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Abstract. Rates of decay for the total mass of the solutions to Smoluchovski’s
equation with homogeneous kernels of degree λ > 1 are proved. That implies
that gelation always occurs. Morrey estimates from below and from above on
solutions around the gelation time are also obtained which are in agreement
with previously known formal results on the profile of solutions at gelling time.
The same techniques are applied to the coagulation-fragmentation model for
which gelation is established in some particular cases.
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1 Introduction and Main results

The purpose of this work is to investigate gelling transition in coagulation and
fragmentation model. The simplest model is the Smoluchowski coagulation
equation describing irreversible aggregation processes between particles which
coalesce and form larger and larger clusters.

Denoting by f(t, y) ≥ 0 the density of clusters of size y ∈ R+ at time t ≥ 0,
the continuous Smoluchowski’s coagulation equation reads [32]

∂

∂t
f = Qc(f) =

1
2

∫ y

0

a(y − y′, y′) f(t, y − y′) f(t, y′) dy′

−f(t, y)
∫ ∞

0

a(y, y′) f(t, y′) dy′,

f(0, y) = fin(y) ≥ 0.

(1.1)

We assume throughout this paper that the coagulation kernel a is an homoge-
neous function of the form

a(y, y′) =
κ

2
(yα y′β + yβ y′

α) with 0 ≤ α ≤ β ≤ 1,(1.2)
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where we may take κ = 1 without any loss of generality. We refer to Remark
4.2 and Remark 7.1 for some extensions of our analysis to more general kernels.
Since we are interested in gelling transition we only consider the case

λ := α+ β > 1.(1.3)

We refer to the review paper of D.J. Aldous [2] and D.L. Drake [11] for a basic
physical description of coagulation-fragmentation models as well as many other
references concerning physical motivations and mathematical analysis.

Let us emphasize that the results presented here are also valid for the discrete
Smoluchowski coagulation equation [34]

∂

∂t
ci =

1
2

i−1∑
j=1

a(i− j, j) ci−j(t) cj(t)−ci(t)
∞∑
j=1

a(i, j) cj(t),

ci(0) = ci,in, for any i ∈ N∗,
(1.4)

where ci(t) ≥ 0 denotes the concentration of clusters of size i ∈ N∗. Most
of our results also extend (with minor modifications) to the non homogeneous
continuous or discrete Smoluchowski coagulation equation. In order to avoid
repetitions, we restrict our exposition mainly to the continuous homogeneous
model (1.1). We quote the slight differences between the different models in
section 8 below.

The key point in the analysis of equation (1.1) is the following identity: for
every measurable functions f and ψ:∫ ∞

0

Qc(f)ψ dy =
1
2

∫ ∞

0

∫ ∞

0

a(y, y′) f(y) f(y′) ψ̃(y, y′) dydy′,(1.5)

ψ̃(y, y′) = ψ(y + y′)− ψ(y)− ψ(y′).(1.6)

This identity is obtained formally performing the change of variables (y, y′) →
(z = y− y′, y′) in the first term of Qc(f) in (1.5) and is therefore rigorous when
f yβ ψ ∈ L1(R+).

As an immediate consequence, when we choose ψ(y) = y in (1.5), so that
(1.6) vanishes, we get (at least formally) the conservation of mass

d

dt

∫ ∞

0

y f(t, y) dy = 0.(1.7)

Under the assumption

0 ≤ fin ∈ L1
1(R+), fin 6≡ 0(1.8)

it is well known that there exists a solution to (1.1) and (1.4) since the pionner
works of Melzak [31], Sockmayer [42] and McLeod [29] [30] for the simplest
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cases α = β = 0. We also refer to [43], [28], [16], [5], [17] for the case α, β <
1 and to [14], [23] who revisited the case α = β = 1. The case 0 < α <
1, β = 1 is treated in Corollary 2.9 below. Exact solutions have also been
constructed for special initial data (in particular for monodisperse distribution
in the case of Smoluchovski’s model) in [29], [28], [37], [27]. Finally, uniqueness
(and existence) of solution has been proved in [21], [3], [39] and [13] under the
assumption λ ≤ 1, but uniqueness of solution is an open problem under the
general assumption (1.2).

Here and below we use the notations g ∈ L1
k(R+) to denote a measurable

function such that

‖g‖L1
k

:=
∫ ∞

0

|g(y)| (1 + yk) dy <∞

and for such a function we define

Mk(g) :=
∫ ∞

0

g(y) yk dy.(1.9)

The solutions to (1.1) obtained in the references quoted above always satisfy
the following estimates

M0(t1) ≤M0(t0), (the number of particles decreases),(1.10)

M1(t1) ≤M1(t0), (the total mass decreases),(1.11)

for any t1 ≥ t0 ≥ 0 (see [23] and Theorem 2.4).

One of the most relevant questions from the physical point of view, and
mathematically interesting, is whether one has equality or strict inequality in
(1.11). This is the gelation problem.

For λ > 1, it is known that fo r fin ∈ L1
λ a solution of (1.1) can be constructed

in such a way that it is mass conserving for small time (see [9] and [22]) i.e.:

∃T > 0 M1(t) := M1(f(t, .)) ≡M1(0) ∀t ∈ [0, T ].(1.12)

For the discrete model (1.4) (then Mk ≤M` for k ≤ `) and initial data satisfying
M2(0) < ∞, this fact can be easily understood using the following elementary
argument. Thanks to (1.5)-(1.6) with ψ(y) = y2, we have

d

dt
M2(t) = M1+α(t)M1+β(t) ≤M2(t)2,(1.13)

and this differential inequality provides an (a priori) bound on the L1
2 norm on

a small interval [0, T ]. The computation leading to (1.7) is therefore rigourous.
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Moreover, conservation of mass (1.12) holds true with T = +∞ under the
assumption λ ≤ 1, see [43], [41]. For the discrete model (1.4) we argue as follows

d

dt
M2(t) = M1+α(t)M1+β(t)

≤ M1−α
1 (t)Mα

2 (t) M1−β
1 (t)Mβ

2 (t) ≤M1(0)M2(t),

where we have used twice the Holder inequality and (1.11). That differential
inequality provides an (a priori) bound on the L1

2 norm of the solution on every
bounded interval [0, T ].

However, for λ > 1 mass conservation is expected to break down in finite
time i.e.: there exists Tg ∈ R+, called gelation time, such that

M1(t) ≡M1(0) ∀ t < Tg, M1(t) < M1(0) ∀ t > Tg.(1.14)

This fact was conjectured by Lushnikov and Ziff independently at the end of
the 70’s.

This gelation phenomenon has been first adressed in the physical litterature,
based on explicit solutions for special initial data ([28], [37], [27], [14]) and on
formal scaling arguments [18].

The physical interpretation is that after gelation, some mass is lost under the
form of a particle of infinite size (y = ∞) with mass Min −M1(t), the so-called
gel part. The particles of density f(t, y) are then called the sol part. It is then
a microscopic description of a phase transition.

The first universal and rigourous argument concluding to gelation seems to
have been given by [28] in the case α = β = 1. More recently, using probability
arguments, I. Jeon [20] was able to construct gelling solutions to (1.4) for any
initial datum when λ > 1. P. Laurençot [23] has obtained a decay rate for the
total mass M1(t) in the particular case α = β = 1. We present here a sketch of
the proof. Taking ψ = 1 in (1.5)-(1.6) we get that a solution f to (1.1) satisfies
for any t1 ≥ t0 ≥ 0

1
2

∫ t1

t0

∫ ∞

0

∫ ∞

0

a(y, y′) f(t, y) f(t, y′) dydy′dt = M0(t0)−M0(t1).

Thanks to the elementary inequality

(y y′)λ/2 ≤ (yα y′β + yβ y′
α)/2(1.15)

and the positivity of M0 we deduce the following first fundamental estimate∫ ∞

t0

M2
λ/2(t) dt ≤ 2M0(t0) ∀t0 ≥ 0.(1.16)

Now, when α = β = 1 (so that λ/2 = 1), we deduce from (1.16) and (1.11) that

tM1(t)2 ≤
∫ t

0

M2
1 (s) ds ≤ 2M0(0).
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This implies the following decay rate on the total mass M1(t):

M1(t) ≤
2M0(0)√

t
∀ t ≥ 0.(1.17)

In particular, M1(t) is not constant and gelation must occur in finite time.
Finally, for modified models, gelation and non existence of solutions (which

may be considered as instantaneous and complete gelation) have been proved
in [40], [4], [8], [6].

Our first main result states that for any weak solution f (see Section 2 for
a precise definition) to the coagulation equation, with homogeneous kernel a
given by (1.2), (1.3), gelation occurs in finite time.

Theorem 1.1 Assume fin 6≡ 0. For every weak solutions f to (1.1)-(1.3),(1.8)
there exists a positive constant C∗ (depending on M0(0), M1(0), λ) such that
for any t ≥ 0

M1(t) ≤
C∗

(1 + t)1/λ
.(1.18)

As a consequence, gelation occurs in finite time: (1.14) holds with the following
upper bound on Tg:

Tg ≤ T∗ :=
(

C∗
M1(0)

)λ
.(1.19)

This result is a consequence of new momentum estimates (see Theorem 2.2 and
Corollary 2.3). It recovers the previous result by I. Jeon [20] and extends it in
several directions. First, our result is established for any weak solution and not
for a particular well constructed solution (recall that uniqueness is not known).
Our result also holds both for continuous and discrete models and is easy to
extend to a non homogeneous setting (see Section 8). Finally, our proof is com-
pletely different from Jeon’s proof (it is much more related to P. Laurençot’s
proof, [23]) and is very simple.

