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Abstract

Some mathematical questions about Boltzmann equations for quantum
particles, relativistic or not, are considered. Relevant particular cases
as Bose, Bose-Fermi, photon-electron gases are studied as well as some
simplifications (such as the isotropy of the distribution functions) and
asymptotic limits (systems where one of the species is at equilibrium) of
special interest from a physical point of view and which give rise to inter-
esting mathematical questions. New results about the existence and long
time behaviour of the solutions to some of these problems are exposed.
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1 Introduction

When quantum methods are applied to molecular encounters, some divergence
from the classical results appear. It is then necessary in some cases to modify
the classical theory in order to account for the quantum effects which are present
in the collision processes; see [11, Sec. 17], where the domain of applicability
of the classical kinetic theory is discussed in detail. In spite of their formal
similarity, the equations for classical and quantum kinetic theory display very
different features. Surprisingly, the appropriate Boltzmann equations, which
account for quantum effects, have received scarce attention in the mathematical
literature.

In this work, we consider some mathematical questions about Boltzmann
equations for quantum particles, relativistic and not relativistic. The general in-
terest in different models involving that kind of equations has increased recently.
This is so because they are supposedly reliable for computing non equilibrium
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properties of Bose-Einstein condensates on sufficiently large times and distance
scales; see for example [32, 48, 49] and references therein. We study some rele-
vant particular cases (Bose, Bose-Fermi, photon-electron gases), simplifications
such as the isotropy of the distribution functions, and asymptotic limits (sys-
tems where one of the species is at equilibrium) which are important from a
physical point of view and give rise to interesting mathematical questions.

Since quantum and classic or relativistic particles are involved, we are lead
to consider such a general type of equations. We first consider the homogeneous
Boltzmann equation for a quantum gas constituted by a single specie of particles,
bosons or fermions. We solve the entropy maximization problem under the
moments constraint in the general quantum relativistic case. The question of
the well posedness, i.e. existence, uniqueness, stability of solutions and of the
long time behavior of the solutions is also treated in some relevant particular
cases. One could also consider other qualitative properties such as regularity,
positivity, eternal solution in a purely kinetic perspective or study the relation
between the Boltzmann equation and the underlying quantum field theory, or a
more phenomenological description, such as the based on hydrodynamics, but
we do not go further in these directions.

1.1 The Boltzmann equations

To begin with, we focus our attention on a gas composed of identical and in-
discernible particles. When two particles with respective momentum p and p∗
in R3 encounter each other, they collide and we denote p′ and p′∗ their new mo-
menta after the collision. We assume that the collision is elastic, which means
that the total momentum and the total energy of the system constituted by this
pair of particles are conserved. More precisely, denoting by E(p) the energy of
one particle with momentum p, we assume that

p′ + p′∗ = p+ p∗

E(p′) + E(p′∗) = E(p) + E(p∗).
(1.1)

We denote C the set of all 4-tuplets of particles (p, p∗, p′, p′∗) ∈ R12 satisfying
(1.1). The expression of the energy E(p) of a particle in function of its momen-
tum p depends on the type of the particle;

E(p) = Enr(p) =
|p|2

2m
for a non relativistic particle,

E(p) = Er(p) = γmc2; γ =
√

1 + (|p|2/c2m2) for a relativistic particle,
E(p) = Eph(p) = c|p| for massless particle such as a photon or neutrino.

(1.2)
Here, m stands for the mass of the particle and c for the velocity of light. The
velocity v = v(p) of a particle with momentum p is defined by v(p) = ∇pE(p),
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and therefore

v(p) = vnr(p) =
p

m
for a non relativistic particle,

v(p) = vr(p) =
p

mγ
for a relativistic particle,

v(p) = vph(p) = c
p

|p|
for a photon .

(1.3)

Now we consider a gas constituted by a very large number (of order the
Avogadro number A ∼ 1023/mol) of a single specie of identical and indiscernible
particles. The very large number of particles makes impossible (or irrelevant)
the knowledge of the position and momentum (x, p) (with x in a domain Ω ⊂ R3

and p ∈ R3) of every particle of the gas. Then, we introduce f = f(t, x, p) ≥ 0,
the gas density distribution of particles which at time t ≥ 0 have position x ∈ R3

and momentum p ∈ R3. Under the hypothesis of molecular chaos and of low
density of the gas, so that particles collide by pairs (no collision between three or
more particles occurs), Boltzmann [5] established that the evolution of a classic
(i.e. no quantum nor relativistic) gas density f satisfies

∂f

∂t
+ v(p) · ∇xf = Q(f(t, x, .))(p)

f(0, .) = fin,
(1.4)

where fin ≥ 0 is the initial gas distribution and Q(f) is the so-called Boltzmann
collision kernel. It describes the change of the momentum of the particles due
to the collisions.

A similar equation was proposed by Nordheim [42] in 1928 and by Uehling
& Uhlenbeck [52] in 1933 for the description of a quantum gas, where only
the collision term Q(f) had to be changed to take into account the quantum
degeneracy of the particles. The relativistic generalization of the Boltzmann
equation including the effects of collisions was given by Lichnerowicz and Marrot
[38] in 1940.

Although this is by no means a review article we may nevertheless give some
references for the interested readers. For the classical Boltzmann equation we
refer to Villani’s recent review [55] and the rather complete bibliography therein.
Concerning the relativistic kinetic theory, we refer to the monograph [51] by
J. M. Stewart and the classical expository text [29] by Groot, Van Leeuwen
and Van Weert. A mathematical point of view, may be found in the books by
Glassey [25] and Cercignani and Kremer [9]. In [31], Jüttner gave the relativistic
equilibrium distribution. Then, Ehlers in [17], Tayler & Weinberg in [53] and
Chernikov in [12] proved the H-theorem for the relativistic Boltzmann equation.
The existence of global classical solutions for data close to equilibrium is shown
by R. Glassey and W. Strauss in [27]. The asymptotic stability of the equilibria
is studied in [27], and [28]. For these questions see also the book [25]. The global
existence of renormalized solutions is proved by Dudynsky and Ekiel Jezewska
in [16]. The asymptotic behaviour of the global solutions is also considered in
[2].
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In all the following we make the assumption that the density f only depends
on the momentum. The collision term Q(f) may then be expressed in all the
cases described above as

Q(f)(p) =
∫∫∫

R9
W (p, p∗, p′, p′∗)q(f) dp∗dp′dp′∗

q(f) ≡ q(f)(p, p∗, p′, p′∗) = [f ′f ′∗(1 + τf)(1 + τf∗)− ff∗(1 + τf ′)(1 + τf ′∗)]
τ ∈ {−1, 0, 1},

(1.5)
where as usual, we denote:

f = f(p), f∗ = f(p∗), f ′ = f(p′), f ′∗ = f(p′∗),

and W is a non negative measure called transition rate, which may be written
in general as:

W (p, p∗, p′, p′∗) = w(p, p∗, p′, p′∗)δ(p+p∗−p′−p′∗)δ(E(p)+E(p∗)−E(p′)−E(p′∗))
(1.6)

where δ represents the Dirac measure. The quantity Wdp′dp′∗ is the probability
for the initial state |p, p∗〉 to scatter and become a final state of two particles
whose momenta lie in a small region dp′ dp′∗.

The character relativistic or not, of the particles is taken into account in
the expression of the energy of the particle E(p) given by (1.2). The effects
due to quantum degeneracy are included in the term q(f) when τ 6= 0, and
depend on the bosonic or fermionic character of the involved particles. These are
associated with the fact that, in quantum mechanics, identical particles cannot
be distinguished, not even in principle. For dense gases at low temperature, this
kind of terms are crucial. However, for non relativistic dilute gases, quantum
degeneracy plays no role and can be safely ignored (τ = 0).

The function w is directly related to the differential cross section σ (see
(5.11)), a quantity that is intrinsic to the colliding particles and the kind of
interaction between them. The calculation of σ from the underlying interac-
tion potential is a central problem in non relativistic quantum mechanics, and
there are a few examples of isotropic interactions (the Coulomb potential, the
delta shell,. . . ) which have an exact solution. However, in a complete rela-
tivistic setting or when many-body effects due to collective dynamics lead to
the screening of interactions, the description of these in terms of a potential is
impossible. Then, the complete framework of quantum field theory (relativis-
tic or not) must be used in order to perform perturbative computations of the
involved scattering cross section in w. We give some explicit examples in the
Appendix 8 but let us only mention here the case w = 1 which corresponds to
a non relativistic short range interaction (see Appendix 8). Since the particles
are indiscernible, the collisions are reversible and the two interacting particles
form a closed physical system. We have then:

W (p, p∗, p′, p′∗) = W (p∗, p, p′, p′∗) = W (p′, p′∗, p, p∗)
+ Galilean invariance (in the non relativistic case)
+ Lorentz invariance (in the relativistic case).

(1.7)
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To give a sense to the expression (1.5) under general assumptions on the distri-
bution f is not a simple question in general. Let us only remark here that Q(f)
is well defined as a measure when f and w are assumed to be continuous. But
we will see below that this is not always a reasonable assumption. It is one of
the purposes of this work to clarify this question in part.

The Boltzmann equation reads then very similar, formally at least, in all
the different contexts: classic, quantum and relativistic. In particular some
of the fundamental physically relevant properties of the solutions f may be
formally established in all the cases in the same way: conservation of the total
number of particles, mean impulse and total energy; existence of an “entropy
function” which increases along the trajectory (Boltzmann’s H-Theorem). For
any ψ = ψ(p), the symmetries (1.7), imply the fundamental and elementary
identity∫

R3
Q(f)ψ dp =

1
4

∫∫∫
R12

W (p, p∗, p′, p′∗) q(f)
(
ψ + ψ∗ − ψ′ − ψ′∗

)
dpdp∗dp

′dp′∗.

(1.8)
Taking ψ(p) = 1, ψ(p) = pi and ψ(p) = E(p) and using the definition of C, we
obtain that the particle number, the momentum and the energy of a solution f
of the Boltzmann equation (1.5) are conserved along the trajectoires, i.e.

d

dt

∫
R3
f(t, p)

 1
p
E(p)

 dp =
∫

R3
Q(f)

 1
p
E(p)

 dp = 0, (1.9)

so that ∫
R3
f(t, p)

 1
p
E(p)

 dp =
∫

R3
fin(p)

 1
p
E(p)

 dp. (1.10)

The entropy functional is defined by

H(f) :=
∫

R3
h(f(p)) dp, h(f) = τ−1(1 + τf) ln(1 + τf)− f ln f. (1.11)

Taking in (1.8) ψ = h′(f) = ln(1 + τf)− ln f , we get∫
R3
Q(f)h′(f) dp =

1
4
D(f) (1.12)

with

D(f) =
∫∫∫∫

R12
W e(f) dpdp∗dp′dp′∗

e(f) = j
(
ff∗(1 + τ f ′)(1 + τ f ′∗), f

′f ′∗(1 + τ f)(1 + τ f∗)
j(s, t) = (t− s)(ln t− ln s) ≥ 0.

(1.13)

We deduce from the equation that the entropy is increasing along trajectories,
i.e.

d

dt
H(f(t, .)) =

1
4
D(f) ≥ 0. (1.14)
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The main qualitative characteristics of f are described by these two proper-
ties: conservation (1.9) and increasing entropy (1.14). It is therefore natural to
expect that as t tends to ∞ the function f converges to a function f∞ which
realizes the maximum of the entropy H(f) under the moments constraint (1.10).
A first simple and heuristic remark is that if f∞ solves the entropy maximization
problem with constraints (1.10), there exist Lagrange multipliers µ ∈ R, β0 ∈ R
and β ∈ R3 such that

〈∇H(f∞), ϕ〉 =
∫

R3
h′(f∞)ϕdp = 〈β0E(p)− β · p− µ, ϕ〉 ∀ϕ,

which implies
ln(1 + τf∞)− ln f∞ = β0E(p)− β · p− µ

and therefore

f∞(p) =
1

eν(p) − τ
with ν(p) := β0E(p)− β · p− µ . (1.15)

The function f∞ is called a Maxwellian when τ = 0, a Bose-Einstein distribution
when τ > 0 and a Fermi-Dirac distribution when τ < 0.

