(R) in such a way that∫
O
j±(unk

)χ→
∫
O
j±(u)χ.
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On the other hand, the elementary inequality
∣∣ b− |a− b|

∣∣ ≤ a ∀a, b ≥ 0 and the dominated
convergence Theorem imply j±(unk

)− |j±(unk
)− j±(u)| → j±(u) in L1

loc(O). It follows that

lim sup
k→∞

∫
O

∣∣ j±(unk
)− j±(u)

∣∣χ =
∫
O
j±(u)χ− lim

k→∞

∫
O
j±(unk

)χ = 0.

We conclude that unk
= j+(unk

)− j−(unk
) → j+(u)− j−(u) = u strongly in L1

loc(O) and that,
in fact, it is the entire sequence (un) which converges.

6. Appendix: on the convergence in the renormalized sense.

The main basic properties concerning the notion of convergence in the renormalized sense
are presented in this Appendix. Once again, we only deal with nonnegative functions of
L := L(Y ) and L0 := L0(Y ), but we do not specify it anymore in what follows.

Definition 6.1. We say that α is a renormalizing function if α ∈ Cb(R) is not decreasing
and 0 ≤ α(s) ≤ s for any s ≥ 0. We say that (αM ) is a renormalizing sequence if αM is a
renormalizing function for any M ∈ N and αM (s) ↗ s for all s ≥ 0 when M ↗∞. Given any
renormalizing sequence (αM ), we say that (φn) (αM )-renormalized converges if there exists a
sequence (ᾱM ) of L∞(Y ) such that

(6.1) αM (φn) ⇀ ᾱM σ(L∞(Y ), L1(Y )) ? and ᾱM ↗ φ a.e. in Y.

Notice that the renormalized convergence is nothing but the (TM )-renormalized convergence.

Proposition 6.1. 1. The (αM )-renormalized limit in the definition 6.1 does not depend on
the renormalizing sequence (αM ), but only on the sequence (φn).

2. For any sequence (φn) of L and any renormalizing sequence (αM ) there exists a subse-
quence (φn′) of (φn) and φ ∈ L such that (φn′) (αM )-renormalized converges to φ. Of course
in general, we can not exclude that φ ≡ +∞, see Remark 2.2.

3. As a consequence, given two renormalized sequences (αM ) and (βM ), if (φn) (αM )-
renormalized converges, then (φn) also (βM )-renormalized converges to the same limit, up to
the extraction of a subsequence.

4. In fact, if for a given renormalized sequence (αM ), the sequence (φn) (αM )-renormalized
converges to φ then
(6.2)

for any sub-sequence (φn′) there exists a sub-sequence (φn′′) of (φn′) such that φn′′
r
⇀φ.

The inverse implication if false, even with αM = TM . In particular, the renormalized conver-
gence is not associated to any topological structure.

5. Finally, assume that φn
r
⇀φ. We can construct a subsequence (φn′) in such a way that

for any renormalizing function α there exists ᾱ ∈ L∞ such that α(φn′) ⇀ ᾱ. As a consequence,
(φn′) (αM )-renormalized converges to φ for any renormalizing sequence (αM ).

Remark 6.1. Instead of Definition 2.2 there is a lot of possible definition for the notion of renor-
malized convergence of (φn) to φ. We should take, as a definition, the assertion (6.2) or also
the fact that (φn) (αM )-renormalized converges to φ for an other fixed renormalizing sequence
(αM ), for at least one renormalizing sequence (αM ) or for every renormalizing sequence (αM ).
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But since all these definitions are equivalent, up to the extraction of a subsequence, there is
no importance to specify which one we choose.

Let emphasize that the definition of (αM )-renormalized convergence with αM 6= TM is
important in order to obtain the renormalized convergence of the trace sequence in Theorem
3.4. Indeed, TM is not smooth enough in order to be taken as a renormalizing function for the
VFP equation and we have to introduce the ”smooth” renormalizing function α := ΦM,θ.