Once gelation is established, one may try to determine the asymptotic pro-
file of the solution f at gelling time Tg. Explicit exact solutions and formal
arguments indicate that it should be a self similar profile, with algebraic spatial
decay determined by the value of λ in (1.2). More precisely:

f(Tg, y) ∼ y−
3+λ
2 when y →∞(1.20)

see [18], [14], [10]. We present here a first rigorous result, in terms of Morrey-
Campanato type estimates, which hold for every weak solution, and which is in
agreement with (1.20) although it is less precise.

Theorem 1.2 Let f be any weak solution to (1.1)-(1.3) and (1.8). Then, for
any τ > 0 and any 0 ≤ T0 ≤ T1 such that

M1(T1) < M1(T0),(1.21)
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f satisfies:

∀R > 0 sup
S>R

∫ T1

T0

(
1
Sτ

∫ S

0

f(t, y) yλ/2+1/2+τ dy

)2

dt ≤ C1,(1.22)

and

∀R > 0
∫ T1

T0

sup
S>R

(
1
Sτ

∫ S

0

f(t, y) yλ/2+1/2+τ dy

)2

dt ≥ C−1
1 ,(1.23)

where C1 ∈ (0,∞) depends on α, β, f , T0, T1 and τ but not on R.

The Morrey norms in (1.22) and (1.23) are classicaly used to include func-
tions with a specific algebraic decay at infinity. The following Corollary relates
the estimates (1.22) and (1.23) to the algebraic decay (1.20)

Corollary 1.3 Assume furthermore that f has a spatial decay profile ξ, i.e.:{
∃Λ,M ∈ R+, ∃ξ(y) s.t. ∀t ∈ [T0, T1], ∀y ≥M
Λ−1 ξ(y) ≤ f(t, y) ≤ Λ ξ(y).(1.24)

Then, the profile ξ satisfies

C−1
2 ≤ lim sup ξ(y) y3/2+λ/2, lim inf ξ(y) y3/2+λ/2 ≤ C2,(1.25)

for some C2 ∈ R+ depending on C1, Λ and T1 − T0. Moreover, if we also know
that

ξ(y) = y−θ ξ0(y), with ξ0(y) y−κ −→
y→∞

0 ∀κ > 0,(1.26)

then θ = 3/2 + λ/2 and ξ0 ≡Const.

It is then clear from Theorem 1.2 and its Corollary that, at gelling time, the
only possible algebraic decay for a solution is 3/2 + λ/2. But since we are not
able to prove (1.24) nor (1.26), other intrincated large size asymptotic behaviors
are possible which could be in agreement with estimates (1.22) and (1.23).

We next investigate how the techniques that we have introduced for the
coagulation equation can be used for the coagulation-fragmentation equation

∂

∂t
f = Qc(f) +Qf (f)(1.27)

with Qc is given by (1.1) and (1.2), and Qf is defined by

Qf (f) = −1
2
f(y)

∫ y

0

b(y − y′, y′) dy′ +
∫ ∞

0

b(y, y′) f(y + y′) dy′.(1.28)

This equation takes into account not only the coagulation but also the frag-
mentation processes by which the clusters break apart into smaller peaces. We
assume throughout this paper that the fragmentation kernel b satisfies

0 ≤ b(y, y′) = b(y′, y) ≤ B(y + y′)(1.29)
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with
B(z) =

B

(1 + z)γ
(1.30)

for some B > 0 and γ satisfying

λ

2
+ γ ≥ 3

2
.(1.31)

The key identity for the fragmentation term, which plays the same role as
(1.5)-(1.6) for the coagulation term, is∫ ∞

0

Qf (f)ψ dy = −1
2

∫ ∞

0

∫ ∞

0

b(y, y′) f(y + y′) ψ̃(y, y′) dydy′(1.32)

=
1
2

∫ ∞

0

f(z) kψ(z) dz,

with

kψ(z) =
∫ z

0

b(y, z − y) (ψ(y) + ψ(z − y)− ψ(z)) dy,(1.33)

for any f ∈ L1
1 and any ψ ∈ L∞. As a consequence, the same formal conser-

vation of mass (1.7) holds for the coagulation-fragmentation equation (1.27).
Existence results of solutions to the Cauchy problem associated to (1.32) have
been proved under different growth assumptions on the kinetic kernels a and b
and we refer to [36], [3], [12], [7] for the discrete model and [31], [1], [38], [13],
[23] and [26] for the continuous model. See also Corollary 2.9.

Concerning gelation phenomenon for the coagulation-fragmentation equa-
tion, rather few results are known. Notice that the two phenomena, coagulation
and fragmentation, have opposite effects with respect to gelation. As we have
already seen, if no fragmentation is present, and the coagulation is strong (λ > 1
in (1.2)), then gelling transition occurs to all the weak solutions (that is Theo-
rem 1.1). On the other hand, under the condition λ ≤ 1, or if the fragmentation
kernel b is strong enough with respect to the coagulation kernel a, solutions
exists which preserve the total mass for all the time, see [41], [7], [3], [15].

An illustrative example is the following. Consider the case a(y, y′) = y y′

and b(y, y′) = 1. Then using (1.5) and (1.32) with ψ(y) = 1 and ψ(y) = y2, we
get thanks to the Cauchy-Schwarz inequality M2

2 ≤M1M3

d

dt
M0 = −1

2
M2

1 +
1
2
M1 =

1
2
(1−M1)M1(1.34)

and
d

dt
M2 =

1
2
M2

2 −
1
2
M3 ≤

1
2

(M1 −
1
3
)M3.(1.35)

On one hand, we see from (1.35) that if M1(0) ≤ 1/3 then M2 is (formally)
decreasing and then in this case one can build mass conserving solution. On
the other hand, if M1(0) > 1 then from (1.34) any solution gels in finite time
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(otherwise M1(t) is a constant and M0(t) vanishes in finite time, which is a
contradiction).

The question is then twofold. On the one hand, for which kernels a and b
do the coagulation-fragmentation equation have gelling solutions? On the other
hand, for which kernels a and b do all the solutions undergo gelling transition?
We are far from answering these to questions, but Theorem (1.4) stated below
gives some gelation criteria for the coagulation-fragmentation model and is a
partial result in that direction.

Theorem 1.4 Assume λ > 1 and γ ≥ 3/2− λ/2. Then, for any weak solution
of the equation (1.27) gelation occurs when

M1(0) is large enough;(1.36)

or, without any condition on M1(0), when one of the two following conditions
is satisfied

b has a compact support;(1.37)

γ > 1 and
{

a(y, y′) = r(y)α r(y′) + r(y) r(y′)α, α ∈ (0, 1]
1 ≤ r(y) ∼ y for large y.(1.38)

Previous results on that direction have been proved by I. Jeon [20] and P.
Laurençot [23]. To our knowledge Theorem 1.4 is the first result establishing
systematic gelation for the complete coagulation-fragmentation equation (with
b 6≡ 0). Notice that 1.38 includes the case of discrete coagulation-fragmentation
equation with kernel a(i, j) = iαj + ijα. Notice also that when γ > 3

2 −
λ
2 ,

Theorem 1.2 may be applied and therefore the expected profile of the solution
at gelling time is again like y−( 3

2+ λ
2 ).

The outcome of the rest of the paper is as follows:

Section 2. More about our results: moment estimates.
Section 3. Proof of the estimates from above for the coagulation equation.
Section 4. Gelation for the coagulation equation.
Section 5. Estimates from below and profile at gelling time for the coagulation
equation.
Section 6. Behaviour of the solutions to the coagulation-fragmentation equation.
Section 7. Existence result for the coagulation fragmentation equation.
Section8. Extensions to non homogeneous models.

2 More about our results: moment estimates

In this section we state in detail some new estimates which give rise, in particular
to the main results stated in the introduction. For the sake of completeness we
first recall the definition of weak solution to (1.1) and (1.27).
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Definition 2.1 We say that a function f : R2
+ → R+ is a weak solution to the

coagulation-fragmentation equation (1.27) if f ∈ C([0,∞);L1) ∩ L∞(0, T ;L1
1)

for any T > 0,
∀t ≥ 0 M1(t) ≤M1(0)(2.1)

and for any T1 ≥ T0 ≥ 0 and any ψ ∈ L∞(R+)

[∫ ∞

0

f(t, y)ψ(y) dy
]T1

T0

=(2.2)

=
1
2

∫ T1

T0

∫ ∞

0

∫ ∞

0

(a f(t, y) f(t, y′)− b f(t, y + y′)) ψ̃(y, y′) dydy′dt,

with a given by (1.2)-(1.3) and b satisfying (1.29)-(1.31). Solutions to the co-
agulation equation (1.1) are defined in the same way taking b ≡ 0.

It is possible to define the solutions of equation (1.1) and (1.27) in many
other ways. For instance we may impose f to be a solution of (1.1) or (1.27) in
the distributional sense in [0, T )× R+ for any T > 0 or in the mild sense. But
anyway, as it is proved in [26], all these definitions are equivalent. Let us also
emphasize that condition (2.1) is made in order to select a physically relevant
solution. Nevertheless, it is not necessary to impose such an aditional condi-
tion for the kernels a and b that we are considering in this paper (except when
γ = 3/2−λ/2), since we shall prove that M1(t) is a decreasing function. Finally,
we will not repeat anymore the assumptions on a and b which are, except if it
is specified, those of the Definition 2.2.