1.2 The classical case

Let us consider for a moment the case τ = 0, i.e. the classic Boltzmann equation,
which has been widely studied. It is known that for any initial data fin there
exists a unique distribution f∞ of the form (1.15) such that

∫
R3
f∞(p)

 1
p
E(p)

 dp =
∫

R3
fin(p)

 1
p
E(p)

 dp. (1.16)

We may briefly recall the main results about the Cauchy problem and the
long time behaviour of the solutions which are known up to now. We refer to
[8, 39], for a more detailed exposition and their proofs.

Theorem 1.1 (Stationary solutions) For any measurable function f ≥ 0
such that ∫

R3
f(1, p,

|p|2

2
) dp = (N,P,E) (1.17)

for some N,E > 0, P ∈ R3, the following four assertions are equivalent:

(i) f is the Maxwellian

MN,P,E = M[ρ, u,Θ] =
ρ

(2πΘ)3/2
exp
(
−|p− u|2

2Θ
)

where (ρ, u,Θ) is uniquely determined by N = ρ, P = ρu, and E =
ρ
2 (|u|2 + 3Θ);
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(ii) f is the solution of the maximization problem

H(f) = max{H(g), g satisfies the moments equation (1.10)},

where H(g) = −
∫

R3 g log g dp stands for the classical entropy;

(iii) Q(f) = 0;

(iv) D(f) = 0.

Concerning the evolution problem one can prove.

Theorem 1.2 Assume that w = 1 (for simplicity). For any initial data fin ≥ 0
with finite number of particles, energy and entropy, there exists a unique global
solution f ∈ C([0,∞);L1(R3)) which conserves the particle number, energy and
momentum. Moreover, when t → ∞, f(t, .) converges to the Maxwellian M
with same particle number, momentum an energy (defined by Theorem 1.1) and
more precisely, for any m > 0 there exists Cm = Cm(f0) explicitly computable
such that

‖f −M‖L1 ≤ Cm

(1 + t)m
. (1.18)

We refer to [3, 17, 41, 40] for existence, conservations and uniqueness and
to [4, 55, 56, 8, 54] for convergence to the equilibrium. Also note that Theorem
1.2 can be extended (sometimes only partially) to a large class of cross-section
W we refer to [55] for details and references.

Remark 1.3 The proof of the equivalence (i) - (ii) only involves the entropy
H(f) and not the collision integral Q(f) itself.

Remark 1.4 To show that (i), (iii) and (iv) are equivalent one has first to
define the quantities Q(f) andD(f) for the functions f belonging to the physical
functional space. The first difficulty is to define precisely the collision integral
Q(f), (see Section 3.2).

1.3 Quantum and/or relativistic gases

The Boltzmann equation looks formally very similar in the different contexts:
classic, quantum and relativistic, but it actually presents some very different
features in each of these different contexts. The two following remarks give
some insight on these differences.

The natural spaces for the density f are the spaces of distributions f ≥ 0
such that the “physical” quantities are bounded:∫

R3
f(1 + E(p)) dp <∞ and H(f) <∞, (1.19)
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where H is given by (1.11). This provides the following different conditions:

f ∈ L1
s ∩ L logL in the non quantum case, relativistic or not

f ∈ L1
s ∩ L∞ in the Fermi case, relativistic or not

f ∈ L1
s in the Bose case, relativistic or not,

where
L1

s = {f ∈ L1(R3);
∫

R3
(1 + |p|s) d|f |(p) <∞} (1.20)

and s = 2 in the non relativistic case, s = 1 in the relativistic case.
On the other hand, remember that the density entropy h given by (1.11) is:

h(f) = τ−1(1 + τf) ln(1 + τf)− f ln f.

In the Fermi case we have τ = −1 and then h(f) = +∞ whenever f /∈ [0, 1].
Therefore the estimate H(f) < ∞ provides a strong L∞ bound on f . But, in
the Bose case, τ = 1. A simple calculus argument then shows that h(f) ∼ ln f
as f → ∞. Therefore the entropy estimate H(f) < ∞ does not gives any
additional bound on f .

Moreover, and still concerning the Bose case, the following is shown in [7],
in the context of the Kompaneets equation (cf. Section 5). Let a ∈ R3 be any
fixed vector and (ϕn)n∈N an approximation of the identity:

(ϕn)n∈N; ϕn → δa.

Then for any f ∈ L1
2, the quantity H(f + ϕn) is well defined by (1.11) for all

n ∈ N and moreover,

N(f + αϕn) → N(f) + α, and H(f + ϕn) → H(f) as n→∞. (1.21)

See Section 2 for the details. This indicates that the expression of H given
in (1.11) may be extended to nonnegative measures and that, moreover, the
singular part of the measure does not contributes to the entropy. More precisely,
for any non negative measure F of the form F = gdp + G, where g ≥ 0 is an
integrable function and G ≥ 0 is singular with respect to the Lebesgue measure
dp, we define the Bose-Einstein entropy of F by

H(F ) := H(g) =
∫

R3

[
(1 + g) ln(1 + g)− g ln g

]
dp. (1.22)

The discussion above shows how different is the quantum from the non quan-
tum case, and even the Bose from the Fermi case. Concerning the Fermi gases,
the Cauchy problem has been studied by Dolbeault [15] and Lions [39], under
the hypothesis (H1) which includes the hard sphere case w = 1. As it is indi-
cated by the remark above, the estimates at our disposal in this case are even
better than in the classical case. In particular the collision term Q(f) may be
defined in the same way as in the classical case. But as far as we know, no ana-
logue of Theorem 1.1 was known for Fermi gases. The problem for Bose gases is
essentially open as we shall see below. Partial results for radially symmetric L1

distributions have been obtained by Lu [40] under strong cut off assumptions
on the function w.
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1.3.1 Equilibrium states, Entropy

As it is formally indicated by the identity (1.9), the particle number, momentum
and energy of the solutions to the Boltzmann equation are conserved along the
trajectories. It is then very natural to consider the following entropy maximiza-
tion problem: given N > 0, P ∈ R3 and E ∈ R, find a distribution f which
maximises the entropy H and whose moments are (N,P,E). The solution of
this problem is well known in the non quantum non relativistic case ( and is
recalled in Theorem 1.1 above). In [31], Jüttner in [Ju] gave the relativistic
Maxwellians. The question is also treated by Chernikov in [12]. For the com-
plete resolution of the moments equation in the relativistic non quantum case
we refer to Glassey [26] and Glassey & W. Strauss [GS]. We solve the quantum
relativistic case in [24]. The general result may be stated as follows.

Theorem 1.5 For every possible choice of (N,P,E) such that the set K defined
by

g ∈ K if and only if
∫

R3
g(1, p,

|p|2

2
) dp = (N,P,E),

is non empty, there exists a unique solution f to the entropy maximization
problem

f ∈ K, H(f) = max{H(g); g ∈ K}.
Moreover, f = f∞ given by (1.15) for the nonquantum and Fermi case, while
for the Bose case f = f∞ + αδp for some p ∈ R3.

It was already observed by Bose and Einstein [5, 18, 19] that for systems
of bosons in thermal equilibrium a careful analysis of the statistical physics of
the problem leads to enlarge the class of steady distributions to include also
the solutions containing a Dirac mass. On the other hand, the strong uniform
bound introduced by the Fermi entropy over the Fermi distributions leads to
include in the family of Fermi steady states the so called degenerate states. We
present in Section 2 the detailed mathematical results of these two facts both
for relativistic and non relativistic particles. The interested reader may find the
detailed proofs in [24].

1.3.2 Collision kernel, Entropy dissipation, Cauchy Problem

Theorem 1.5 is the natural extension to quantum particles of the results for non
quantum particles, i.e. points (i) and (ii) of Theorem 1.1. The extension of the
points (iii) and (iv), even for the non relativistic case, is more delicate. In the
Fermi case it is possible to define the collision integral Q(f) and the entropy
dissipation D(f) and to solve the problem under some additional conditions (see
Dolbeault [15] and Lions [39]). We consider this problem and related questions
in Section 3.2.

In the equation for bosons, the first difficulty is to define the collision integral
Q(f) and the entropy dissipation D(f) in a sufficiently general setting. This
question was treated by Lu in [40] and solved under the following additional
assumptions:
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(i) f ∈ L1 is radially symmetric.

(ii) Strong truncation on w.

These two conditions are introduced in order to give a sense to the collision
integral. Unfortunately, the second one is not satisfied by the main physical
examples such as w = 1 (see Appendix 8). Moreover Theorem 2.3 shows that
the natural framework to study the quantum Boltzmann equation, relativistic or
not, for Bose gases is the space of non negative measures. This is an additional
difficulty with respect to the non quantum or Fermi cases. We partly extend the
study of Lu to the case where f is a non negative radially symmetric measure.

1.4 Two species gases, the Compton-Boltzmann equation

Gases composed of two different species of particles,for example bosons and
fermions, are interesting by themselves for physical reasons and have thus been
considered in the physical literature (see the references below). On the other
hand, from a mathematical point of vue, they provide simplified but still in-
teresting versions of Boltzmann equations for quantum particles. Their study
may be then a first natural step to understand the behaviour of this type of
equations.

Let us then call F (t, p) ≥ 0 the density of Bose particles and f(t, p) ≥ 0 that
of Fermi particles. Under the low density assumption, the evolution of the gas
is now given by the following system of Boltzmann equations (see [11]):

∂F

∂t
= Q1,1(F, F ) +Q1,2(F, f) F (0, .) = Fin

∂f

∂t
= Q2,1(f, F ) +Q2,2(f, f) f(0, .) = fin.

(1.23)

The collision terms Q1,1(F, F ) and Q2,2(f, f) stand for collisions between par-
ticles of the same specie and are given by (1.2). The collision terms Q1,2(F, f)
and Q2,1(f, F ) stands for collisions between particles of two different species:

Q1,2(F, f) =
∫

R3

∫
R3

∫
R3
W1,2q1,2 dp∗dp

′dp′∗,

q1,2 = F ′f ′∗(1 + F )(1− τ f∗)− Ff∗(1 + F ′)(1− τf ′∗),
(1.24)

and Q2,1(f, F ) is given by a similar expression. Note that the measure W1,2 =
W1,2(p, p∗, p′, p′∗) satisfies the micro-reversibility hypothesis

W1,2(p′, p′∗, p, p∗) = W1,2(p, p∗, p′, p′∗), (1.25)

but not the indiscernibility hypothesis W1,2(p∗, p, p′, p′∗) = W1,2(p, p∗, p′, p′∗) as
in (1.7) since the two colliding particles belong now to different species.

We consider in Section 4 some mathematical questions related to the systems
(1.23)-(1.25). We do not perform in detail the general study of the steady states
since that would be mainly a repetition of what is done in Section 3 and in [24].



12

Here again, to give a sense to the integral collision Q1,2 and Q2,1 is the first
question to be considered. Since the kernels Q1,1(F, F ) and Q2,2(f, f) have
already been treated in the precedent section, we focus in the collision terms
Q1,2(F, f) and Q2,1(f, F ). Let us notice that in the Fermi case, τ > 0, the Fermi
density f satisfies an a priori bound in L∞. Nevertheless, even with this extra
estimate,the problem of existence of solutions and their asymptotic behaviour
for generic interactions, even with strong unphysical truncation kernel and for
radially symmetric distributions f , remains an open question.