We come back to the link between renormalized convergence and biting L1-weak converge.
Proposition 6.2. 1. Let (φn) be a sequence which converge to φ a.e., strongly or weakly in
Lp, p ∈ [1,∞], or in the biting L1-weak sense. Then, there is a subsequence (φn′) of (φn) such
that φn

r
⇀φ. In general, the all sequence (φn) does not renormalized converge.

2. Coming back to Theorem 2.3. There exists (φn) which renormalized converges but does
not biting L1-weak converge.

3. The biting L1-weak convergence is not associated to any topological structure.

Let now define the limit superior and the limit inferior in the renormalized sense.
Definition 6.2. Let (φn) be a sequence of L. Consider I the set of all the increasing applica-
tions ı : N → N such that the subsequence (φı(k))k≥0 of (φn)n≥0 converges in the renormalized
sense and note φı = r-limφı(k). Thanks to the Proposition 6.1.2, we know that I is not empty.
We defined the limit sup and the limit inf of (φn) in the renormalized sense by

(6.3) r-limsupφn := sup
ı∈I

φı and r-liminf φn := inf
ı∈I

φı.

Proposition 6.3. 1. If φn
r
⇀φ, ψn

r
⇀ψ and λn → λ in R?

+ then φn + λψn
r
⇀φ+ λψ. If

λn → 0 and (φn) is bounded in L0 then λn φn
r
⇀ 0. As a consequence, if φn

r
⇀φ ∈ L0 and

ψn → ψ ∈ L0 a.e., then φn ψn
r
⇀φψ.

2. Let φn
r
⇀φ and β be a nonnegative and concave function. Then β(φ) ≥ r-limsup β(φn).

3. Let β be a strictly concave function, and (φn) be a sequence such that φn
r
⇀φ and

β(φ) ≤ r-liminf β(φn). Then, up to extraction a subsequence, φn → φ a.e. in Y .
4. Let φn

r
⇀φ and let S be a bounded and nonnegative operator of L1. Then we have

S φ ≤ r-liminf S φn.

Proof of the Proposition 6.1. 2. Considering a renormalizing sequence (αM ) we can find a
subsequence (n′) = (nM

k )k and ᾱM such that αM (φn′) ⇀ ᾱM weakly in L∞. By a diagonal
process we can obtain a unique subsequence (n′′) such that the weak convergence holds for
any M ∈ N. Furthermore, since (αM ) is not decreasing, we get that (ᾱM ) is a not decreasing
sequence of non negative measurable functions, so that it converges. The limit φ belongs to L.
1. Let assume that for a renormalizing sequence (αK) we have αK(φn) ⇀ ᾱK ↗ ψ. Thanks
to part 2., there exits a sub-sequence (φn′), a sequence T̄M ∈ L∞ and a function φ ∈ L
such that TM (φn′) ⇀ T̄M ↗ φ. It is clear that ∀K,M ∈ N ∀ε > 0 there is kM,ε,mK ∈ N
such that αK ≤ TmK

and TM ≤ αkM,ε
+ ε. Therefore, writing αK(φn) ≤ TmK

(φn) and
TM (φn) ≤ αkM,ε

(φn) + ε, and passing to the limit n→ +∞, we get

ᾱK ≤ T̄mK
≤ φ and T̄M ≤ ᾱkM,ε

+ ε ≤ ψ + ε.

Then passing to the limit M,K ↗∞ and ε→ 0 we obtain that ψ = φ.
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Point 3 and the first part of Point 4 are immediate consequences of points 1 and 2. Let consider
µz = µ and νz = ν two Young measures on Y = [0, 1] such that∫

R
λµ(λ) =

∫
R
λ ν(λ) =: φ∫

R
T2 M (λ)µ(λ) =

∫
R
T2 M (λ) ν(λ) =: T̄2 M∫

R
T2 M+1(λ)µ(λ) 6=

∫
R
T2 M+1(λ) ν(λ).