Our first result is a family of a posteriori upper bounds on the weak solutions
to the coagulation equation (1.1).

Theorem 2.2 For any increasing function Φ : R+ → R+ such that Φ(0) = 0
and

CΦ :=
∫ ∞

0

Φ′(A)A−
1
2 dA <∞(2.3)

for any weak solution f to (1.1), and for all T ≥ 0, there holds∫ ∞

T

(∫ ∞

0

f(t, y) yλ/2 Φ(y) dy
)2

dt ≤ 2C2
ΦM1(T ).(2.4)

Under suitable choices of functions Φ we deduce the following refined moment
estimates.

Corollary 2.3 For every weak solution f to (1.1) and every T ≥ 0, there holds:∫ ∞

T

(∫ ∞

R

f(t, y) y dy
)2

dt ≤ CλR
1−λM1(T )(2.5)
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for any R > 0, λ ∈ (1, 2);

∫ ∞

T

(
1
Rτ

∫ R

0

f(t, y) yλ/2+1/2+τ dy

)2

dt ≤ Cτ M1(T )(2.6)

for any R, τ > 0;∫ ∞

T

(∫ ∞

e

f(t, y)
yλ/2+1/2

(lny)δ
dy

)2

dt ≤ CδM1(T )(2.7)

for any δ > 1; ∫ ∞

T

M2
k (t) dt ≤ Ck (M0(T ) +M1(T )),(2.8)

for any k ∈ [λ/2, λ/2 + 1/2) if λ ∈ (1, 2) and for k = 1 if λ = 2.

In particular, we see from (2.8) that M1 ∈ L2(R+) so that M1(t) can not be
constant in time and gelation must occurs. In fact, rates of decay for the total
mass M1(t) of any weak solution as stated in Theorem 1.1 can be deduced from
(2.6) and the following result.

Theorem 2.4 Any weak solution f to (1.1) satisfies

Mk is decreasing and Mk(t) → 0 when t→∞(2.9)

for any k ∈ [0, 1]. Moreover, Mk(t) is continuous for any k ∈ [0, 1) and M1(t)
is right continuous.

We do not know whether (1.18) gives the generic decay of weak solutions for
general nonnegative initial data fin ∈ L1

1(R+). Nevertheless it may be improved
in some cases. This is done in the following Corollary which has to be compared
with [27] and [14].

Corollary 2.5 For any weak solution of the discrete coagulation equation (1.4)
we have

M1(t) ≤
C

1 + t
for any t ≥ 0.(2.10)

For any weak solution to (1.1) with initial data such that M−q(0) <∞, q ≥ 0:

M1(t) ≤
Cq

(1 + t)ν
for any t ≥ 0, with ν =

1
1 + λ−1

1+q

.(2.11)

For any weak solution to (1.1) with initial data such that fin(y) = 0 for y ∈ [0, δ]
and some δ > 0,

M1(t) ≤
C

1 + t
for any t ≥ 0.(2.12)
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Notice that, thanks to (2.10) we recover the upper bound on the gelling time
obtained in [20], namely Tg ≤ C/M1(0).

We now present the lower bounds that we can derive on solutions around
the gelling time.

Theorem 2.6 Let f be solution of (1.1). Assume that

∆M1 := M1(T0)−M1(T1) > 0 for some T0 < T1.(2.13)

Then for any R, τ > 0 there exists Cτ such that∫ T1

T0

(
sup
S>R

1
Sτ

∫ S

0

yλ/2+1/2+τ f(t, y) dy

)2

dt ≥ Cτ ∆M1(2.14)

and ∫ T1

T0

(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, y) dy

)2

dt = +∞.(2.15)

As a consequence, combining (2.6) and (2.14) we obtain Theorem 1.2.

Let us quote some questions of interest.

Open questions.

1. Is M1(t) continuous?
2. At gelling time is the profile of f exactly (1.20)?
3. Another way to understand the gelation phenomenon is to prove that for
some k > 1 and 0 < Tc(k) <∞,

lim
t→Tc(k)

Mk(t) = ∞.(2.16)

For instance, when α = β = 1, (1.13) gives

d

dt
M2(t) = M2(t)2,(2.17)

which readily implies that M2(t) blows up in finite time and Tc(2) = M2(0)−1.
We refer to [9] where it is shown, for the discrete model (1.4), that Mλ(t) blows
up in finite time for the coagulation kernel (1.2) with α ∈ (0, 1), β = 1. It is in
general an open problem to prove whether Tg = Tc(k). Nevertheless, it is easy
to check that in the simple case where a(y, y′) = y y′ we have Tg = Tc(2), see
[33] Theorem 2.2 page 411.
4. Does Tg satisfies: ∀t0, t1 such that t0 < Tg ≤ t1,

lim inf
y→∞

f(t0, y) y3/2+λ/2 = 0, lim inf
y→∞

f(t1, y) y3/2+λ/2 > 0 ?
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We next investigate how the previous results may be extended to the coagulation-
fragmentation equation (1.27). We start with the extension of Theorem 2.2 and
Corollary 2.3.

Theorem 2.7 Let Φ : R+ → R+ be an increasing function satisfying Φ(0) = 0
and (2.3). For any weak solution f to (1.27) there holds∫ t1

t0

(∫ ∞

0

f(t, y) yλ/2 Φ(y) dy
)2

dt ≤ C2
Φ (4M1(t0) +B2 (t1 − t0))(2.18)

for every t1 ≥ t0 ≥ 0. In particular, for convenient choices of Φ, we obtain that
for any T ≥ 0:

∫ T

0

(
1
Rτ

∫ R

0

f(t, y) yλ/2+1/2+τ dy

)2

dt ≤ Cτ (M1(0) +B2 T )(2.19)

for any R, τ > 0;∫ T

0

(∫ ∞

e

f(t, y)
yλ/2+1/2

(lny)δ
dy

)2

dt ≤ Cδ (M1(0) +B2 T )(2.20)

for any δ > 1; ∫ T

0

M2
k (t) dt ≤ Ck (M0(0) +M1(0) +B2 T )(2.21)

for any k ∈ [λ/2, λ/2 + 1/2) if λ ∈ (1, 2) and for k = 1 if λ = 2.

The ocurrence of gelation for large initial mass stated in Theorem 1.4 is
a consequence of estimate (2.21) with k = 1. The two other statements of
Theorem 1.4 come from“variations around” the proof of Theorem 2.7.

Another consequence of Theorem (2.7), more precisely of the estimate (2.20),
is the following existence result for equation (1.27). We notice that it is only
new for the cases α ∈ (0, 1) and β = 1.

Corollary 2.8 Assume α ∈ (0, 1) and β = 1. For any initial datum fin ∈
L1

1(R+), there exists a weak solution f ≥ 0 to the coagulation-fragmentation
equation (1.27) satisfying (2.1).

Let us finally state the following result about the profile at gelation time for
the solutions to the coagulation-fragmentation equation (1.27).

Corollary 2.9 Assume that λ/2+γ > 3/2. Any weak solution to the coagulation-
fragmentation equation (1.27) satisfies M1(t) is decreasing and right continuous,
and moreover, if (2.13) holds, then (2.14) and (2.15) also hold.
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As a consequence, gathering (2.19) in Theorem 2.7 and Corollary 2.9 we see
that Theorem 1.2 (and hence Corollary 1.3) is also valid when λ ∈ (1, 2] and
λ/2 + γ > 3/2. Therefore, the only algebraic decay at gelling time may be
3/2 + λ/2, as for the pure coagulation model.

Under the conditions of Theorem 1.4, any solution of the coagulation-fragmentation
equation satisfies (2.20), (2.21), just like those of the coagulation equation. In
particular, their only possible asymptotic profile at Tg with algebraic behaviour
y−θ as y → ∞ is again θ = 3/2 + λ/2. This seems to indicate that, under
these hypothesis on the coagulation and fragmentation kernels, the gelation of
the solutions to the coagulation-fragmentation equation is dominated by the
coagulation, and the fragmentation is only a small perturbation.

Open Problem 2.10 It is possible in some cases to use the same formal argu-
ments as Ernst, Ziff and Hendricks in [14] to get some insight on the behaviour
of the solutions to the coagulation fragmentation equation. Let us assume in
what follows that a is given by (1.2) and that b(y, y′) = B(y + y′) with B given
by (1.30).

The loss of mass from smaller clusters with y < L to larger clusters is given
by

d

dt

∫ L

0

y f(t, y) dy =
∫ L

0

y Q(f) dy(2.22)

with ∫ L

0

y Q(f) dy = −
∫ L

0

∫ ∞

L−y
y f(t, y) f(t, y′) a(y, y′) dy dy′(2.23)

+
∫ L

0

∫ ∞

L−y
y f(t, y + y′) b(y, y′) dy′ dy.