In order to get some insight on these problems, we consider two simpler situa-
tions which are important from a physical point of view and still mathematically
interesting since, in particular, they display Bose condensation in infinite time.
These are the equations describing boson-fermion interactions with fermions at
equilibrium, and photon-electron Compton scattering. Of course the deductions
of these two reduced models are well known in the physical literature but we
believe nevertheless that it may be interesting to sketch them here. In the first
one, still considered in Section 4, we suppose that the Fermi particles are at rest
at isothermal equilibrium. This is nothing but to fix the distribution of Fermi
particles f in the system to be a Maxwellian or a Fermi state. Without any
loss of generality, this may be chosen to be centered at the origin, so that it is
radially symmetric. Moreover, the boson-fermion interaction is short range and
we may consider the “slow particle interaction” approximation of the differen-
tial cross section w = 1 (see Appendix 8). The system reduces then to a single
equation which moreover is quadratic and not cubic. Namely:

∂F

∂t
=
∫ ∞

0

S(ε, ε′)
[
F ′(1 + F ) e−ε − F (1 + F ′) e−ε′

]
dε′, (1.26)

for some kernel S (see Section 4).
We prove in Section 4 the following result about existence, uniqueness and

asymptotic behaviour of global solutions for the Cauchy problem associated to
(1.26) .

Theorem 1.6 For any initial datum Fin ∈ L1
1(R+), Fin ≥ 0, there exists a

solution F ∈ C([0,∞), L1
1/2)) to the equation (1.26) such that

lim
t→0

‖F (t)− Fin‖L1(R+) = 0.

Moreover, if f = BN is the unique solution to the maximization problem

H(f) = max{H(g);
∫

g(ε) ε2 dε =
∫

Fin(ε) ε2 dε =: N},

H(F ) =
∫ ∞

0

h(f, ε)ε2dε

with h(x, ε) = (1 + x) ln(1 + x)− x lnx− εx,

F (t, .) ⇀
t→∞

f weakly ? in
(
Cc(R+)

)′
lim

t→∞
‖F (t, .)− f‖L1((k0,∞)) = 0 ∀k0 > 0.

(4.51)
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This result shows that the density of bosons F underlies a Bose condensation
asymptotically in infinite time if its initial value is large enough. The phenomena
was already predicted by Levich & Yakhot in [36, 37], and was described as
condensation driven by the interaction of bosons with a cold bath (of fermions)
(see also Semikoz & Tkachev [48, 49]).

1.4.1 Compton scattering

In Section 5 we consider the equation describing the photon-electron interac-
tion by Compton scattering. This equation, that we call Boltzmann-Compton
equation, has been extensively studied in the physical and mathematical liter-
ature (see in particular the works by Kompaneets [33], Dreicer [15], Weymann
[56], Chapline, Cooper and Slutz [10]). We show how it can be derived starting
from the system which describes the photon electron interaction via Compton
scattering. This interaction is described, in the non relativistic limit, by the
Thomson cross section, (see Appendix 8).

It is important in this case to start with the full relativistic quantum formu-
lation since photons are relativistic particles. Even if, later on, the electrons are
considered at non relativistic classical equilibrium. Finally, The equation has
the same form as in (1.26) where the only difference lies in the kernel S.

The possibility of some kind of “condensation” for this Compton Boltzmann
equation was already considered in physical literature by Chapline, Cooper and
Slutz in [10], and Caflisch & Levermore [7] for the Kompaneets equation (see
Section 5 and also [21]).

We end with the so called Kompaneets equation, which is the limit of the
Boltzmann-Compton equation in the range |p|, |p′| � mc2.

2 The entropy maximization problem

In this Section we describe the solution to the maximization problem for the
entropy function under the moment constraint. This problem may be stated as
follows.

Given any of the entropies H and of the energies E defined in the
introduction, given three quantities N > 0, E > 0 and P ∈ R3, find
F ≥ 0 such that

∫
R3

 1
p
E(p)

F (p) dp =

NP
E

 (2.1)

and
H(F ) = max{H(g) : g satisfies (2.1)}. (2.2)

We consider successively the case of a relativistic non quantum gas, then the
case of a Bose-Enstein gas, and last the case of a Fermi-Dirac gas. For each of
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these two kind of gases, we first consider in detail the relativistic case, where
the energy is given by

E(p) =

√
1 +

|p|2
c2m2

. (2.3)

Then we describe the non relativistic case, E(p) = |p|2/2m, which is simplest
since by Galilean invariance it can be reduced to P = 0.

In order to avoid lengthy technical details which are unnecessary for our
purpose here, we only present the results for each of the different cases. For the
detailed proofs the reader is referred to [24].

The relativistic non quantum case was completely solved by Glassey and
Strauss in [27], see also Glassey in [Gl, even in the non homogeneous case with
periodic spatial dependence. However, the proof that we give in [24] is different,
uses in a crucial way the Lorentz invariance and may be adapted to the quantum
relativistic case. Finally, notice that we do not consider this entropy problem
for a gas of photons (E(p) = |p| and H the Bose-Einstein entropy) since it would
not have physical meaning. In Section 5 we discuss the entropy problem for a
gas constituted of electrons and photons.

2.1 Relativistic non quantum gas

In this subsection, we consider the Maxwell-Boltzmann entropy

H(g) = −
∫

R3
g ln g dp. (2.4)

of a non quantum gas. From the heuristic argument presented in the intro-
duction, the solution to (2.1)-(2.2) is expected to be a relativistic Maxwellian
distribution:

M(p) = e−β0p0+β·p−µ. (2.5)

The result is the following.

Theorem 2.1 (i) Given E,N > 0, P ∈ R3, there exists a least one function
g ≥ 0 which solves the moments equation (2.1) if, and only if,

m2c2N2 + |P |2 < E2. (2.6)

When (2.6) holds we will say that (N,P,E) is admissible.

(ii) For an admissible (N,P,E) there exists at least one relativistic Maxwellian
distribution M satisfying (2.1).

(iii) Let M be a relativistic Maxwellian distribution. For any function g ≥ 0
satisfying ∫

R3

 1
p
p0

 g(p) dp =
∫

R3

 1
p
p0

M(p) dp, (2.7)
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one has

H(g)−H(M) = H(g|M) :=
∫

R3
[g ln

g

M
− g +M] dp. (2.8)

Moreover, H(g|M) ≤ 0 and vanishes if, and only if, g = M.

(iv) As a conclusion, for an admissible (N,P,E), the relativistic Maxwellian
constructed in (ii) is the unique solution to the entropy maximization prob-
lem (2.1)-(2.4).

2.2 Bose gas

We consider now a gas of Bose particles. As it has been said before, Bose [5]
and Einstein [18, 19], noticed that in this case, the set of steady distributions
had to include solutions containing a Dirac mass. It is then necessary to extend
the entropy function H defined in (1.11) with τ = 1 to such distributions. The
way to do this may be well understood with the following remark from [7].

Let a ∈ R3 be any fixed vector and (ϕn)n∈N an approximation of the identity:

(ϕn)n∈N; ϕn → δa.

For any f ∈ L1
2 and every n ∈ N the quantity H(f + ϕn) is well defined by

(1.11). Moreover,
H(f + ϕn) → H(f) as n→∞.

Suppose, for the sake of simplicity that ϕn ≡ 0 if |p− a| ≥ 2/n, then

H(f + ϕn) =
∫
|p−a|≥2/n

h(f(p, t), p) dp+
∫
|p−a|≤2/n

h((f(p, t) + ϕn(p), p) dp.

Let us call, σ(z) = (1 + z) ln(1 + z)− z ln z. Using |σ(z)| ≤ c
√
z we obtain∫

|p−a|≤2/n

|σ(f(p, t) +ϕn(p))|dp ≤ c
2√
n3

(∫
|p−a|≤2/n

(f(p, t) +ϕn(p)dp
)1/2 → 0.

Then∣∣ ∫
R3
h(f(p, t), p)dp−

∫
|p−a|≥2/n

h(f(p, t), p)dp
∣∣ ≤ ∫

|p−a|≤2/n

|h(f(p, t), p)|dp→ 0

which completes the proof.
This indicates that the expression of H given in (1.11) may be extended

to nonnegative measures and that the singular part of the measure does not
contributes to the entropy. More precisely, for any non negative measure F of
the form F = gdp + G, where g ≥ 0 is an integrable function and G ≥ 0 is
singular with respect to the Lebesgue measure dp, we define the Bose-Einstein
entropy of F by

H(F ) := H(g) =
∫

R3

[
(1 + g) ln(1 + g)− g ln g

]
dp. (2.9)
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On the other hand, as we have seen in the Introduction, the regular solutions to
the entropy maximization problem should be the Bose relativistic distributions

b(p) =
1

eν(p) − 1
with ν(p) = β0p0 − β · p+ µ. (2.10)

The following result explains where the Dirac masses have now to be placed
(see [24] for the proof).

Lemma 2.2 The Bose relativistic distribution b is non negative and belongs to
L1(R3) if, and only if, β0 > 0, |β| < β0 and µ ≥ µb with µb := −mcb, b > 0
and b2 = (β0)2 − |β|2. In this case, all the moments of b are well defined.
Finally,

ν(p) > ν(pm,c) ≥ 0 ∀p 6= pm,c :=
mcβ√

β0 2 − |β|2
. (2.11)

We define now the generalized Bose-Einstein relativistic distribution B by

B(p) = b+ αδpm,c
=

1
eν(p) − 1

+ αδpm,c
(2.12)

with
ν(p) = β0p0 − β · p+ µ > ν(pm,c) ≥ 0 ∀p 6= pm,c, (2.13)

and the condition αν(pm,c) = 0.

Theorem 2.3 (i) Given E,N > 0, P ∈ R3, there exists at least one measure
F ≥ 0 which solves the moments equation (2.1) if, and only if,

m2c2N2 + |P |2 ≤ E2. (2.14)

When (2.14) holds we will say that (N,P,E) is a admissible.

(ii) For any admissible (N,P,E) there exists at least one relativistic Bose-
Einstein distribution B satisfying (2.1).

(iii) Let B be a relativistic Bose-Einstein distribution. For any measure F ≥ 0
satisfying ∫

R3

 1
p
p0

 dF (p) =
∫

R3

 1
p
p0

 dB(p), (2.15)

one has
H(F )−H(B) = H1(g|b) +H2(G|b) (2.16)

where
H1(g|b) :=

∫
R3

(
(1 + g) ln

1 + g

1 + b
− g ln

g

b

)
dp ,

H2(G|b) := −
∫

R3
ν(p) dG(p).

(2.17)

Moreover, H(F |B) ≤ 0 and vanishes if, and only if, F = B. In particular,
H(F ) < H(B) if F 6= B.
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(iv) As a conclusion, for an admissible (N,P,E), the relativistic Bose-Einstein
distribution constructed in (ii) is the unique solution to the entropy max-
imization problem (2.1)-(2.3), (2.9).

2.2.1 Nonrelativistic Bose particles

For non relativistic particles the energy is E(p) = |p|2/2m. By Galilean invari-
ance the problem (2.1) is then equivalent to the following simpler one: given
three quantities N > 0, E > 0, P ∈ R3 find F (p) such that

∫
R3

 1
p− P

N

|p− P
N |

2/(2m)

F (p) dp =

 N
0

E − (|P |2/(2mN))

 . (2.18)

It is rather simple, using elementary calculus, to prove that for any E,N > 0,
P ∈ R3 there exists a distribution of the from

F (p) =
1

ea|p− P
N |2+b+ − 1

− b−δ P
N

(2.19)

with a ∈ R, b ∈ R, ν ∈ R, b+ = max(b, 0), b− = −max(−b, 0) which satisfies
(2.18). Once such a solution (2.18) of (2.19) is obtained, the following Bose-
Einstein distribution

B(p) =
1

eν(p) − 1
+ αδpm,c , ν(p) = a|p|2 − 2a

N
· p+ (b+ +

a|P |2

N2
) (2.20)

solves (2.1). This shows that for non relativistic particles Theorem 2.3 remains
valid under the unique following change: the statements (i) and (ii) have to be
replaced by

(i’) For every E,N > 0, P ∈ R3, there exists one relativistic Bose Einstein dis-
tribution defined by (2.19) corresponding to these moments, i.e. satisfying
(2.1).