For instance, take

µ(λ) =
1
2

∞∑
`=0

1
2`
δλ=` and ν(λ) =

1
2

∞∑
`=0

( 1
22 `

+
1

22 `+1

)
δλ=θ`

,

with θ` ∈ [2 `, 2 (`+ 1)[ well chosen. Now define (un) (resp. (vn)) a sequence of L1 associated
to µ (resp. ν), see [61], [67], and define φ2 n = un, φ2 n+1 = vn. In such a way, we have
constructed a sequence (φn) which does not converge in the renormalized sense but (T2 M )-
renormalized converge, since T2 M (φn) ⇀ T̄2 M ↗ φ. Moreover, thanks to part 3, (φn) satisfies
(6.2). As a conclusion, (6.2) does not imply the renormalized convergence and therefore the
renormalized convergence is not associated to any topology.
5. Let remark that the class of renormalizing functions is separable for the uniform norm of
C(R+). For instance, the family A = {αk} of functions α such that

0 ≤ α(s) ≤ s and α′(s) =
J∑

j=1

θj 1[ai,ai+1[(s), ai, θi ∈ Q+

is countable and dense. By a diagonal process, we can find a subsequence (φn′) in such a
way that for any α ∈ A there exists ᾱ ∈ L∞ such that α(φn′) ⇀ ᾱ. On one hand, for any
renormalizing sequence α there exists a sequence (αk) of A such that αk ≤ α ≤ αk + 1/k for
any k ∈ N and αk ↗ α. We yet know that αk(φn′) ⇀ ᾱk. Since (ᾱk) is not decreasing, it
converges a.e. and we set α∗ = lim ᾱk. On the other hand, thanks to part 3, there exists a
subsequence (φn′′) and a function ᾱ such that α(φn′′) ⇀ ᾱ. This implies ᾱk ≤ ᾱ ≤ ᾱk + 1/k.
Passing to the limit k → +∞ we get ᾱ = α∗. Therefore, by uniqueness of the limit, it is the
all sequence α(φn′) which converges to ᾱ.

Proof of the Proposition 6.2. 1. If φn → φ a.e. then clearly αM (φn) ⇀ αM (φ) L∞-weak and
αM (φ) ↗ φ, so that φn

r
⇀φ.

If (φn) converges strongly or weakly in Lp p ∈ [1,∞] then it obviously converges in the
biting L1-weak sense. We now follow the proof of [8]. Assuming that φn

b
⇀φ, there exists

for any k ∈ N a Borel set Ak such that meas (Yk\Ak) < 1/k and φn ⇀ φ weakly in L1(Ak).
Thanks to Dunford-Pettis Lemma there is a function δk : R → R such that δk(M) → 0 when
M → +∞ and ∫

Ak

φn 1{φn≥M} dy ≤ δk(M).
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Therefore, up to the extraction of a subsequence, we have TM (φn) ⇀ T̄M weakly in L∞(Ak),
so that ∫

Ak

|φ− T̄M | dy ≤ lim inf
∫

Ak

|φn − TM (φn)| dy ≤ δk(M).

This implies that T̄M ↗ φ a.e. in Ak, and thus a.e. in Y , when M → +∞.
The sequence (φn) constructed in Proposition 6.1.4 clearly converges L1-weak and there-

fore biting L1-weak, but does not converge in the renormalized sense.
2. & 3. Let φn be the sequence defined by φn = φp,k = p1[k/p,(k+1)/p] where n = 1+2+...+p+k.
Then (φn) is bounded in L1 and clearly converges to 0 in the renormalized sense, but does
not converge in the biting L1-weak sense. Moreover, for any subsequence (φn′) we can find a
second subsequence (φn′′) of (φn′) such that φn′′

b
⇀ 0: the biting L1-weak convergence is not

associated to any topology.

Proof of the Proposition 6.3. 1. For any λ,M, s, t ≥ 0 the elementary inequalities

M ∧ (s+ t) ≤M ∧ s+M ∧ t ≤ (2M) ∧ (s+ t) and λ (M ∧ s) = (λM) ∧ (λ s)

holds. We first deduce

w-lim [M ∧ (φn + ψn)] ≤ w-lim [M ∧ φn] + w-lim [M ∧ ψn] ≤ w-lim [(2M) ∧ (φn + ψn)]

so that r-lim (φn +ψn) = φ+ψ. Next, since for n large enough 0 < a ≤ λn ≤ A <∞, we can
write

(aM) ∧ (λn φn) ≤ (λnM) ∧ (λn φn) = M (λn ∧ φn) ≤ (AM) ∧ (λn φn).