Assume that at Tg the solution is given by a pure power-law f(Tg, y) ≡ C y−r.
Then, if r satisfies

max{β + 1, 2− γ} < r < α+ 2(2.24)

we obtain ∫ L

0

y Q(f) dy = −K1 C
2 L3+2λ−2r +K2CL

3−γ−r(2.25)

for some positive constants K1 = K1(α, β, r) and K2 = K2(γ, r).
On the other hand we formally deduce from 2.22 that there is not conserva-

tion of mass if and only if:

lim
L→∞

∫ L

0

y Q(f) dy < 0.(2.26)

From 2.25 this only holds whenever r ≤ min(3/2 + λ/2, λ + γ). Arguing now
byy analogy with the formal argument used for the pure coagulation equation we
then consider

r = min(3/2 + λ/2, λ+ γ).(2.27)
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We obtain then:
(i) If γ + λ/2 > 3/2, so that r = 3/2 + λ/2. Then,∫ L

0

y Q(f) dy = −K1C
2 +K2CL

3/2−λ/2−γ → −K1C
2 < 0, as L→∞.

Therefore, (2.26) holds for any C > 0.
(ii) If γ + λ/2 ≤ 3/2, then r = λ+ γ and∫ L

0

y Q(f) dy = (K2C −K1C
2)L3−λ−2γ .

Therefore, (2.26) holds if and only if C > K2
K1

, i.e. the initial datum is suffi-
ciently large.

On the ground of the above remarks we are lead to the following conjectures.
1.- If γ+λ/2 > 3/2: gelation occurs for all initial data and the gelling profile

is given by y−(3/2+λ/2). Moreover M1(t) → 0 as t→∞.
2.- If γ + λ/2 ≤ 3/2 and λ+ γ ≥ 2 there exists a positive constant M∗

1 such
that:

If M1(0) > M∗
1 gelation occurs, the gelling profile is like y−(λ+γ) and

M1(t) →M∗
1 as t→∞.

If M1(0) <≤M∗
1 the mass of the solution is conserved for all the time.

Notice that when λ+ γ < 2 it is possible to construct global mass preserving
solutions, see [7], [15].

3 Upper bounds

This section is devoted to the proof of the a posteriori estimates in Theorem 2.2
and Corollary 2.3.

Proof of Theorem 2.2. Consider a weak solution f of equation (1.1). Choosing
ψ = ψA(y) = y ∧A (which belongs to L∞) in (1.5) we get

1
2

∫ t1

t0

∫ ∞

0

∫ ∞

0

a(y, y′) f(t, y) f(t, y′) (−ψ̃A(y, y′)) dydy′dt =(3.1)

=
∫ ∞

0

f(t0, y)ψA dy −
∫ ∞

0

f(t1, y)ψA dy.

We compute

−ψ̃A(y, y′) =


0 on {y, y′; y + y′ ≤ A}
y + y′ −A on TA
y on {y, y′; y ≤ A, y′ ≥ A}
y′ on {y, y′; y ≥ A, y′ ≤ A}
A on {y, y′; y ≥ A, y′ ≥ A},

(3.2)
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with
TA = {y, y′; y ≤ A, y′ ≤ A, y + y′ ≥ A}.(3.3)

From (1.15) and −ψ̃A(y, y′) ≥ 0, and keeping only the term coming from the
region {y ≥ A, y′ ≥ A} in the collision integral (3.1), we deduce∫ t1

t0

(∫ ∞

A

yλ/2 f(t, y) dy
)2

dt ≤ 2
M1(t0)
A

∀A > 0.(3.4)

First, using Fubini’s Theorem, we have∫ ∞

0

f(t, y) yλ/2 Φ(y) dy =
∫ ∞

0

Φ′(A)
∫ ∞

A

f(t, y) yλ/2 dy dA.(3.5)

Next, using Cauchy-Schwarz inequality and Fubini’s Theorem, we deduce from
(3.4) and (3.5)∫ t1

t0

(∫ ∞

0

Φ′(A)
∫ ∞

A

f(t, y) yλ/2 dy dA
)2

dt ≤

≤
∫ t1

t0

∫ ∞

0

Φ′(A)
A

1
2

dA

∫ ∞

0

Φ′(A)A
1
2

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dAdt(3.6)

≤ CΦ

∫ ∞

0

Φ′(A)A
1
2

∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dt dA

≤ CΦ

∫ ∞

0

2M1(t)
Φ′(A)
A

1
2

dA = 2C2
ΦM1(t0).

Theorem 2.2 then follows from (3.5) and (3.6) letting t1 →∞. ut

Proof of Corollary 2.3.

- Proof of (2.5). Taking Φ(y) =
(
y1−λ/2 − (R/2)1−λ/2

)+, the constant CΦ

in (3.6) is

CΦ =
2− λ

λ− 1

(
R

2

) 1
2−

λ
2

.(3.7)

From (3.7) and (2.4) we get∫ ∞

t0

(∫ ∞

R

f(t, y) yλ/2
(y

2

)1−λ/2
dy

)2

dt ≤ CM1(t0)R1−λ,

and (2.5) readily follows.

-Proof of (2.7). We define Φ(y) =
(
y1/2/(lny)δ − r1/2/(lnr)δ

)+ with δ > 1
and r = exp(2 δ). We easily verify that Φ is increasing and that the associated
constant CΦ by (3.6) is finite. We conclude using estimate (2.4) for this choice
of Φ and the estimate (2.5) with R = e.
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- Proof of (2.6). Taking Φ(y) = (y ∧R)
1
2+τ , we get

CΦ =
(
1 +

1
2 τ
)
Rτ ,(3.8)

and conclude.
- Proof of (2.8). For k ∈ [λ/2, λ/2 + 1/2) we have for some constant Ci

depending on λ and k

M2
k (t) ≤ C1

(∫ e

0

y
λ
2 f(t, y) dy +

∫ ∞

e

yk f(t, y) dy
)2

≤ C2

M2
λ/2(t) +

(∫ ∞

e

y
λ
2 + 1

2

(lny)2
f(t, y) dy

)2
 .

Then (2.8) follows from (1.16) and (2.7). ut

4 Gelation

This section is devoted to the proof of Theorem 1.1, Theorem 2.4 and Corollary
2.5.
Proof of (2.9) in Theorem 2.4. Define ψA(y) = yk ∧ A with k ∈ [0, 1] and
ψ̃A(y, y′) by (1.6). From the two following elementary inequalities

(u ∧A) + (v ∧A) ≥ (u+ v) ∧A and Xk + Y k ≥ (X + Y )k

and the fact that z 7→ z ∧A is increasing, we get

yk ∧A+ y′
k ∧A ≥ (yk + y′

k) ∧A ≥ (y + y′)k ∧A,

so that ψ̃A ≥ 0. For t1 ≥ t0 ≥ 0, we then deduce from the fundamental identity
(1.5) that∫ ∞

0

f(t1, y)ϕA(y) dy ≤
∫ ∞

0

f(t0, y)ϕA(y) dy ≤
∫ ∞

0

f(t0, y) yk dy.

We conclude by Fatou Lemma (letting A→∞) that t 7→Mk(t) is a decreasing
function.

Proof of Theorem 1.1. We just need to prove (1.18). Our proof is based on the
method introduced in [23] and on the new bound (2.5).

For given R > 0 we have

M2
1 (t) ≤ 2

(∫ R

0

y f(t, y) dy

)2

+ 2
(∫ ∞

R

y f(t, y) dy
)2

(4.1)
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and (∫ R

0

y f(t, y) dy

)2

≤ R2−λM2
λ/2(t).(4.2)

Gathering (4.1), (4.2) with (1.16) and (2.5) we get for any R > 0∫ ∞

T

M2
1 (t) dt ≤ 4R2−λM0(T ) + CλR

1−λM1(T ).(4.3)

Then, making the choice R = M1(T )/M0(T ) and using (1.10) we obtain∫ ∞

T

M2
1 (t) ds ≤ CλM0(0)λ−1M1(T )2−λ.(4.4)

The decay rate (1.18) follows then from (4.4) and Lemma 4.1 below. ut

Lemma 4.1 Assume that the square integrable and decreasing function M1(t)
satisfies

∀T ≥ 0
∫ ∞

T

M2
1 (s) ds ≤ C1M1(T )θ,(4.5)

for some constants C1 > 0 and θ ∈ (0, 2). Then

∀t > 0 M1(t) ≤ C2t
− 1

2−θ ,(4.6)

for some constant C2 = C2(C1, θ, ||M1||L2) > 0.

Proof of Lemma 4.1. The proof of Lemma 4.1 is classical. Nevertheless, for
the sake of completeness, we present it here. Define

u(t) :=
∫ ∞

t

M2
1 (s) ds.

We deduce from (4.5) that u satisfies
du

dt
≤ −

(
u(t)
C1

)2/θ

and thus

u(t) ≤

(
t

C
2/θ
1

+
1

u(0)2/θ−1

)− 1
2/θ−1

.(4.7)

Since M1(t) is decreasing we also have

t

2
M2

1 (t) ≤
∫ t

t/2

M2
1 (s) ds ≤ u(t/2),(4.8)

and Lemma 4.1 follows gathering (4.7) and (4.8). ut

End of the Proof of Theorem 2.4. We proceed in two steps.
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Step 1. For any k ∈ [0, 1) we prove that Mk(t) → 0. Chosing ψ(y) = 1[0,ρ](y)
we find that ψ̃ ≤ 0 and therefore∫ ρ

0

f(t, y) dy ≤
∫ ρ

0

fin(y) dy for any t ≥ 0.(4.9)

We deduce that, for any k ∈ [0, 1) and ρ ∈ (0, 1),

Mk(t) ≤ ρk
∫ ρ

0

f(t, y) dy +
1

ρ1−k

∫ ∞

ρ

y f(t, y) dy

≤
∫ ρ

0

fin(y) dy +
1

ρ1−k M1(t),

and the right hand side term goes to 0 when t→∞ and ρ→ 0.