Statements (iii) and (iv) of Theorem 2.3 remain unchanged.

2.3 Fermi-Dirac gas

In this subsection we consider the entropy maximization problem for the Fermi-
Dirac entropy

HFD(f) := −
∫

R3

(
(1− f) ln(1− f) + f ln f

)
dp. (2.21)

In particular, this implies the constraint 0 ≤ f ≤ 1 on the density f of the gas.
From the heuristics argument presented in the introduction, we know that

the solution F of (2.1)-(2.3), (2.21) is the Fermi-Dirac distribution

F(p) =
1

eν(p) + 1
with ν(p) = β0p0 − β · p+ µ. (2.22)
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We also introduce the “saturated” Fermi-Dirac (SFD) density

χ(p) = χβ0,β(p) = 1{β0p0−β·p≤1} = 1E with E = {β0p0 − β · p ≤ 1}, (2.23)

with β ∈ R3 and β0 > |β|.
Our main result is the following.

Theorem 2.4 (i) For any P and E such that |P | < E there exists an unique
SFD state χ = χP,E such that P (χ) = P and E(χ) = E. This one realizes
the maximum of particle number for given energy E and mean momentum
P . More precisely, for any f such that 0 ≤ f ≤ 1 one has

P (f) = P, E(f) = E implies N(f) ≤ N(χP,E). (2.24)

As a consequence, given (N,P,E) there exists F satisfying the moments
equation (2.1) if, and only if, E > |P | and 0 ≤ N ≤ N(χP,E). In this
case, we say that (N,P,E) is admissible.

(ii) For any (N,P,E) admissible there exists a Fermi-Dirac state F (“satu-
rated” or not) which solves the moments equation (2.1).

(iii) Let F be a Fermi-Dirac state. For any f such that 0 ≤ f ≤ 1 and

∫
R3
f(p)

 1
p
p0

 dp =
∫

R3
F(p)

 1
p
p0

 dp,

one has

HFD(f)−HFD(F) =HFD(f |F)

:=
∫

R3

(
(1− f) ln

1− f

1−F
− f ln

f

F
)
dp.

(2.25)

(iv) As a conclusion, for any admissible (N,P,E), the relativistic Fermi-Dirac
distribution constructed in (ii) is the unique solution to the entropy max-
imization problem (2.1)-(2.3), (2.21).

The new difficulty with respect to the classic or the Bose case is to be
managed with the constraint 0 ≤ f ≤ 1.

2.3.1 Nonrelativistic Fermi-Dirac particles

Here again, since the energy is E(p) = |p2|/2m the problem (2.1) is equivalent
to (2.18): given three quantities N > 0, E > 0, P ∈ R3 find f(p) such that
0 ≤ f ≤ 1 and satisfying (2.18). One may then check that for non relativistic
particles Theorem 2.4 remains valid under the unique following change: the
statements (i) and (ii) have to be replaced by
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(i’) For every E,N > 0, P ∈ R3, satisfying 5E ≥ 35/3(4π)2/3N5/3 there exists
a non relativistic fermi Dirac state, saturated or not, defined by

F(p) =


1

eν(p)+1
,where

ν(p) = a|p|2 − 2a
N P · p+ (b+ a|P |2

N2 ) if E > 35/3(4π)2/3

5 N5/3,

1{|p− P
N |≤c} if E = 35/3(4π)2/3

5 N5/3

corresponding to these moments, i.e., satisfying (2.1).

Statements (iii) and (iv) of Theorem 2.4 remain unchanged.

3 The Boltzmann equation for one single specie
of quantum particles

We consider now the homogeneous Boltzmann equation for quantum non rela-
tivistic particles, and treat both Fermi-Dirac and Bose-Einstein particles. We
begin with the Fermi-Dirac Boltzmann equation for which we may slightly im-
prove the existence result of Dolbeault [JD]and Lions [39]. We also state a very
simple (and weak) result concerning the long time behavior of solutions. We
finally consider the Bose-Einstein Boltzmann equation. We discuss the work
of Lu [40] and slightly extend some of its results to the natural framework of
measures

Consider the non relativistic quantum Boltzmann equation

∂f

∂t
= Q(f) =

∫∫∫
R9
wδCq(f) dv∗dv′dv′∗,

q(f) =
(
f ′f ′∗(1 + τ f)(1 + τ f∗)− ff∗(1 + τ f ′)(1 + τ f ′∗)

) (3.1)

where τ = ±1 and C is the non relativistic collision manifold of R12, (C):

v∗ + v′∗ = v + v∗

|v∗|2

2
+
|v′∗|2

2
=
|v|2

2
+
|v∗|2

2
.

(3.2)

We assume, without any loss of generality in this Section that the mass m of
the particles is one.

3.1 The Boltzmann equation for Fermi-Dirac particles

We first want to give a mathematical sense to the collision operator Q in (3.1)
under the physical natural bounds on the distribution f . Of course, if f is
smooth (say Cc(R3)) and w is smooth (for instance w = 1) the collision term
Q(f) is defined in the distributional sense as it has been mentioned in the
Introduction. But, as we have already seen, the physical space for the densities
of Fermi- Dirac particles is L1

2 ∩ L∞(R3).
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To give a pointwise sense to the formula (3.1), we first recall the following
elementary argument from [26]. After integration with respect to the v′∗ variable
in (3.1) we have

Q(f) =
∫ ∫

R6
wq(f)δ{ |v′|22 +

|v+v∗−v′|2
2 − |v|2

2 − |v∗|2
2 =0} dv∗dv

′.

By the change of variable v′ → (r, ω) with r ∈ R, ω ∈ S2, and v′ = v + rω, and
using Lemma 3, we obtain

Q(f) =
1
2

∫
R3

∫
S2

∫ ∞

0

wq(f)δ{r(r−(v∗−v)·ω)=0} r
2 drdσdv∗

=
∫

R3

∫
S2
w
|(v∗ − v, ω)|

2
q(f) dωdv∗,

(3.3)

where v′ and v′∗ are defined by

v′ = v + (v∗ − v, ω)ω, v′∗ = v∗ − (v∗ − v, ω)ω. (3.4)

Formula (3.3) gives a pointwise sense to Q(f), say for f ∈ Cc(R3).
To extend the definition of Q(f) to measurable functions we make the fol-

lowing assumptions on the cross-section:

B =
1
2
w|(v∗ − v, ω)| is a function of v∗ − v and ω, (3.5)

B ∈ L1(R3 × S2). (3.6)

Though (3.5) is a natural assumption in view of Section 3.1, (3.6) is a strong
restriction, in particular it does not hold when w = 1. With these assumptions,
first introduced in [15], we now explain how to give a sense to the collision term
Q(f) when f ∈ L1 ∩L∞. In one hand, since Φ : (v, v∗, ω) 7→ (v′, v′∗, ω) (with
v′, v′∗ given by (3.4)) is a C1-diffeomorphism on R3 × R3 × S2 with jacobian
JacΦ = 1, we clearly have that (v, v∗, ω) 7→ f ′f ′∗ is a measurable function of
R3 × R3 × S2. On the other hand, performing a change of variable, we get∫∫∫

R3×R3×S2
Bf ′f ′∗ dvdv∗dω =

∫∫
R3×R3

ff∗

(∫
S2
B dω

)
(v∗ − v) dvdv∗

≤ ‖f‖L1‖f‖L∞‖B‖L1 <∞,

and by the Fubini-Tonelli Theorem,∫
S2
Bf ′f ′ dω ∈ L1(R3 × R3).

That gives a sense to the gain term

Q+(f) =
∫

R3
(1− f)(1− f∗)

(∫
S2
Bf ′f ′ dω

)
dv∗
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as an L1 function. The same argument gives a sense to the loss term Q−(f) as
an L1 function.

Note that, under the assumptions B ∈ L1
loc(R3 × S2) and

1
1 + |z|2

∫∫
Bv

R×S2
B(z + v, ω) dωdv −→

|z|→∞
0 ∀R > 0, (3.7)

one may give a sense to Q±(f) as a function of L1(BR) (∀R > 0) for any
f ∈ L1

2 ∩ L∞, see [39]. In particular, the cross-section B associated to w = 1
satisfies (3.7).

Finally, we can make a third assumption on the cross-section, namely

0 ≤ B(z, ω) ≤ (1 + |z|γ)ζ(θ), with γ ∈ (−5, 0),
∫ π/2

0

θζ(θ) dθ <∞. (3.8)

This assumption allows singular cross-sections, both in the z variable and the
θ variable, near the origin. In that case, the collision term may be defined as a
distribution as follows:∫

R3
Q(f)ϕdv =

∫
R3

∫
R3

∫
S2
ff∗(1− f ′ − f ′∗)BKϕ dvdv∗dω (3.9)

with the notation
Kϕ = ϕ′ + ϕ′∗ − ϕ− ϕ∗. (3.10)

To see that (3.9) is well defined we note that (see e.g. [55]),

|Kϕ| ≤ Cϕ|v − v∗|2θ, (3.11)

from where,

|ff∗(1−f ′−f ′∗)BKϕ| ≤ Cϕθζ(θ)ff∗(|v−v∗|2+|v−v∗|γ+2) ∈ L1(R3×R3×S2).
(3.12)

To see this last claim, we just put g(z) = |z|a; if a ∈ (−3, 0] one has g ∈ L1+L∞

and therefore f(f ? g) ∈ L1 when f ∈ L1 ∩ L∞, and if a ∈ [0, 2] then writing
g(v − v∗) ≤ (1 + |v|2)(1 + |v∗|2) we see that f(f ? g) ∈ L1 when f ∈ L1

2.

Theorem 3.1 Assume that one of the conditions (3.6), (3.7) or (3.8) holds.
Then, for any fin ∈ L1

2(R3) such that 0 ≤ fin ≤ 1 there exists a solution
f ∈ C([0,+∞);L1(R3)) to equation (3.1). Furthermore,∫

R3
f(t, v) dv =

∫
R3
fin dv =: N,∫

R3
f(t, v)v dv =

∫
R3
fin(v)v dv =: P,∫

R3
f(t, v)

|v|2

2
dv ≤

∫
R3
fin(v)

|v|2

2
dv =: E,

(3.13)
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and ∫ ∞

0

D̃(f) dt ≤ C(fin), (3.14)

where

D̃(f) :=
∫∫∫

R3×R3×S2
B2(f ′f ′∗(1−f)(1−f∗)−ff∗(1−f ′)(1−f ′∗))2 dωdv∗dv. (3.15)

Remark 3.2 In the non homogeneous context, the existence of solutions has
been proved by Dolbeault [15] under the assumption (3.6) and by Lions [39]
under the assumption (3.7). Existence in a classical context under assumption
(3.8) (without Grad’s cut-off) has been established by Arkeryd [4], Goudon [25]
and Villani [55]. Finally, bounds on modified entropy dissipation term of the
kind of (3.15) have been introduced by Lu [40] for the Boltzmann-Bose equation.

Concerning the behavior of the solutions we prove the following result.

Theorem 3.3 For any sequence (tn) such that tn → +∞ there exists a subse-
quence (tn′) and a stationary solution S such that

f(tn′ + ., .) ⇀
n′→∞

S in C([0, T ];L1 ∩ L∞(R3)− weak) ∀T > 0 (3.16)

and ∫
R3
S dv = N,

∫
R3
Sv dv = P,

∫
R3
S |v|

2

2
dv ≤ E. (3.17)

Remark 3.4 By stationary solution we mean a function S satisfying

S ′S ′∗(1− S)(1− S∗) = SS∗(1− S ′)(1− S ′∗). (3.18)

Of course, such a function is, formally at least, a Fermi-Dirac distribution, we
refer to [15] for the proof of this claim in a particular case. Theorem 3.3 also
holds for the non homogeneous Boltzmann-Fermi equation, when, for example,
the position space is the torus, and under assumption (3.7) on B (in order to
have existence).