Then passing to the limit n→ +∞, M → +∞ we obtain

r-limsup (λn φn) ≤ λφ ≤ r-liminf (λn φn).

We assume now that λn → 0. We define Yk,m := {y ∈ Yk, φ(y) ≤ m}, so that Yk,m ↗ Yk

when m ↗ +∞. Since (φn) is bounded in L0, for all fixed k and m and all sequences (Mn)
tending to +∞ we have meas {Yk,m, φn ≥ Mn} → 0 when n → ∞. Let ε > 0 and set
εn = εn(k,m) := mes {Yk,m, φn ≥ ε/λn}. Up to the extraction of a subsequence

ZL := {Yk, φ ≤ m`, λm`
φm`

≥ 1
L
, ∀` ≥ L}, satisfies meas (ZL) −→

L→∞
0.

Therefore, we have

lim sup
`→∞

∫
Yk

TM (λm`
φm`

) ≤ lim sup
`→∞

∫
(Yk\Yk,L)∪Zk,L

TM (λm`
φm`

) + lim sup
`→∞

∫
{λm`

φm`
≤1/L}

TM (λm`
φm`

)

≤M
(
ν(Y \Yk) + ν(Zk,L)

)
+

1
L
ν(Yk),

for all L ∈ N?. Thus TM (λm`
φm`

) → 0 in L1(Yk).
2. We know that

(6.3) β(s) = inf
`≥β

`(s),
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where the inf is taken over all affine applications `(t) = a t + b which satisfy a, b ≥ 0 and
β(t) ≤ `(t) for any t ≥ 0. Furthermore, for any ` and m, there clearly exists K0 such that

TM (`(s)) ≤ `(TK(s)) and `(TM (s)) ≤ TK(`(s)) for all K ≥ K0, s ≥ 0.

We deduce that for any ` ≥ β we have

TM (β(φn)) ≤ `(TK(φn)).

Thus
lim sup

n
TM (β(φn)) ≤ `(lim

n
TK(φn)) ≤ `(φ).

Finally, thanks to (6.2),

lim sup
n

TM (β(φn)) ≤ β(φ) for any M,

which exactly means that r-limsup β(φn) ≤ β(φ).

3. For any subsequence (n′) such that β(φn′), β(φn′/2+φ/2)) and β(φn′/2+φ/2))−β(φn′)/2−
β(φ)/2 ≥ 0 converge in the renormalized sense we have, thanks to c),

r-lim
[
β
(φn′ + φ

2
)
− β(φn′)

2
− β(φ)

2
]
+
β(φ)

2
+ r-lim

β(φn′)
2

= r-limβ
(φn′ + φ

2
)
,

so that

0 ≤ r-lim
[
β
(φn′ + φ

2
)
− β(φn′)

2
− β(φ)

2
]

= r-limβ
(φn′ + φ

2
)
− β(φ)

2
− r-lim

β(φn′)
2

≤ β(φ)− β(φ)
2

− β(φ)
2

= 0,

thanks to the point 2. and since φn/2 + φ/2 r
⇀φ. Therefore, for any k, we have

0 ≤ lim
n→∞

∫
Yk

T1

(
β
(φn + φ

2
)
− β(φn)

2
− β(φ)

2

)
dµ ≤

≤
∫

Yk

r-limsup
[
β
(φn + φ

2
)
− β(φn)

2
− β(φ)

2
]
dµ = 0,

so that, up to extraction a subsequence,

β
(φn + φ

2
)
− β(φn)

2
− β(φ)

2
→ 0 a.e. on Y and φn → φ a.e. on Y.