Step 2. For any k ∈ [0, 1) we prove that Mk(t) is continuous and M1(t) is right
continuous. Since by definition f ∈ C([0,∞);L1(R+))∩L∞(0, T ;L1

1(R+)) for all
T > 0, it readily follows that Mk(t) is continuous for any k ∈ [0, 1). Moreover,
for any t0 ≤ t1 we have

0 ≤M1(t0)−M1(t1) =
∫ ∞

0

f(t0, y) y ∧Ady −
∫ ∞

0

f(t1, y) y ∧Ady

+
∫ ∞

0

f(t0, y) (y −A)+ dy −
∫ ∞

0

f(t1, y) (y −A)+ dy(4.10)

≤
∫ t1

t0

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) (−ψ̃A) dydy′dt+
∫ ∞

0

f(t0, y) (y −A)+ dy.

For fixed t0 ≥ 0 we fix A large enough so that the second term is small, and
then t1 close enough to t0, so that the first term is small. This exactly means
that M1(t) is right continuous. ut

Proof of Corollary 2.5. Here again we follow [23].
Proof of 2.10 and 2.12. For the discrete coagulation equation we have

M0(t) ≤ CM1(t).(4.11)

with C = 1. For the continuous coagulation equation with vanishing initial data
near the origin, we use 4.9 with ρ = δ which implies that f(t, y) ≡ 0 for any
time t ≥ 0 and every y ∈ [0, δ]. Therefore (4.11) also holds with C = 1/δ. In
both cases, (4.4) and (4.11) imply∫ ∞

T

M2
1 (t) dt ≤ CλM1(T ).

The decay rate (2.10) then follows again from Lemma 4.1.
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Proof of 2.11. Under the assumption M−q(0) <∞ we may write

M0(t) ≤ RqM−q(0) +
1
R
M1(t).(4.12)

Gathering (4.3) and (4.12) we have∫ ∞

T

M2
1 (t) dt ≤ Cλ (R2−λM0(T ) +R1−λM1(T ))

≤ Cλ (R2−λ+qM−q(0) +R1−λM1(T ))

≤ Cλ (1 +M−q(0))M1(T )1+
1−λ
1+q

with the choice R1+q = M1(T ). We conclude again using Lemma 4.1. ut

Remark 4.2 One can also prove that gelation occurs for any coagulation kernel
satisfying the assumption

a > 0 on R2
+ and a ≥ a0 on [A0,∞)2

with a0 of the shape (1.2) and A0 large. Indeed, in this case we have for any
A1 > 0

a ≥ κA1 a0 on [A1,∞)2,

with κA1 > 0. We then proceed as in the proof of Theorem 1.4 step 2 in Section
6, choosing A1 small enough in (6.9) and (6.10).

5 Estimates from below and profile at gelling
time

This section is devoted to the proof of Theorem 2.6, Theorem 1.2 and Corollary
1.3.

Proof of Theorem 2.6. Step 1. Preliminaries. Let put again ψA(y) = y ∧A. We
deduce from (3.1), (3.2) and assumption (2.13) that there exists A0 ≥ 0 such
that

∀A ≥ A0

∫ T1

T0

κ(A, t) dt ≥ 1
2
∆M1,(5.1)

where we have set κ = κ1 + κ2 + κ3 and

κ1(A, t) = A

∫ ∞

A

∫ ∞

A

a(y, y′) f(t, y) f(t, y′) dydy′ ≥ 0,(5.2)

κ2(A, t) = 2
∫ ∞

A

{∫ A

0

y a(y, y′) f(t, y) dy

}
f(t, y′) dy′ ≥ 0,(5.3)
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κ3(A, t) =
∫∫

TA

(y + y′ −A) a(y, y′) f(t, y) f(t, y′) dydy′ ≥ 0,(5.4)

with TA defined in (3.3).
In order to get estimates (2.14) and (2.15) we treat separately the contribu-

tion of each term κi. We start showing that the analysis of κ3 reduces to the
analysis of κ1 and κ2. Indeed, we have∫ ∫

TA

(y + y′ −A) a(y, y′) f(t, y) f(t, y′) dydy′ =

= 2
∫ ∞

A/2

dy′
∫ A/2

0

dy 1TA
(y + y′ −A) a(y, y′) f(t, y) f(t, y′)

+
∫ ∞

A/2

∫ ∞

A/2

1TA
(y + y′ −A) a(y, y′) f(t, y) f(t, y′) dydy′

≤ 2
∫ ∞

A/2

{∫ A/2

0

y a(y, y′) f(t, y) dy

}
f(t, y′) dy′

+2
A

2

∫ ∞

A/2

∫ ∞

A/2

a(y, y′) f(t, y) f(t, y′) dydy′,

since y + y′ −A ≤ min(y, y′, A) on TA. In other words

κ3(A, t) ≤ κ2(A/2, t) + 2κ1(A/2, t) ∀t, A ≥ 0.(5.5)

Step 2. We prove (2.14). First notice that for any δ2, τ ≥ 0 with δ1 > 0 we have

Rδ1
∫ ∞

R

f(t, y) yδ2 dy =
∑
j∈N

Rδ1
∫ 2j+1R

2jR

f(t, y) yδ2 dy

≤
∑
j∈N

( 1
2j (δ1+τ)Rτ

∫ 2j+1R

2jR

f(t, y) yδ1+δ2+τ dy
)

(5.6)

≤

(
sup
S≥R

1
Sτ

∫ 2S

S

f(t, y) yδ1+δ2+τ dy

) (∑
j∈N

1
2j δ1

)
≤ Cδ1 sup

S>R

1
Sτ

∫ S

0

f(t, y) yδ1+δ2+τ dy,

for some constant Cδ1 only depending on δ1.
On the one hand we have for any τ ≥ 0

κ1(A, t) = A

∫ ∞

A

∫ ∞

A

a(y, y′)f(t, y)f(t, y′)dydy′

≤
(
A1/2+(β−α)/2

∫ ∞

A

yα f(t, y) dy
)(

A1/2+(α−β)/2

∫ ∞

A

y′
β
f(t, y′) dy′

)
(5.7)
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≤ Cα,β

(
sup
S>A

1
Sτ

∫ S

0

f(t, y)y
1
2+ λ

2 +τ dy

)2

,

where we have used twice the estimate (5.6), remarking that |α− β| < 1.

On the other hand, for (α′, β′) = (α, β) or (α′, β′) = (β, α) so that α′−β′
2 + 1

2 > 0,
we have, for any τ ≥ 0∫ A

0

yα
′+1f(t, y) dy

∫ ∞

A

y′
β′
f(t, y′) dy′ ≤

≤

(
1
Aτ

∫ A

0

y
λ
2 + 1

2+τf(t, y) dy

)(
A

α′−β′
2 + 1

2

∫ ∞

A

y′
β′
f(t, y′) dy′

)
.

We then deduce from (5.6) that

κ2(A, t) ≤ Cα,β

(
sup
S>A

1
Sτ

∫ S

0

f(t, y)y
1
2+ λ

2 +τ dy

)2

.(5.8)

As a conclusion, (2.14) follows from (5.1), (5.5), (5.7) and (5.8) for any R =
A/2 ≥ A0/2, and therefore for any R > 0.

Step 3. We prove (2.15). The lower bound (5.1) and Fubini’s theorem (notice
that κi ≥ 0) imply

3∑
i=1

∫ T1

T0

∫ ∞

e

κi(A, t)
A lnA

dAdt =
∫ ∞

e

∫ T1

T0

κ(A, t) dt
dA

A lnA
= ∞.

From (5.6) we then obtain∫ T1

T0

∫ ∞

e

κi(A, t)
A lnA

dAdt = +∞ for i = 1 or 2.(5.9)

We need the following lemma, which we state below and prove at the end of the
proof of Theorem 2.6.

Lemma 5.1 There is ξ1 ∈ L∞(R2
+) such that

∀y, y′ ≥ e

∫ min(y,y′)

e

dA

lnA
≤ 2

y1/2+(β−α)/2

√
lny

y′
1/2−(β−α)/2

√
lny′

+ ξ1(y, y′).(5.10)

For any δ ∈ (0, 2), there is ξ2 ∈ L∞(R2
+) such that

∀y′, z ≥ e

∫ min(y′,z)

e

dA

A1−δ lnA
≤ 2
δ

y′
δ/2

√
lny′

zδ/2√
lnz

+ ξ2(y′, z).(5.11)

For any δ ∈ (0, 2), there is ξ3 ∈ L∞(R2
+) such that

∀y, z ≥ e

∫ ∞

max(y,z)

dA

A1+δlnA
≤ 2
δ

√
1

yδ lny

√
1

zδ lny′
+ ξ3(y, z).(5.12)
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Therefore, using first (5.10) we deduce∫ ∞

e

κ1(t, A)
A lnA

dA =
∫ ∞

e

(∫ ∞

A

yα f(t, y) dy
∫ ∞

A

y′
β
f(t, y′) dy′

) dA

lnA

=
∫ ∞

e

∫ ∞

e

yα f(t, y) y′β f(t, y′)

(∫ min(y,y′)

e

dA

lnA

)
dy dy′(5.13)

≤
(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, y) dy

)2

+ ‖ξ‖L∞ ‖f(t, .)‖2L1
1
.