Open questions:

1. Is Theorem 3.1 true under assumption (3.8) for all γ ∈ (−5,−2] ?

2. Is it possible to prove the entropy identity (1.14) instead of the modified
entropy dissipation bound (3.14)? Of course (1.14) implies the dissipation
entropy bound (3.14) as it will be clear in the proof of Theorem 3.1.

3. Is any function satisfying (3.18) a Fermi-Dirac distribution?

4. Is it true that
sup
[0,∞)

∫
R3
f(t, v)|v|2+ε dv ≤ C(fin, ε)
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for some ε > 0 ? Notice that with such an estimate one could prove the
conservation of the energy (instead of (3.17)). If we could also give a
positive answer to the question 3, we could then prove the convergence to
the Fermi-Dirac distribution FN,P,E .

5. Finally, is it possible to improve the convergence (3.16), and prove for
instance strong L1 convergence?

Proof of Theorem 3.1 Suppose that B satisfies (3.6), (3.7) or (3.8) and
define Bε = B1θ>ε1ε<|z|<1/ε. Notice that Bε satisfies (3.6), 0 ≤ Bε ≤ B
and Bε → B a.e. From [15] there exists a sequence of solutions (fε) to (3.1)
corresponding to (Bε). Moreover, for any ε > 0, the solution fε satisfies (3.13)
and (1.14). As it is shown by Lions in [39]:

aεf
′
εf
′
ε∗(1− fε − fε∗) ⇀

n′→∞
af ′f ′∗(1− f − f∗) L1 weak,

aεfεfε∗(1− f ′ε − f ′ε∗) ⇀
n′→∞

aff∗(1− f ′ − f ′∗) L1 weak,
(3.19)

for any sequence (fε) such that fε ⇀ f in L1 ∩ L∞, and any sequence (aε)
satisfying (3.8) uniformly in ε and such that aε → a a.e. In particular, under
the assumption (3.8) on B and taking aε = Bε, a = B, it is possible to pass to
the limit ε → 0 in the equation (3.1). That gives existence of a solution f to
the Fermi-Boltzmann equation for B satisfying (3.8).

Now, for B satisfying (3.8), we just write∫
R3
Qε(fε)ϕdv

=
∫

R3

∫
R3

∫
S2
fεfε∗(1− f ′ε − f ′ε∗)BεKϕ 1{θ≥δ,|v−v∗|≥δ} dvdv∗dω

+
∫

R3

∫
R3

∫
S2
fεfε∗(1− f ′ε − f ′ε∗)BεKϕ

(
1{θ≤δ,|v−v∗|≥δ} + 1{|v−v∗|≤δ}

)
dvdv∗dω

≡ Qδ,ε + rδ,ε.

For the first term Qδ,ε we easily pass to the limit ε → 0 using (3.19). For the
second term rδ,ε, using (3.11), we have

lim
ε→0

rδ,ε

≤ lim
ε→0

Cϕ

∫
R3

∫
R3
fεfε∗(|v − v∗|2 + |v − v∗|γ+2)

(∫
S2
θζ(θ)1{θ≤δ} dω

)
dvdv∗

+ lim
ε→0

Cϕ

∫
R3

∫
R3
fεfε∗(|v − v∗|2 + |v − v∗|γ+2)1{|v∗−v|≤δ}

(∫
S2
θζ(θ) dω

)
dvdv∗

≤ Cϕ,f

∫
S2
θζ(θ)1{θ≤δ} dω

+ Cϕ,ζ

∫
R3

∫
R3
fεfε∗(|v − v∗|2 + |v − v∗|γ+2)1{|v∗−v|≤δ} dvdv∗.



24

Therefore,

lim
ε→0

∫
R3
Qε(fε)ϕdv

=
∫

R3

∫
R3

∫
S2
ff∗(1− f ′ − f ′∗)BKϕ 1{θ≥δ,|v−v∗|≥δ} dvdv∗dω + rδ,

with rδ → 0 when δ → 0. Since we also have∫
R3
Q(f)ϕdv =

∫
R3

∫
R3

∫
S2
ff∗(1− f ′ − f ′∗)BKϕ 1{θ≥δ,|v−v∗|≥δ} dvdv∗dω + r̃δ,

with r̃δ → 0 when δ → 0, we conclude that

lim
ε→0

∫
R3
Qε(fε)ϕdv =

∫
R3
Q(f)ϕdv

and f is a solution to (3.1). We refer to [39, 55] for more details. To establish
(3.14), we take aε = a =

√
Bδ in (3.19) and we then have√

Bδ[f ′εf
′
ε∗(1− fε−fε∗)− fεfε∗(1− f ′ε − f ′ε∗)]

⇀
ε→0

√
Bδ[f ′f ′∗(1− f − f∗)− ff∗(1− f ′ − f ′∗)].

(3.20)

Using the elementary inequality

(b− a)2 ≤ j(a, b) ∀ a, b ∈ [0, 1],

we have for ε ∈ (0, δ]∫ ∞

0

D̃δ(fε) dt ≤
∫ ∞

0

D̃ε(fε) dt ≤
∫ ∞

0

Dε(fε) dt ≤ C(fin). (3.21)

Gathering (3.20) and (3.21) we obtain, using the convexity of s 7→ s2,∫ ∞

0

D̃δ(f) dt ≤ lim inf
ε→0

∫ ∞

0

D̃δ(fε) dt ≤ C(fin),

and we recover (3.15) letting δ → 0. �

Proof of Theorem 3.3 Let consider fn = f(t+ tn, .) as in the statement of
the Theorem 3.3. We know that there exists n′ and S such that fn′ ⇀n′→∞ S
weakly in L1 ∩ L∞((0, T )× R3) for all T > 0, and we only have to identify the
limit S. On one hand, S satisfies the moments equation (3.17). On the other
hand by (3.21) and lower semicontinuity we get∫ T

0

D̃δ(S) ds ≤ lim inf
∫ T

0

D̃(fn′) ds ≤ lim inf
∫ T+tn′

tn′

D̃(f) ds = 0
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for any δ > 0, so that

S ′S ′∗(1−S)(1−S∗)−SS∗(1−S ′)(1−S ′∗) = S ′S ′∗(1−S−S∗)−SS∗(1−S ′−S ′∗) = 0

for a.e. (v, v∗, ω) ∈ R3 × R3 × S2. In particular, ∂S
∂t = Q(S) = 0 and S is a

constant function in time. We finally improve the convergence of fn′ to S and
establish (3.16). To this end we note that for any ψ ∈ Cc(R3),

d

dt

∫
R3
fn′ψ dv =

∫
R3
Q(fn′)ψ dv

and the right hand side is bounded in L1(0, T ). Therefore,
∫

R3 fnψ dv is bounded
in BV (0, T ). We can then extract a second subsequence (not relabeled) such
that

(∫
R3 fn′ψ dv

)
converges strongly L1(0, T ) and a.e. on (0, T ) and the limit

is obviously
∫

R3 Sψ dv. Let τ ∈ (0, T ) be such that
(∫

R3 fn′ψ dv
)
→
∫

R3 Sψ dv.
We deduce that∫

R3
fn′(t, .)ψ dv =

∫
R3
fn′(τ)ψ dv −

∫ t

τ

∫
R3
Q(fn′)ψ dvds

and using P. L. Lions’ result we get∫ T

0

∫
R3
Q(fn′)ψ dvds→

∫ τ

0

∫
R3
Q(S)ψ dvds = 0,

and therefore
sup
[0,T ]

∣∣∫
R3
f(tn′)ψ dv −

∫
R3
S ψ dv

∣∣ → 0.

�

3.2 Bose-Einstein collision operator for isotropic density

We consider now the Boltzmann equation for Bose-Einstein particles and take
τ = 1 in (3.1). We start with an elementary remark. Assume that w = 1 and
consider a sequence (fε) defined by fε(v) := ε−3f(v/ε) for a given 0 ≤ f ∈
Cc(R3), f 6≡ 0. An elementary change of variables leads to

‖Q±(fε)‖L1 =
1
ε3
‖Q±(f)‖L1 → +∞.

Therefore, no a priori estimate of the form

‖Q(f)‖ ≤ Φ(‖f‖L1), with Φ ∈ C(R+),

can be expected. In particular we will not be able to give a sense to the kernel
Q(f) under the only physical bound f ∈M1

2 (R3) for such a w.
This first remark motivates the two following simplifications, originally per-

formed by Lu [40] to give a sense to Q(f): we assume that the density is isotropic
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and we make a strong (and unphysical) truncation assumption on w. We use
them here, in a slightly different way that we believe to be simpler.

We then assume, until the end of this Section, that the density f only de-
pends on the quantity |v|, and denote f(v) = f(|v|) = f(r) with r = |v|. For a
given function q = q(r, r∗; r′, r′∗) we define

Q[q](v) :=
∫

R3

∫
R3

∫
R3
wqδC dv∗dv

′dv′∗. (3.22)

By introducing the new function

ŵ(r, r∗, r′, r′∗) :=
∫∫∫

S2×S2×S2
w(v, v∗, v′, v′∗)δ{v+v∗=v′+v′∗} dσ∗dσ

′dσ′∗ (3.23)

and the notation v∗ = r∗σ∗, v∗ = r′σ′, v′∗ = r′∗σ
′
∗, dr̂∗ = r2∗ dr∗, dr̂

′ = r′
2
dr′,

dr̂′∗ = r′∗
2
dr′∗,

Ĉ = {(r, r∗, r′, r′∗) ∈ R4
+, r

2 + r2∗ = r′
2 + r′

2
∗}, (3.24)

we may write Q[q] in the simple way

Q[q](r) =
∫∫∫

R3
+

ŵ δbC q dr̂∗dr̂′dr̂′∗. (3.25)

Let us emphasize that ŵ is indeed a function of r = |v| (and not on the whole
variable v) since, for any R ∈ SO(3), we have∫∫∫

S2×S2×S2
w(Rv, v∗, v′, v′∗)δ{Rv+v∗=v′+v′∗} dσ∗dσ

′dσ′∗

=
∫∫∫

S2×S2×S2
w(Rv,Rv∗, Rv′, Rv′∗)δ{Rv+Rv∗=Rv′+Rv′∗} dσ∗dσ

′dσ′∗

=
∫∫∫

S2×S2×S2
w(v, v∗, v′, v′∗)δ{v+v∗=v′+v′∗} dσ∗dσ

′dσ′∗

by the change of variables (σ∗, σ′, σ′∗) → (Rσ∗, Rσ′, Rσ′∗) and the rotation in-
variance of w. Moreover, ŵ clearly satisfies the property

ŵ(r, r∗, r′, r′∗) = ŵ(r∗, r, r′, r′∗) = ŵ(r′, r′∗, r, r∗). (3.26)

Lemma 3.5 Assume that w is such that B defined by (3.5) satisfies

sup
z∈R3

1
1 + |z|s

∫
S2
B(z, ω) dω <∞ (3.27)

with s = 2 and that ŵ defined by (3.26) satisfies

ŵ(r + r∗ + r′ + r′∗) ∈ L∞(R4
+). (3.28)

Then for any isotropic function f ∈ L1
2(R3) the kernel Q±(f) is well defined

and
‖Q±(f)‖L1 ≤ CB‖f‖2L1

2(R3) + Cŵ‖f‖3L1(R3). (3.29)
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A refined version of the bound (3.29) has been used, by Lu [40], in order to prove
a global existence result when s = 0 in (3.27). For s = 1, X. Lu also proves
an existence result under the additional assumption that B has the particular
form: B(z, ω) = |z|γζ(θ) with γ ∈ [0, 1], ζ ∈ L1. Here condition (3.28) has to
be understood as a truncation assumption near the origin

∃B0 ∈ (0,∞), B(z, ω) ≤ B0(cos θ)2 sin θ|z|3, (3.30)

introduced in [40]. In order to clarify the assumption (3.28) let us state the
following result.