4. Fix χ ∈ Cc(Y ) such that 0 ≤ χ ≤ 1. Since TM (φn)χ ⇀ T̄M χ weakly in L1, we have

(6.4) S(TM (φn)χ) ⇀ S(T̄M χ) weakly in L1.
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Furthermore, we have TK(S(TM (φn)χ)) ≤ TK(S(φn)), and using (6.4) and part 2 it follows

S(T̄M χ) = r-liminf
n→∞

S(TM (φn)χ) ≤ r-liminf
n→∞

S(φn).

We conclude letting χ↗ 1 and M → /∞.
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Sup., 4e série, 3, 185-233 (1970)

[10] R. Beal, V. Protopopescu, Abstract time dependent transport equations, J. Math. Ann.
and Appl. 121, 370-405 (1987)

[11] N. Ben Abdallah, Weak Solutions of the Vlasov-Poisson Initial Boundary Value Problem,
Math. Meth. Appl. Sci. 17, 451-476 (1994)

[12] A. Bogdanov, V. Dubrovsky, M. Krutykov, D. Kulginov, V. Strelchenya, Interaction of
gases with surfaces, Lecture Notes in Physics, Springer (1995)

[13] L.L. Bonilla, J.A. Carillo, J. Soler, Asymptotic behavior of an initial boundary value
problem for the Vlasov-Poisson-Fokker-Planck System, J. Fonct. Anal. 111, 239-258 (1993)

[14] F. Bouchut, Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-
Fokker-Planck System in Three Dimensions, J. Fonct. Anal. 111 (1), 239-258 (1993)

[15] F. Bouchut, Smoothing Effect for the Non-Linear Vlasov-Poisson-Fokker-Planck System,
J. of Diff. Eq. 122 (2), 225-238 (1995)

[16] F. Bouchut, J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation
and of the Vlasov-Poisson-Fokker-Planck System with coulombic and newtonian potentials,
Diff. and Int. Eq. 3, 487-514 (1995)

[17] J. Brooks, R. Chacon, Continuity and compactness of measures, Adv. in Math. 37, 16-26
(1980)

[18] M. Cannone, C. Cercignani, On the trace theorem in kinetic theory, Appl. Math. Letters
4, 63-67 (1991)

34



[19] F. Castella, The Vlasov-Poisson-Fokker-Planck System with infinite kinetic energy, Indiana
Univ. Math. J. 47 (3), 939-964 (1998)

[20] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15,
1-89 (1943)

[21] J.A. Carillo, Global weak solutions for the initial-boundary value problems to the Vlasov-
Poisson-Fokker-Planck system, Math. Meth. Appl. Sci. 21, 907-938 (1998)

[22] J.A. Carillo, J. Soler, On the initial value problem for the VPFP system with initial data
in Lp spaces, Math. Meth. in the Appl. Sci. 18, 487-515 (1995)

[23] J.A. Carillo, J. Soler, On the Vlasov-Poisson-Fokker-Planck equation with measures in
Morrey spaces as initial data, J. Math. Anal. Appl. 207 (2), 475-495 (1997)

[24] J.A. Carillo, J. Soler, J.L. Vasquez, Asymptotic behaviour and selfsimilarity for the three
dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal. 141, 99-132 (1996)

[25] P. Cembrabos, J. Mendoza, Banach spaces of vector-valued functions, Lecture Note in
Mathematics n. 1676 Springer-Verlag (1997)

[26] C. Cercignani, The Boltzmann equation and its application, Springer-Verlag (1988)

[27] C. Cercignani, scattering kernels for gas/surface interaction, in Proceeding of the workshop
on hypersonic flows for reentry problems 1, INRIA, Antibes, 9-29 (1990)

[28] C. Cercignani, On the initial value problem for the Boltzmann equation, Arch. Rat. Mech.
Anal. 116, 307-315 (1992)

[29] C. Cercignani, Initial boundary value problems for the Boltzmann equation, transp. theory
stat. phys. 25 (3-5), 425-436 (1996)

[30] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Springer-
Verlag (1994)

[31] C. Cercignani, M. Lampis, A. Lentati, a new scattering kernel in kentic theory of gases,
transp. theory stat. phys. 24 (9), 1319-1336 (1995)
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