On the other hand, using Cauchy-Schwarz inequality, we have∫ ∞

e

dA

A lnA

(∫ A

0

yα
′+1 f(t, y) dy

)(∫ ∞

A

y′
β′
f(t, y′) dy′

)
≤

≤
[∫ ∞

e

1
A1+δ lnA

(∫ A

0

yα
′+1 f(t, y) dy

)2

dA
]1/2

(5.14) [∫ ∞

e

1
A1−δlnA

(∫ ∞

A

y′
β′
f(t, y′) dy′

)2

dA
]1/2

with δ = 1 − (β − α) if (α′, β′) = (α, β) and δ = 1 + β − α if (α′, β′) = (β, α).
Notice that in both cases δ ∈ (0, 2].

First, using (5.12), it yields

K1(t) :=
∫ ∞

e

1
A1+δ lnA

(∫ A

0

yα
′+1 f(t, y) dy

)2

dA

≤ 2
∫ ∞

e

∫ ∞

e

yα
′+1 f(t, y) zα

′+1 f(t, z)
∫ ∞

max(y,z)

dA

A1+δ lnA
dydz(5.15)

+ 2
∫ ∞

e

1
A1+δ lnA

(∫ e

0

yα
′+1 f(t, y) dy

)2

dA

≤ 2
δ

(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, y) dy

)2

+(‖ξ3‖L∞ + Cδ) ‖f(t, .)‖2L1
1
.

for some positive constant Cδ only depending on δ.
Next, using (5.11), we get

K2(t) :=
∫ ∞

e

1
A1−δ lnA

(∫ ∞

A

y′
β′
f(t, y′) dy′

)2

dA

=
∫ ∞

e

∫ ∞

e

y′
β′
f(t, y′) zβ

′
f(t, z)

∫ min(y′,z)

e

dA

A1−δlnA
dy′dz(5.16)

≤ 2
δ

(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, y) dy

)2

+‖ξ2‖L∞ ‖f(t, .)‖2L1
1
.

Gathering (5.14), (5.15), (5.16) and using Young’s inequality we deduce∫ T1

T0

∫ ∞

e

κ2(t, A)
A lnA

dAdt ≤ 1
2

∫ T1

T0

K1(t) dt+
1
2

∫ T1

T0

K2(t) dt
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≤ 2
δ

∫ T1

T0

(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, y) dy

)2

dt+ T1 Cξ2,ξ3 ‖f(0, .)‖2L1
1
.(5.17)

As a conclusion, (2.15) follows from (5.9), (5.13), (5.17). ut

Proof of Lemma 5.1. We only prove (5.10) since (5.11) and (5.12) follow in the
same way. Integrating by part, we have∫ min(y,y′)

e

dA

lnA
=

min(y, y′)
ln(min(y, y′))

− 1 +
∫ min(y,y′)

e

dA

(lnA)2
.(5.18)

Since for any k ∈ (0, 2) there is Ak ≥ 0 such that z 7→ zk

lnz
is increasing for

z ≥ Ak, we also have

min(y, y′)
ln(min(y, y′))

= min
( y
lny

,
y′

lny′
)
≤ yβ−α min

(y1−(β−α)

lny
,
y′1−(β−α)

lny′
)

≤ y1/2+(β−α)/2

√
lny

y′
1/2−(β−α)/2

√
lny′

,

for any y, y′ ≥ max(A0, A1−(β−α)). We conclude observing that the last term in
the right hand side of (5.18) is bounded by one half of the left hand side term
of (5.18) for large value of min(y, y′). ut

Remark 5.2 Let emphasize that for any g ≥ 0 none of the two informations
on the behavior of g(y) for large value y ≥ 0

MCτ (g) := lim sup
R→∞

1
Rτ

∫ R

0

yτ g(y) dy > 0

and

Lδ(g) :=
∫ ∞

e

g(y)
(lny)δ

dy = +∞

is stronger than the other, as it is shown by the two examples below. In particu-
lar, (2.14) and (2.15) can not be deduced one from the other. On the one hand,
taking

g(y) =
∑
j∈N∗

λj δyj
, λj = 1, yj = ej

ω

we have

MCτ (g) =
∑
k∈N∗

e−τ k
ω

> 0 and Lδ(g) =
∑
j∈N∗

j−ω δ <∞ if ω δ > 1.

On the other hand, choosing g(y) = y−1 (lny)−ν , we get

MCτ (g) = 0 and Lδ(g) = +∞ if ν + δ ≤ 1.
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Proof of Corollary 1.3. From (1.22) we obtain by Fatou’s lemma

∫ T1

T0

(
lim inf
R→∞

1
Rτ

∫ R

0

f(t, y) yλ/2+1/2+τ dy

)2

dt ≤ C1.

Then if we define the measurable function: ωτ : R+ → R+ by

ωτ (t) := τ lim inf
R→∞

1
Rτ

∫ R

0

f(t, y) yλ/2+1/2dy for a.e. t ∈ [T0, T1]

we deduce

lim inf
y→∞

f(t, y) yλ/2+3/2 ≤ ωτ (t) for a.e. t ∈ [T0, T1].(5.19)

Gathering (5.19) with (1.24) we get the second estimate in (1.25).
On the other hand, we deduce from (1.23) and (1.24):

(T1 − T0) Λ2

(
lim sup
R→∞

1
Rτ

∫ R

0

ξ(y) yλ/2+1/2+τ dy

)2

≥ C−1
1 ,

which implies

lim sup
y→∞

ξ(y) yλ/2+3/2 ≥

(
1

τ C
1/2
1 Λ(T1 − T0)1/2

)
,

and this ends the proof of Corollary 1.3. ut

6 Behavior of solutions to the coagulation frag-
mentation equation

This section is devoted to the proof of Theorem 2.7, Theorem 1.4 and Corollary
2.9.

Proof of Theorem 2.7. Consider a weak solution f to the coagulation and
fragmentation equation (1.27). For any ψ ∈ L∞(R+) and t1 ≥ t0 ≥ 0 we get
from the fundamental identities (1.5) and (1.32)∫ ∞

0

f(t1, y′)ψ(y′) dy′ +
1
2

∫ t1

t0

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) ψ̃ dydy′dt =(6.1)

=
∫ ∞

0

f(t0, y′)ψ(y′) dy′ +
1
2

∫ t1

t0

∫ ∞

0

f(t, z)B(z)Kψ(z) dz

with

Kψ(z) =
∫ z

0

(ψ(y) + ψ(z − y)− ψ(z)) dy.(6.2)
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We proceed in two steps.
Step 1. Choose ψ(y) = ψA(y) = y ∧ A, so that ψ̃ = ψ̃A given by (3.2) and
KA(z) = A (z −A)+. We obtain, arguing as for the proof of 3.4

1
2

∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dt ≤ M1(t0)
A

+
B

2

∫ t1

t0

∫ ∞

A

f(t, z)
z

(1 + z)γ
dzdt.

For the last term, using condition (1.31) and the Young inequality, we get∫ ∞

A

f(t, z) zλ/2
{

1
z1/2

z3/2−λ/2

(1 + z)γ

}
dz ≤ 1

A1/2

∫ ∞

A

f(t, z) zλ/2 dz

≤ 1
2B

(∫ ∞

A

f(t, z) zλ/2 dz
)2

+
B

2A
.

Gathering the two preceding estimates we deduce that ∀A > 0∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dt ≤ 1
A

[4M1(t0) +B2 (t1 − t0)].(6.3)

Proceeding as in the proof of Theorem 2.2 and Corollary 2.3 we readily deduce
(2.18) and then (2.19), (2.20).

Step 2. In order to prove (2.21) we make the choice ψ = 1 in (6.1), so that
ψ̃ = 1, Kψ(z) = z, and thanks to (1.15), we get

1
2

∫ t1

t0

M2
λ/2(t) dt ≤M0(t0) +

B

2

∫ t1

t0

∫ ∞

0

f(t, z)
z

(1 + z)γ
dzdt.

Using once again condition (1.31) and the Young inequality we have∫ ∞

0

f(t, z)
z

(1 + z)γ
dz ≤ 1

2B
M2
λ/2(t) +

B

2
,

from where we obtain∫ t1

t0

M2
λ/2(t) dt ≤ 4M0(t0) +B2 (t1 − t0).(6.4)

Estimate (2.21) just follows interpolating (6.4) and (2.20). ut

Proof of Theorem 1.4. We proceed in two steps.
Step 1: proof of (1.36) By (2.21) with k = 1 we have∫ T

0

M2
1 (t) dt ≤ C1 (M0(0) +M1(0) +B2 T ).