Lemma 3.6 1. For w = 1,

ŵ =
4π2

r r∗ r′ r′∗
min(r, r∗, r′, r′∗). (3.31)

2. As a consequence, any cross-section w such that

∃w0 ∈ (0,∞), w ≤ w0((|v′ − v||v′∗ − v|) ∧ 1) (3.32)

satisfies (3.27)-(3.28).

Note that condition (3.32) is exactly the X. Lu’s assumption (3.30) near the
origin. This condition kills the interaction between particles with low energy.
We emphasize that this assumption is never satisfied by the physically relevant
cross-sections.

Proof of Lemma 3.5 We may write

f ′f ′∗(1+f)(1+f∗)−ff∗(1+f ′)(1+f ′∗) = f ′f ′∗(1+f+f∗)−ff∗(1+f ′+f ′∗). (3.33)

Then, we have to define Q[q] for two kinds of terms q: for the quadratic terms
q = ff∗ and q = f ′f ′∗ and for cubic terms q = f ′f ′∗f , q = f ′f ′∗f∗, q = ff∗f

′

and q = ff∗f
′
∗. The quadratic terms may be defined in the same way that for

the Fermi-Dirac Boltzmann equation in Section 3.1 thanks to assumption (3.28)
and they are bounded by the first term in the right hand side of estimate (3.29).

We then focus on the cubic terms. We define them by performing one in-
tegration more in the representation formula (3.25) (with respect to one of the
variables r∗, r′, r′∗) but we still use the formula (3.25) in order to preserve the
symmetries of Q.

Let us first assume that moreover, f ∈ Cc(R3). Performing in (3.25) the
integration in the r∗ variable we get, using Lemma 6.1,

Q[q](r) =
∫∫

R2
+

ŵ
r∗
2

1{r′2+r′∗
2≥r2} q dr̂

′dr̂′∗. (3.34)

where r∗ =
√
r′2 + r′∗

2 − r2. It is then clear that (3.33) defines Q[q] as measur-
able function.



28

Moreover, we write∫
R+

Q[q](r)dr̂ =
∫∫∫∫

R4
+

ŵ δbC q dr̂dr̂∗dr̂′dr̂′∗
and first, perform an integration with respect to the variable which does not
appear in q (namely, r∗ if q = f ′f ′∗f , r if q = f ′f ′∗f∗, and so on) and we get
(using Lemma 6.1 again)∫

R+

Q[q](r)dr̂

=
∫∫∫

R3
+

ŵ(r1, r2, r3, r4)
r4
2

1{r2
1+r2

2≥r2
3} f(r1)f(r2)f(r3) dr̂1dr̂2dr̂3

≤ ‖ŵ(r + r∗ + r′ + r′∗)‖L∞(R4
+)‖f‖3L1(R3),

(3.35)

where in the first inequality we have used the notation r4 =
√
r21 + r22 − r23. We

finally deduce (3.29) using a density-continuity argument. �

Proof of Lemma 3.6 We start by proving (3.31). Using that

δ(v+v∗−v′−v′∗) =
∫

R3
ei(z,v+v∗−v′−v′∗)

dz

(2π)3
=
∫ ∞

0

∫
S2
ei(z,v+v∗−v′−v′∗) dσ

r2 dr

(2π)3

where z = |z|σ and ε = |z| in polar coordinates, we obtain∫
S2

∫
S2

∫
S2
δ(v + v∗ − v′ − v′∗) dσ∗dσ

′dσ′∗

=
∫ ∞

0

∫
S2

∫
S2

∫
S2

∫
S2
ei(z,v+v∗−v′−v′∗) dσdσ∗dσ

′dσ′∗
ε2 dε

(2π)3

=
∫ ∞

0

ε2 dε

(2π)3

∫
S2
ei(z,v) dσ

∫
S2
ei(z,v∗) dσ∗

∫
S2
ei(z,v′) dσ′

∫
S2
ei(z,v′∗) dσ′∗

=
16π

r r∗ r′ r′∗

∫ ∞

0

dε

(2π)3ε2
sin(ε r)sin(ε r∗)sin(ε r′)sin(ε r′∗).

Then (3.31) follows by an lengthy elementary trigonometric computation. It is
clear, thanks to (3.25), that (3.32) implies (3.27). We then have to prove that
(3.32) implies (3.28). For any r, r∗, r

′, r′∗ given, we set m1 = min(r, r∗, r′, r′∗),
m2 = min({r, r∗, r′, r′∗}\{m1}), m3 = min({r, r∗, r′, r′∗}\{m1,m2}) and finally,
m4 = max(r, r∗, r′, r′∗). Since |v − v′| = |v∗ − v′∗|, |v − v′∗| = |v∗ − v′| and
{r, r∗} 6= {m1,m2}, {r, r∗} 6= {m3,m4}, the assumption (3.32) leads to

w ≤ w0

{[
4 min

(
max(r, r′),max(r∗, r′∗)

)
min

(
max(r, r′∗),max(r∗, r′)

)]
∧ 1
}

≤ w0

{[
4m2m3

]
∧ 1
}
.

Gathering (3.31) and this last inequality we deduce

ŵ(r + r∗ + r′ + r′∗) ≤
4π2m1

r r∗ r′ r′∗
(4w0m2m3)(r + r∗ + r′ + r′∗) ≤ 64π2 w0,
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and that concludes the proof. �

We want now to extend the previous arguments and give a sense to Q(F ) for
F ∈M1(R3). For the quadratic term that problem has been solved by Povzner
in [45]. For the cubic term we write for a radial measure dF = f r2 dr

〈Q[q], φ〉 = 〈F ⊗ F ⊗ F,Bŵ[ψ]〉 (3.36)

with
Bŵ[ψ](r1, r2, r3) := ŵ(r1, r2, r3, r4)

r4
2

1{r2
1+r2

2≥r2
3}ψ

and r4 =
√
r21 + r22 − r23 and ψ(r1, r2, r3) = φ(ri) i = 1, 2, 3 or 4 depending on

q. Under the condition
Bŵ[1] ∈ C(R3

+) (3.37)

we clearly have Bŵ[ψ] ∈ Cc(R3
+) for any φ ∈ Cc(R+) and then the right hand

side term of (3.36) is well defined. The assumption

B ∈ C(R3 × S2), (3.38)

which is satisfied by the hard potentials, guaranties that the quadratic term is
well defined and that ŵ ∈ C(E\{0}) where E = {(r1, r2, r3, r4) ∈ R4

+, r
2
1 + r22 −

r23 − r24 = 0}. The condition (3.37) is then satisfied if moreover

lim
(r1,r2,r3)→0

ŵ(r1, r2, r3, r4) r4 = 0 .

From the computations performed in the proof of Lemma 3.6. it is clear that
the last condition holds if we assume, for instance

w ≤ w0 |v′ − v|γ ∧ 1, γ > 1. (3.39)

As a conclusion, under assumption (3.27), (3.38), (3.39) we may define the
collision kernel for general non negative bounded and isotropic measures. From
all the above one easily deduces the following existence result for (3.1) with
τ = 1 in the framework of non negative bounded measures.

Theorem 3.7 Assume w satisfies (3.39). Let Fin ∈M1
rad(R3), Fin ≥ 0. Then,

there exists a unique global solution F = g + G ∈ C([0,∞),M1
rad(R3)) to (3.1)

with τ = 1.

Remark 3.8 It is straightforward to check that in the radially symmetric case
Theorem ?? gives:

Theorem 3.9 Let 0 ≤ F ∈M1
rad(R3) an isotropic measure on R3 such that∫

R3

(
1

|v|2/2

)
dF (v) =

(
N
E

)
and of course

∫
R3
v dF (v) = 0, (3.41)

with N > 0, E > 0. Therefore the two following assertions are equivalent:

(i) F is the Bose-Einstein distribution B[N, 0, E],

(ii) F is the solution of the maximization problem:

H(F ) = max{H(F ′) with F ′ satisfying (3.41).
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Open questions: In the L1 setting X. Lu has proved in [40]:

(i) For any (tn) such that tn → ∞ there exists m′ ≤ m, E′ ≤ E and a
subsequence (tn′) such that

g(tn′) ⇀ bm′,0,E′ biting L1
rad weak.

(ii) For a given E there exists Nc = Nc(E) such that if N(fin) < Nc and
E(fin) = E then

g(t) ⇀ BN,0,E = bN,0,E L1
rad weak.

Where the distributions b and B are defined in (2.22) and (2.25). The two
following questions are then natural.
1. Is it possible to construct (global?) solutions to (3.1) for τ = 1 without
the strong truncation condition (3.39); for instance for w = 1? What is the
qualitative behavior of such solutions ?
2. Is it possible to prove that, under the strong truncation condition (3.39),

F (t) ⇀ BN,0,E weakly σ(M1, Cc) and g → bN,0,E stronglyL1(R3\{0})

as it may be expected from the stationary analysis? If N(gin) < Nc, is it possible
to prove strong convergence instead of result (ii) in Theorem 3.5?

Remark 3.10 The Boltzmann-Compton equation, introduced in Section 5 be-
low, is a particular case of (3.1) with τ = 1. It has been proved in [22, 23] that
it also has global solutions F = g + G ∈ C([0,∞),M1

rad(R3)), where g is the
regular and G the singular part of the measure F with respect to the Lebesgue
measure. Moreover it was proved that the Boltzmann-Compton may be splitted
as a system of two coupled equations for the pair (g,G). This allows in par-
ticular for a detailed study of the asymptotic behavior of the solutions. Let us
briefly show that this is not true for the general isotropic solutions F = g +G
of the equation (3.1) unless G is one single Dirac mass.

Let us write F = g+G with g regular with respect to the Lebesgue measure
(g ≺ dv) and G singular with respect to the Lebesgue measure (G ⊥ dv). We
have then

F ′F ′∗ (1 + F )(1 + F∗)− FF∗(1 + F ′)(1 + F ′∗) =
= (1 + g)(1 + g∗ +G∗)(g′ +G′)(g′∗ +G′∗) +G(1 + F∗)F ′F ′∗
− g(g∗ +G∗)(1 + g′ +G′)(1 + g′∗ +G′∗)−GF∗(1 + F ′)(1 + F ′∗)

= (1 + g)
{
(1 + g∗) g′ g′∗ + (1 + g∗) g′G′∗ + (1 + g∗)G′ g′∗ + (1 + g∗)G′G′∗

+G∗ g
′ g′∗ +G∗ g

′G′∗ +G∗G
′ g′∗ +G∗G

′G′∗
}

− g
{
g∗(1 + g′)(1 + g′∗) + g∗(1 + g′)G′∗ + g∗G

′(1 + g′∗) + g∗G
′G′∗

+G∗(1 + g′)(1 + g′∗) +G∗(1 + g′)G′∗ +G∗G
′(1 + g′∗) +G∗G

′G′∗
}

+G(1 + F∗)F ′F ′∗ −GF∗(1 + F ′)(1 + F ′∗)
= q(g) + q1(g,G) + q2(g,G) + q3(G, g),
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with

q(g) := (1 + g)(1 + g∗) g′ g′∗ − g g∗(1 + g′)(1 + g′∗),
q1(g,G) := G∗[(1 + g) g′ g′∗ − g(1 + g′)(1 + g′∗)]

+G′[(1 + g)(1 + g∗) g′∗ − g g∗(1 + g′∗)
+G′∗[(1 + g)(1 + g∗) g′ − g g∗(1 + g′),

q2(g,G) := G∗G
′[(1 + g) g′∗ − g(1 + g′∗)]

+G∗G
′
∗[(1 + g) g′ − g(1 + g′)]

+G′G′∗[(1 + g)(1 + g∗)− g g∗],
q3(G) := (1 + g)G∗G′G′∗ − g G∗G

′G′∗,

q4(G, g) := G(1 + F∗)F ′F ′∗ −GF∗(1 + F ′)(1 + F ′∗).

Defining

Qi(g,G) =
∫∫∫

R9
wδCqi(g,G) dv∗dv′dv′∗,

we may write

Q(F ) = Q(g) +Q1(g,G) +Q2(g,G) +Q3(G) +Q4(g,G).

The key result in all our analysis is the following result.

Lemma 3.11 Assume (3.27), (3.38) and (3.39). For any F ∈M1
rad(R3), Fin ≥

0, we have

Q(g), Q1(g,G), Q2(g,G) ∈ L1
rad(R3),

Q4(g,G) ∈M1
rad(R3) and Q4(g,G) ⊥ dv.

For any finite sum of Dirac masses G the kernel Q3(G) is also finite sum of
Dirac masses and, moreover, if G is not single Dirac mass then suppG\{0}
is strictly contained in suppQ3(G). Finally, there exists G singular such that
Q3(G) is regular.

Proof of Lemma 3.5 We already know from the above that Q(g) ∈ L1
rad(R3)

and Q1(g,G), Q2(g,G), Q4(g,G), Q3(G) ∈ M1
rad(R3). Let us denote by q the

first term in q1(g,G) and write, for any φ

〈Q[q], φ〉 =
∫∫∫∫

R4
+

ŵ δbC g′ g′∗φdG∗dr̂′dr̂′∗ =
∫∫

R2
+

ψ g′ dr̂′ dG(r∗),

with
ψ =

∫
R+

ŵ r1{r′2+r′∗
2≥r2

∗} φ(r) g′∗ dr̂
′
∗

where in the expression of ψ we have used the notation r =
√
r′2 + r′∗

2 − r2∗.
Observe that, by assumption, (r∗, r′, r′∗) 7→ ŵ r1{r′2+r′∗

2≥r2
∗} is continuous so
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that (r∗, r′) 7→ ψ is continuous for any φ ∈ L∞rad(R3). Moreover, taking φ = 1A

for any set A with Lebesgue measure equal zero we get ψ = 0, so that the
Radon-Nykodim Theorem implies that Q[q] ∈ L1. By the same way we prove
that all the terms in Q1(g,G) and Q2(g,G) belongs to L1

rad(R3).
It is clear that taking q = F ′F ′∗−F∗−F∗F ′−F∗F ′∗ we have Q[q] ∈ Cb(R3) so

that Q4(g,G) ⊥ dv. For given R∗, R
′, R′∗ ≥ 0 we set q = δR∗(r∗)δR′(r′)δR′

∗
(r′∗)

and we verify

〈Q[q], φ〉 = φ(R)Rŵ(R,R∗, R′, R′∗)1{R′2+R′
∗
2≥R2

∗}

where R is defined by R =
√
R′2 +R′∗

2 −R2
∗ if R′2 +R′∗

2 ≥ R2
∗. In particular,

if G = αδ0 then Q3(G) = 0 and if G = αδa with a, α 6= 0 then Q3(G) = βδa
with β > 0. If

G =
∑
a∈E

αaδa

then
Q3(G) =

∑
b∈E′

βbδb,

with E′ = {b ≥ 0, ∃a∗, a′, a′∗ ∈ E s.t.(b, a∗, a′, a′∗) ∈ Ĉ}. That proves the claim
of the Lemma since E′ strictly contain E if E is not a single point.

Finally, let G be a measure supported by
√
C, where C is a Cantor set,

constructed for example as follows. For every n ∈ N consider the set

Cn := {x ∈ [0, 1],∃k ∈ N, 2 k ≤ 3n x ≤ 2 k + 1},

so that Cn ↘ C as n → ∞. Then gn := |Cn|−11Cn ⇀ H, a singular non
negative measure whose support is C. If we take now G := H ◦s with s : R → R,
s(r) =

√
r we have, for any φ ∈ Crad,c(R3):

〈Q3(G) =
∫ ∫ ∫

R3
+

dG(r∗) dG(r′) dG(r′∗)[φ(r) rŵ1{r′2+r′∗
2≥r2

∗}].

Since
{z ∈ R+; ∃ε∗, ε′, ε′∗ ∈ Cz = ε′ + ε′∗ − ε∗} = R+

we see that 〈Q3(G);φ〉 > 0 for any non negative and not vanishing φ, and thus
Q3(G) has a regular part which is not equal to 0. �

Remark 3.12 If we assume that for every time t > 0, G(t) ≡ α(t) δ0, then the
equation (3.1) with τ = 1 may be split into a coupled system of equations for
the pair (g, α).

Remark 3.13 The equation (3.1) with τ = 1 has deserved some interest in the
recent physical literature in the context of Bose condensation. We particularly
refer here to the works by Semikoz & Tkachev [48, 49], and by Josserand &
Pomeau [32] due to their strong mathematical point of view (but see also the
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references therein). In these two articles the authors present a possible “sce-
nario” to describe the occurrence of Bose condensation in finite time, based
on the isotropic version of the equation (3.1) with τ = 1. Their arguments
are based on formal asymptotics and, in [48, 49], also supported by numerical
simulations.

4 Boltzmann equation for two species

In this Section we consider a system of two coupled homogeneous equations
describing a Bose gas interacting with a heat bath, chosen to be a Fermi gas.
This is a particular case of a gas composed of two species and has already been
considered in the physical literature (see references below). One of the species
are Bose particles and the other are either Fermi-Dirac particles or non quantum
particles. In this Section we only deal with non relativistic particles. Relativistic
particles, in particular photons will be considered in the next Section. In order
to avoid lengthy repetitions, we do not specify the energy (relativistic or not
relativistic) unless necessary.

From a mathematical point of view, the study of the Boltzmann equation for
a gas of Bose particles is rather difficult, as we have already seen it in the pre-
ceding Section. But it is possible to derive, from the Boson-Fermion interaction
system, a physically relevant model which turns out to be a sort of “lineariza-
tion” of equation (3.1). This model is then simpler and gives some insight into
the behavior of the Boltzman equations for quantum particles. It describes
the interaction of Bose particles with isotropic distribution and non quantum
Fermi particles at isotropic equilibrium with non truncated cross-section. The
equation is now quadratic instead of cubic and its mathematical analysis is eas-
ier. We prove that Bose- Einstein condensation takes place in infinite time, in
contrast with the finite time condensation which is expected for the Bose-Bose
interaction equation. Similar results had previously been obtained in the phys-
ical literature, using formal and numerical methods for similar situations (cf.
[36, 37, 48, 49]).

We thus consider in what follows a gas composed of two species of particles.
The first are Bose particles. The second are either Fermi particles or their
non quantum approximation but will always be designed as Fermi particles. We
suppose that when a Bose particle of momentum p collides with a Fermi particle
of momentum p∗ they undergo an elastic collision, so that the total momentum
and the total energy of the system constituted by that pair of particles are
conserved. More precisely, denoting by E1(p) the energy of Bose particles with
momentum p and by E2(p∗) the energy of Fermi particles with momentum p∗ we
assume that after collision the particles have momentum p′ (for Bose particles)
and p′∗ (for Fermi particles) which satisfy C12:

p′ + p′∗ = p+ p∗

E1(p′) + E2(p′∗) = E1(p) + E2(p∗).
(4.1)

The gas is described by the density F (t, p) ≥ 0 of Bose particles and the
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density f(t, p) ≥ 0 of Fermi particles. We assume that the evolution of the gas
is given by the following Boltzmann equation (see for instance [11])

∂F

∂t
= Q1,1(F, F ) +Q1,2(F, f), F (0, .) = Fin,

∂f

∂t
= Q2,1(f, F ) +Q2,2(f, f), f(0, .) = fin.

(4.2)

The collision terms Q1,1(F, F ) and Q2,2(f, f) stand for collisions between par-
ticles of the same specie and therefore are given by (1.5). The collision terms
Q1,2(F, f) and Q2,1(f, F ) stand for collisions between particles of the two dif-
ferent species, they are given by

Q1,2(F, f) =
∫

R3

∫
R3

∫
R3
w1,2δC1,2q1,2 dp∗dp

′dp′∗,

q1,2 = F ′f ′∗(1 + F )(1 + τ f∗)− Ff∗(1 + F ′)(1 + τf ′∗)
(4.3)

with τ = −1 when the second specie is composed of true Fermi particles and
τ = 0 when the second specie is constituted of non quantum particles. The col-
lision kernel Q2,1(f, F ) is given by an obvious similar expression. The measure
w1,2δC1,2 = w1,2(p, p∗, p′, p′∗)δC1,2 satisfies the micro-reversibility hypothesis

w1,2(p′, p′∗, p, p∗)δC1,2 = w1,2(p, p∗, p′, p′∗)δC1,2 , (4.4)

but not the indiscernibility w1,2(p∗, p, p′, p′∗)δC1,2 = w1,2(p, p∗, p′, p′∗)δC1,2 as in
(1.7) since the two species are now different. When both energies are non
relativistic w1,2 is invariant by Galilean transformations, and when both energies
are relativistic it is invariant by Lorentz transformations. In the mixed case of
one non relativistic specie and one relativistic specie, the situation is a little
more complicated and we postpone the analysis to the next Section.

We start with some simple formal properties of the solutions of (4.2). Thanks
to symmetry (4.4), performing a change of variables (p′, p′∗, p, p∗) → (p, p∗, p′, p′∗)
we get the fundamental formula: for any ψ = ψ(p),∫

R3
Q1,2(F, f)ψ dp =

1
2

∫∫∫∫
R12

w1,2δC1,2

(
F ′f ′∗(1 + F )(1 + τ f∗)

− Ff∗(1 + F ′)(1 + τf ′∗)
)(
ψ − ψ′

)
dp dp∗dp

′ dp′∗ .

(4.5)

A similar formula holds for Q2,1(f, F ).
After integration of the two equations of (4.2) separately, and using (1.7)

and (4.5) we formally get the particle number conservation of each specie:∫
R3
F (t, p) dp =

∫
R3
Fin(p) dp ,

∫
R3
f(t, p) dp =

∫
R3
fin(p) dp. (4.6)

Multiplying both equations in (4.2) by ψ(p) = p, summing up and using (1.7),
(4.5) and w1,2 = w2,1 we obtain the global momentum conservation∫

R3

(
F (t, p) + f(t, p)

)
p dp =

∫
R3

(
Fin(p) + fin(p)

)
p dp. (4.7)
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Multiplying the first equation of (4.2) by E1, the second equation of (4.2) by
E2, using (1.7), (4.5) and the collision invariance (4.1) we get the global energy
conservation∫

R3

(
F (t, p)E1(p) + f(t, p)E2(p)

)
dp =

∫
R3

(
Fin(p)E1(p) + fin(p)E2(p)

)
dp . (4.8)

Finally, we define the entropy of the system by

HS(F, f) := H1(F ) +Hτ (f) (4.9)

with Hτ given by (1.1). Multiplying the first equation by h′1(F ) and the second
equation by h′τ (f) we obtain using (4.5)

d

dt
HS(F, f) = DS(F, f) :=

1
4
D1(F ) +

1
2
D1,2(F, f) +

1
4
Dτ (f) ≥ 0, (4.10)

where D1(F ) and Dτ (f) are the usual dissipation entropy production of one
specie, and D1,2(F, f) is the mixed dissipation entropy production given by

D1,2(F, f) :=∫∫∫∫
R12

w1,2δC1,2j
(
F ′f ′∗(1 + F )(1 + τf∗), F ′∗(1 + F ′)(1 + τf ′∗)

)
dpdp∗dp

′dp′∗.

(4.11)
We list now several questions that one may naturally consider about the

system (4.2).
1. For the single quantum equation, one may consider the maximization

entropy problem under particle number, momentum and energy restriction i.e.:
for any given NB , NF , E > 0, P ∈ R3, to find a pair of functions (F, f) such
that ∫

R3
dF (p) = NB ,

∫
R3
f(p) dp = NF∫

R3
p(F (p) + f(p)) dp = P,

∫
R3

(F (p)E1(p) + f(p)E2(p)) dp = E.