This inequality may holds with M1(t) ≡ M1(0) for any time T ≥ 0 only if
M1(0) ≤

√
C1B. When M1(0) >

√
C1B, gelation must occurs before the time

T∗ =
C1 (M0(0) +M1(0))
M2

1 (0)− C1B2
.
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Step 2: We prove (1.38). Coming back to formula (6.1) with ψ(y) = y ∧ A we
have ∫ ∞

0

f(t1, y) y ∧Ady +
1
2

∫ t1

t0

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) (−ψ̃A) dydy′dt ≤(6.5)

≤
∫ ∞

0

f(t0, y) y ∧Ady +
1
2

∫ t1

t0

∫ ∞

0

f(t, z)B(z)KA(z) dzdt,

with ψ̃ = ψ̃A given by (3.2) and KA(z) = A (z−A)+. We assume by contradic-
tion that M1(t) ≡M1(0). Therefore, for any A > 0,∫ A

0

y f(t, y) dy ≥ M1(0)
2

or
∫ ∞

A

y f(t, y) dy ≥ M1(0)
2

.(6.6)

We deduce from (6.6) that for A large enough∫ ∞

0

f(t, z)B(z)KA(z) dz ≤ B

∫ ∞

A

f(t, z) z1−γ Adz

≤ min
{

B

Aγ−α

∫ ∞

A

Ar(y′)α f(t, y′) dy′ ,
B

Aγ−1

∫ ∞

A

r(y) f(t, y) dy
}

≤ M1(0)
4

min
(∫ ∞

A

Ar(y′)α f(t, y′) dy′ ,
∫ ∞

A

r(y) f(t, y) dy
)

≤ 1
2

(
A

∫ ∞

A

r(y) f(t, y) dy
∫ ∞

A

r(y′)α f(t, y′) dy′dt

+
∫ A

0

y r(y)α f(t, y) dy
∫ ∞

A

r(y′) f(t, y′) dy′
)

≤ 1
2

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) (−ψ̃A(y, y′)) dydy′.

This imply that there exists A0 large enough such that for any A ≥ A0/2 and
any t1 ≥ t1 ≥ 0

1
4

∫ t1

t0

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) (−ψ̃A) dydy′dt ≤M1(t0)(6.7)

and ∫ ∞

0

f(t1, y) y ∧Ady ≤
∫ ∞

0

f(t0, y) y ∧Ady.(6.8)

From (6.7) we deduce (as in the proof of 2.5) that

t 7→
∫ ∞

A0

f(t, y) y dy ∈ L2(0,∞)(6.9)
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and from (6.8) we deduce that for any t ≥ 1∫ ∞

A0

f(t, y) y dy ≥
∫ ∞

0

(y −A0)+f(t, y) dy

≥ M1(0)−
∫ ∞

0

(y ∧A0)f(t, y) dy(6.10)

≥ M1(0)−
∫ ∞

0

(y ∧A0)f(1, y) dy.

From Lemma 6.1 whose statement and proof are given just below, we know
that f(1, y) > 0 a.e. on R+ and the right hand side in (6.10) is a positive
constant. We deduce that (6.9) and (6.10) can not hold together and we have
a contradiction.

Step 3: We prove (1.37). We easily deduce of assumption (1.38) that for A0

large enough, so that suppB ⊂ [0, A0], (6.7) and (6.8) still hold. We then con-
clude as at the end of the preceding step. ut

Lemma 6.1 Every weak solution of the coagulation-fragmentation equation (1.27)
with kinetic kernels such that

0 < a(y, y′), b(y, y′) ≤ C (1 + y) (1 + y′) for a.e. y, y′ ∈ R+(6.11)

and not identically zero initial data satisfies

f(t, .) > 0 a.e. on R+ for any t > 0.(6.12)

Proof of Lemma 6.1. With the assumptions made on the kinetic kernels we
have

∂f

∂t
+ λ(t, y) f(t, y) ≥ Σ(t, y) on R2

+,(6.13)

with

λ(t, y) :=
1
2

∫ y

0

b(y − y′, y′) dy′ + C (1 + y) ‖f(t, .)‖L1
1
∈ L∞loc(R2

+)(6.14)

Σ(t, y) :=
1
2

∫ y

0

a(y − y′, y′)f(t, y − y′) f(t, y′) dy′(6.15)

+
∫ ∞

0

b(y, y′) f(t, y + y′) dy′ ∈ L1
loc(R2

+).

We proceed in several steps.

Step 1. First, by hypothesis there exists a > 0 such that fin 6≡ 0 a.e. on
(2 a, 3 a). Therefore, since Σ ≥ 0, equation (6.13) implies that f(t, .) 6≡ 0 a.e.
on (2 a, 3 a) and for any t ≥ 0.
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Step 2. Thanks to step 1, we have for a.e. y ∈ (0, 2 a) and any t ≥ 0

Σ(t, y) ≥
∫ ∞

0

b(y, y′) f(t, y + y′) dy′ ≥
∫ 3 a

2 a

b(y, z − y) f(t, z) dz > 0,

and then equation (6.13) implies that f(t, .) > 0 a.e. on (0, 2 a) for any t > 0.
Step 3. Now, thanks to step 2, we have for a.e. y ∈ (0, 4 a) and any t > 0

Σ(t, y) ≥ 1
2

∫ y

0

a(y − y′, y′)f(t, y − y′) f(t, y′) dy′ > 0,

and therefore equation(6.13) implies that f(t, .) > 0 a.e. on (0, 4 a) for any
t > 0.
Step 4. Assertion (6.12) follows iterating the step 3. ut

Proof of Corollary 2.9. Let f be a solution to the coagulation-fragmentation
equation (1.27). Then it satisfies (2.20). Coming back to (6.5), we notice that
for ε ∈ (0, γ + λ/2− 3/2) we have∫ ∞

0

f(t, z)B(z)KA(z) dz ≤
∫ ∞

A

f(t, z) z2−γ dz

≤ 1
Aγ+λ/2−3/2−ε Mλ

2 + 1
2−ε

(t) −→
A→∞

0,(6.16)

in L1(0, T ) for any T ∈ R+. Letting A → ∞ in (6.5) we first deduce from
(6.16) that M1(t) is decreasing. Moreover, since (4.10) still holds (because the
contribution of the fragmentation term has the good sign) we deduce that M1(t)
is right continuous. Finally, if ∆M1 := M1(t0) −M1(t1) > 0 we deduce from
(6.5) and (6.16) that∫ t1

t0

∫ ∞

0

∫ ∞

0

a f(t, y) f(t, y′) (−ψ̃A) dydy′dt ≥ ∆M1

2
(6.17)

for A large enough. Therefore, the analysis performed in the proof of Theorem
2.6 still holds, so that (2.14) and (2.15) follow. ut

7 Existence result

This section is devoted to the proof of Corollary 2.8. Like in [23] and [26], the
strategy is to define a sequence (fn) of solutions to the coagulation-fragmentation
equation with“truncated” coefficients, to establish some bounds which hold uni-
formly in n ≥ 0 and then pass to the limit in a weak formulation of solutions to
the equations.

Let us define the approximated coagulation kernel

an(y, y′) := a(y ∧ n, y′ ∧ n) and bn(y, y′) := b(y, y′)1y+y′≤n(7.1)
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and denote by fn ∈ C([0,∞);L1)∩L∞(0, T ;L1
1) for any T > 0 the weak solution

to the coagulation-fragmentation equation (1.27) associated to (7.1), b and fin.
Such a solution exists thanks to a standard Banach fix point theorem, see for
instance [31].

Since an(y, y′), bn(y, y′) ≤ C (1 + y) (1 + y′) uniformly in n, it has been proved
in [26] that the sequence (fn) satisfies the following estimates

M1(fn(t, .)) ≤M1(fin), M0(fn(t, .)) ≤ CT ∀t ∈ [0, T ],(7.2)

and for any R, T > 0 there exits a function ΨR such that ΨR(s)/s → ∞ when
s→∞ and

sup
n

sup
t∈[0,T ]

∫ R

0

ΨR(fn(t, y)) dy ≤ CT,R <∞.(7.3)

We need one additional moment estimate that we derive now. Let us fix T ≥ 0.
Proceeding as at the beginning of Step 1 in the proof of Theorem (2.7) we get

1
2

∫ T

0

(∫ ∞

A

f(t, y) (y ∧ n)λ/2 dy
)2

dt ≤

≤M1(0) +
1
2

∫ T

0

∫ ∞

A

fn(t, z)
(y ∧ n)λ/2

A1/2
dzdt,

for any A > 0. Then (using Young inequality) we may follow the proof of (2.20)
in Theorem 2.7 to obtain

sup
n≥0

∫ T

0

(∫ ∞

e

fn(t, y) (y ∧ n)λ/2
y1/2

(ln y)2
dy

)2

dt ≤ CT .(7.4)

By (7.2) and (7.3) it is straightforward that (fn) lies in a weak compact set
of L1((0, T ) × R+ for any T > 0. Therefore, there exists a function f ∈
C([0,∞);L1) ∩ L∞(0, T ;L1

1) for all T > 0 such that for a subsequence of (fn)
(not relabeled) fn ⇀ f weakly in L1((0, T )×R+) for any T > 0. Moreover, it is
possible to show that the coagulation and fragmentation kernels Qf,n(fn) and
Qc,n(fn) lie in a weak compact set of L1((0, T ) × (0, R) for any T,R > 0 and
for any T,R > 0:

Qf,n(fn), Qc,n(fn) ⇀ Qf (f), Qc(f) weakly in L1((0, T )× (0, R)).(7.5)

Since the fragmentation term is treated for instance in [23], we only briefly
explain how to deal with the coagulation term. We refer to [26] for more details.

Let fix ψ ∈ D([0,∞)× R+), M > 0 such that suppψ ⊂ [0,∞)× [0,M ] and
R ≥M . Using (1.5) we have∫ ∞

0

Qc,n(fn(t, .))ψ dy =
1
2

∫ ∞

0

∫ ∞

0

an(y, y′) fn(t, y) f(t, y′) ψ̃(t, y, y′) dydy′

29



=
1
2

∫ R

0

∫ R

0

an(y, y′) fn(t, y) f(t, y′) ψ̃(t, y, y′) dydy′

+
1
2

∫∫
R2

+\[0,R]2
an fn(t, y) f(t, y′)

(
ψ(t, y) + ψ(t, y′)

)
dydy′.

On the one hand, using Lemma 3.5 and Lemma 4.4 in [26], we can pass to the
limit in the first term, so that∫ T

0

∫ R

0

∫ R

0

an(y, y′) fn(t, y) fn(t, y′) ψ̃(t, y, y′) dydy′dt(7.6)

−→
n→∞

∫ T

0

∫ R

0

∫ R

0

a(y, y′) f(t, y) f(t, y′) ψ̃(t, y, y′) dydy′dt.

On the other hand, using Cauchy-Schwarz inequality, we have∫ T

0

∫∫
R2

+\[0,R]2
an fn(t, y) fn(t, y′)

(
ψ(y) + ψ(y′)

)
dydy′dt ≤

≤ Ca ‖ψ‖∞
∫ T

0

∫ M

0

(1 + y) fn dy
∫ ∞

R

(y ∧ n)β fn dy′dt(7.7)

≤ Ca,ψ sup
[0,T ]

‖fn(t, .)‖L1
1

√
T

(∫ T

0

(∫ ∞

R

(y ∧ n)β fn dy′
)2

dt

)1/2

≤ Ca,ψ,fin,T

R
λ
2 + 1

2−β−ε

(∫ T

0

(∫ ∞

R

(y ∧ n)
λ
2 + 1

2−ε fn dy
′
)2

dt

)1/2

−→ 0,

as R → ∞, uniformly in n. By (7.6) and (7.7) the coagulation term satisfies
(7.5). Then with (7.5) at hand, we easily pass to the limit in the weak formula-
tion of equation (1.27) satisfied by (fn) and we obtain that f is a weak solution
in the sense of Definition 2.2. ut

Remark 7.1 Theorem 2.7 readily extends to a coagulation kernel of the form

{
a = a1 + a2, a1 satisfying (1.2), a2 is symetric, such that
0 ≤ a2 ≤ C(1 + y)−1/2−λ/2−ε(1 + y′)−1/2−λ/2−ε for some ε > 0.

(7.8)

8 Extensions to non-homogeneous models

Almost all the results obtained in the previous sections extend to a non spa-
tially homogeneous setting under suitable conditions. We briefly explain in this
section how this can be done. Let us emphasize that the questions of gelation
and gelling profile in a non spatially homogeneous setting have been adressed
in [19] in the case α = β = 1.
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Now, the clusters are assumed to move in an open bounded subset Ω of
RN , N ≥ 1, with smooth boundary ∂Ω, according to brownian movement with
diffusion coefficient d only size dependent. We assume d ∈ C(R+) and d(y) ≥
0 ∀y > 0. We denote by f(t, x, y) ≥ 0 the distribution of clusters of size y ∈ R+

at time t ≥ 0 and position x ∈ Ω. The continuous coagulation-fragmentation
equation with diffusion reads

∂f

∂t
− d(y) ∆xf = Qc(f) +Qf (f), in (0,+∞)× Ω× R+

∂f

∂n
= 0, on (0,+∞)× ∂Ω× R+

f(0, x, y) = fin(x, y), in Ω× R+.

(8.1)

Here, ∂nf denotes the outward normal derivative of f on the boundary and the
terms Qc(f) and Qf (f) are given in (1.1) and (1.28).

Under the assumptions (1.2)-(1.3) on a, (1.29)-(1.30) with γ > 1 on b and
fin ∈ L1(Ω × R+, (1 + y) dydx), it has been proved in [25] that there exists a
weak global solution in the following sense:

f ∈ C([0, T );L1(Ω× R+) ∩ L∞(0, T ;L1(Ω× R+; y dy dx)),
f ∈ ∩L1((0, T )× (0, R);W 1,1(Ω)),
Q(f) ∈ L1((0, T )× Ω× R+),

for all T > 0, and satisfies the following weak formulation of (8.1)∫
Ω

∫ ∞

0

(ψ(t)f(t)− ψ(0)fin)dy dx

+
∫ t

0

∫
Ω
∫ ∞

0

(d(y)∇xf ∇xψ − f∂tψ) dy dx ds

=
1
2

∫ t

0

∫
Ω

∫ ∞

0

Q(f)ψ dy dx ds,

for every t ∈ (0, T ) and all ψ ∈W 1,∞([0, T ]×Ω×R+) with compact support in
[0, T ]×Ω×R+. The case α ∈ (0, 1), β = 1 is not actually considered in [25], but
the existence result in [25] can be extended to this case adapting Corollary 2.8.
We refer to [25] for details about the definition of solutions as well as for the
precise statement of the existence result. We also refer to [24] and references
therein for the existence of solution to the discrete coagulation-fragmentation
equations with diffusion.

We finally introduce the following notation

Mk(t) :=
∫

Ω

Mk(t, x) dx, Mk(t, x) := Mk(f(t, x, .)).(8.2)

In that context, the gelation time is now defined as the smallest time Tg
satisfying that, for every t0 ≥ 0, t1 ≥ 0 such that t0 < Tg < t1 there holds
M1(t1) <M1(t0).
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We now state the extension of some of the results obtained in the previous
Sections (Theorem 2.2, Corollary 2.3, Theorem 2.4 in the pure coagulation case,
Theorem 2.7 and part of Theorem 1.4 in the coagulation-fragmentation case)
to this non homogeneous setting. Since their proofs are rather straightforward
extensions of those for the homogeneous equations, we skip them for the sake
of brevity.

Theorem 8.1 Let Φ : R+ → R+ be an increasing function satisfying Φ(0) = 0
and (2.3). For any weak solution f to (8.1) and any t1 ≥ t0 ≥ 0 the following
non homogeneous version of (2.18) holds∫ t1

t0

∫
Ω

(∫ ∞

0

f(t, x, y) yλ/2 Φ(y) dy
)2

dxdt ≤

≤ C2
Φ

[
4M1(t0) +B2 |Ω| (t1 − t0)

]
.(8.3)

Consequently the non-homogeneous version of (2.19)-(2.21) also holds and, when
b ≡ 0 the non homogeneous version of (2.5) and (4.4) too. Moreover, M1(t) is
decreasing and right continuous, and if for some T0 < Tg ≤ T1

M1(T1) <M1(T0)

then, for any R > 0 and τ > 0

∫ t1

t0

∫
Ω

(
sup
S>R

1
Sτ

∫ S

0

yλ/2+1/2+τ f(t, x, y) dy

)2

dxdt ≥ Cτ > 0(8.4)

and ∫ T1

T0

∫
Ω

(∫ ∞

e

yλ/2+1/2

(lny)1/2
f(t, x, y)dy

)2

dxdt = +∞(8.5)

We deduce from Theorem 8.1 the following gelation criteria.

Corollary 8.2 Consider the problem 8.1 under the conditions imposed above.
Then gelation occurs for any weak solution with initial data satisfying

M1(0) ≥ CλB|Ω|(8.6)

for some positive constant Cλ. If b ≡ 0, then for all weak solution with non
identically zero initial data, gelation occurs and M1(t) satisfies (1.18).

Sketch of the Proof. From the non homogeneous version of (2.21) with k = 1
and the Cauchy Schwarz inequality we have

1
|Ω|

∫ t0

t1

M2
1(t) dt ≤

∫ t1

t0

∫
Ω

(M1(t, x))
2
dxdt ≤(8.7)

≤ C1,λ

[
M1(t0) +M0(t0) +B2 |Ω| (t1 − t0)

]
.
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The result for the general case b ≥ 0 immediately follows from (8.7) and the
condition (8.6) as in the proof of Theorem 1.4 in Section 6.

On the other hand, for the pure coagulation equation (b ≡ 0) we first prove
that Mk(t) is a decreasing function for k = 0 and k = 1, as in the proof of
(2.9) in Section 4. Then we deduce from that fact, from the non homogeneous
version of (1.16):

∀T ≥ 0
∫ ∞

T

∫
Ω

(Mλ/2(t, x))2dxdt ≤ 2M0/T )

and the non homogeneous version of (2.5),

∀T ≥ 0
∫ ∞

T

∫
Ω

(∫ ∞

R

f(t, x, y) y dy
)2

dxdt ≤ CλR
1−λM1(T ),

the following non homogeneous version of (4.4)

∀T ≥ 0
∫ ∞

T

∫
Ω

(M1(t, x))2 dxdt ≤ CλMλ−1
0 (0)M1(T )2−λ.

By the Cauchy Schwarz inequality again we obtain

1
|Ω|

∫ ∞

T

M12(t)dt ≤ CλMλ−1
0 (0)M1(T )2−λ

and we conclude that M1(t) satisfies (1.18) thanks to Lemma 4.1.

Remark 8.3 Notice that also in this nonhomogeneous setting the only power
like self similar behaviour in the y variable of the solution f compatible with
the estimates (8.4, (8.5) and with the non homogeneous version of (2.20) and
(2.21) is again y−3/2−λ/2.
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