(4.12)

and satisfying

HS(F, f) = max
G,gs.t.(4.12)

HS(G, g), with HS(G, g) = HBE(G) +Hτ (g). (4.13)

We believe that a complete analysis of this problem can be done using the same
ideas exposed in the Section 2 and used in [24].

2. One can also address the well posedness of the Cauchy problem for the
system (4.2). Of course the situation here is the same as for the Boltzmann Bose
equation. The analysis performed in the Section 3.2 may be readily extended
to prove the existence of solutions under the assumption of isotropy of the
distribution and with Lu’s truncation on the cross sections. A simpler question
would be to consider the case when Q1,1(F, F ) and Q2,2(f, f) vanish and to
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address the well posedness of the Cauchy problem in this case. Even when τ > 0
(which gives an L∞ a priori bound on the Fermi density f) we do not know if
it is possible to give a sense to the collision terms Q1,2(F, f) and Q2,1(f, F )
without Lu’s truncation on the cross sections.

We do not try to go further in any of these two directions and consider
instead the following question. In the study of gases formed by Bose and Fermi
particles, it is particularly relevant to consider the case where the Fermi particles
are at equilibrium and where the collisions between Bose particles can not distort
significantly their distribution function (cf. [36, 37]). This moreover constitutes
a first important simplification from a mathematical point of view. The system
(4.2) reduces then to a unique equation on the Bose distribution F . Moreover
this equation is quadratic and not cubic (c.f. sub Section 4.1)

A second simplification arises if we consider non relativistic, isotropic den-
sities and we assume on physical grounds, that w1,2 is constant, (c.f below). In
that case, we keep the same quadratic structure for the equation on the Bose
distribution F , but we obtain an explicit and quite simple cross-section (c.f. sub
Section 4.2).

In both situations, our main concern is to understand if it is possible to
obtain a global existence result without the Lu’s truncation on the cross sections
and then to describe the long time asymptotic behaviour of the solutions.

4.1 Second specie at thermodynamical equilibrium

Let us assume that f = F is at thermodynamical equilibrium, which means
that it is a Fermi or a Maxwellian distribution defined by

F(p) =
1

eν(p) − τ
, ν(p) = β0E2(p)− β · p+ µ. (4.14)

This greatly simplifies the situation since the system (4.2) reduces now to a
single equation for the Bose distribution F which reads

∂F

∂t
= QBQ(F ) := Q1,2(F,F) (4.15)

with

QBQ(F ) =
∫

R3
S(p, p′)

(
F ′(1 + F ) e−β0E1(p) − F (1 + F ′) e−β0E1(p

′)
)
dp′, (4.16)

S(p, p′) =
∫∫

R3×R3
w1,2δC12e

β0E1(p)F ′∗(1 + τF∗) dp∗dp′∗. (4.17)

To establish (4.16)-(4.17) we have used the elementary identity

eβ0E1(p)F ′∗(1 + τF∗) = eβ0E1(p
′)F∗(1 + τF ′∗) (4.18)
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which holds on C12. Notice that, using the micro-reversibility symmetry (4.4)
and the identity (4.18) we have

S(p′, p) =
∫∫

R3×R3
w1,2(p′, p∗, p, p′∗)δC12e

β0E1(p
′)F ′∗(1 + τF∗) dp∗dp′∗

=
∫∫

R3×R3
w1,2(p, p∗, p′, p′∗)δC12e

β0E1(p)F∗(1 + τF ′∗) dp∗dp′∗

= S(p, p′),

so that S is symmetric.
Using the symmetry above one can observe that, at least formally, a solution

F of equation (4.15) still satisfies the qualitative properties∫
R3
F dp =

∫
R3
Fin dp (4.19)

and
d

dt
HBQ(F ) = DBQ(F ), (4.20)

with

HBQ(F ) =
∫

R3

(
(1 + F ) ln(1 + F )− F lnF − Fβ0E1(p)

)
dp (4.21)

and

DBQ(F ) =
∫∫

R3×R3
S(p, p′) j

(
F ′(1 + F ) e−β0E1(p) − F (1 + F ′) e−β0E1(p

′)
)
dpdp′.

(4.22)
In other words, the particle number is preserved along the trajectories and HBQ

is a Lyapunov function (the relative entropy HBQ is a decreasing function along
the trajectories).

4.1.1 Non relativistic particles, fermions at isotropic Fermi Dirac
equilibrium

It is possible, under further simplifications of the model, to obtain more explicit
expressions of the cross section S. As a first step in that direction we consider
nonrelativistic particles. We also assume, without any loss of generality, that
the two particles have the same mass m = 1 from where their energies are
Ei(p) = E(p) = |p|2/2, i = 1, 2. We assume moreover that fermions are at
isotropic equilibrium (see (2.39)):

F(p) =
1

eβ0 |p|2
2 +b − τ

for some θ0, b ≥ 0.

We introduce now the Carleman parametrization of the collision manifold (4.1).
Starting by performing the dp∗ integration one finds

S(p, p′) =
∫

R3
w1,2(p, p∗, p′, p′∗)δ|p′|2+|p′∗|2−|p|2−|p∗|2=0 e

β0 |p|2
2 F ′∗(1 + τF∗) dp′∗,

(4.23)



38

where now p∗ is defined by

p∗ := p′ + p′∗ − p∗. (4.24)

An elementary computation shows that

|p′|2 + |p′∗|2 − |p|2 − |p∗|2 = −2(p′∗ − p) · (p′ − p),

so that in (4.23) p′∗ describes all the plane Ep,p′ orthogonal to p′ − p and con-
taining p. Then, using the distributional Lemma 6.1, we get

S(p, p′) =
∫

Ep,p′

w1,2(p, p∗, p′, p′∗)
|p′ − p|

eβ0 |p|2
2 F ′∗(1 + τF∗) dE(p′∗), (4.25)

where dE(p′∗) stands for the Lebesgue measure on Ep,p′ and p∗ is again defined
thanks to (4.24).

A further simplification may be performed, noticing that, on physical ground
(cf. Appendix 8), the boson-fermion interaction is a short range interaction
and that the velocities of the particles undergoing scattering are small . This
allows to consider that w1,2 is constant, assuming without loss of generality that
w1,2 = 1. We then obtain a more explicit expression of S in (4.25). Namely:

S(p, p′) =
∫

Ep,p′

eβ0 |p|2
2

|p′ − p|
1

eβ0 |p
′
∗|

2

2 +b − τ

eβ0 |p∗|2
2 +b

eβ0 |p∗|2
2 +b − τ

dE(p′∗).

Note that
eb

1 + eb
≤ eβ0 |p∗|2

2 +b

eβ0 |p∗|2
2 +b − τ

< 1

and

δ
eb

1 + eb

∫
Ep,p′

eβ0 |p|2
2

|p′ − p|
e−β0 |p′∗|

2

2 −b dE(p′∗)

≤ S(p, p′) <
∫

Ep,p′

eβ0 |p|2
2

|p′ − p|
e−β0 |p′∗|

2

2 −b dE(p′∗).

Let us consider then the function

S0(p, p′) ≡
∫

Ep,p′

eβ0 |p|2
2

|p′ − p|
e−β0 |p′∗|

2

2 dE(p′∗)

In the orthonormal basis (~k,~i,~j) where ~k := (p′− p)/|p′− p|, p′? may be written
as follows p′? = p+ s~i+ t~j with s, t ∈ R.

|p′?|2 = |p|2 + (s+ p · i)2 − (p · i)2 + (t+ p · j)2 − (p · j)2

=
(
p,

p′ − p

|p′ − p|

)2

+ (s+ p · i)2 + (t+ p · j)2,
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and, integrating (4.25), we find

S0(p, p′) =
eβ0 |p|2

2

|p′ − p|

∫ ∫
R2
e−β0|p′∗|

2/2 dsdt

=
2π

β0|p′ − p|
exp
[β0

2

(
|p|2 −

(
p,

p′ − p

|p′ − p|
)2)]

.

This can also be written in the symmetric form

S0(p, p′) =
2π

β0|p′ − p|
exp
[β0

4

(
|p|2 + |p′|2 −

(
p,

p′ − p

|p′ − p|
)2 − (p′, p′ − p

|p′ − p|
)2)]

.

(4.26)

Remark 4.1 If one considers the system (4.2) when collisions between Boson
particles are very weak (so that they may be neglected) and collisions between
Fermi particles are very strong (in such a way that the distribution of Fermi par-
ticles goes through thermodynamical equilibrium very rapidly) we may consider
as relevant the following scaling

∂Fε

∂t
= εQ1,1(Fε, Fε) +Q1,2(Fε, fε)

∂fε

∂t
= Q2,1(fε, Fε) +

1
ε
Q2,2(fε, fε),

(4.27)

in the limit ε → 0. Notice that the particle number conservation (4.6) and
energy conservation (4.8) provide the a priori bounds

sup
ε>0

sup
t∈[0,∞)

∫
R3
Fε(t, p)(1 + E1(p)) dp,

∫
R3
fε(t, p)(1 + E2(p)) dp ≤ C. (4.28)

Moreover, since

d

dt
HS(Fε, fε) =

ε

4
D1(Fε) +

1
2
D1,2(Fε, fε) +

1
4ε
Dτ (fε),

and all the terms at the right hand side are positive, we obtain∫ ∞

0

Dτ (fε) ≤ εC(Fin, fin). (4.29)

Formally, these bounds imply that, up to the extraction of a subsequence, we
have

fε → F , Fε → F, (4.30)

where F has same momentum that fin and Dτ (F) = 0 so that F is the Fermi
or Maxwellian distribution associated to fin given by (4.4) and F solves the
Quadratic Bose equation (4.15)-(4.17).

Remark 4.2 It is important to notice that there is no conservation of the
energy for equation (4.15)-(4.16). The conserved quantity in the system (4.2)
is the total energy of the bosons-fermions gas but not of any of the two species
as it is shown by (4.8).
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Open questions:

1. Establish rigorously (4.30).

2. Solve the Cauchy problem (4.15)-(4.17) for physically relevant S.

4.2 Isotropic distribution and second specie at the ther-
modynamical equilibrium

We now consider the Fermi particles at non relativistic isotropic equilibrium
and assume that the Bose distributions are also isotropic. In other words we
suppose that

f(p, t) ≡ f(|p|) =
1

eβ0 |p|2
2 +b − τ

and F (p, t) = F (|p|, t). (4.31)

The interaction of an isotropic gas of Bose particles and Fermi particles at equi-
librium has been considered by Levich and Yakhot in [36] and [37], by means
of formal arguments. They were interested in particular in the occurrence of
Bose Einstein condensation. Numerical simulations showing Dirac mass forma-
tion in infinite time for a related equation have been obtained by Semikoz and
Tkachev in [49, 49]. The Fermi distributions considered in that case are quan-
tum, isotropic, saturated Fermi Dirac distributions (SFD in Section 2). This
corresponds to the choice

f(p) ≡ f(|p|) = 1{0≤|p|≤µ}

for some µ > 0, and gives rise to a slightly different equation than ours.
The Cauchy problem for the resulting quadratic Bose equation is a “lin-

earized model” of the Bose-Bose interaction equation considered in Section 3,
where moreover, the function S(p, p′) may be calculated explicitly.

Similar equations have been considered in [22, 23]. Nevertheless, the global
existence results obtained in these references do not apply to our case, because
the collision kernel does not fulfill the required hypothesis. Therefore, we end
this Section proving global existence of solutions, with integrable initial data,
to our problem. Finally, the long time behaviour of these global solutions may
be addressed exactly as in [23] and then, we only state the result for the sake
of completeness.

We start with the following:

Proposition 4.3 If the function F is radially symmetric then so is QBQ(F ). In
that case we write QBQ(F )(p) = QBQ(F )( |p|

2

2θ ) by abuse of notation. Moreover,

QBQ(F )(ε) =
∫ ∞

0

S
[
F ′(1 + F ) e−ε − F (1 + F ′) e−ε′

]
dε′, (4.32)

with S(ε, ε′) = Σ(ε, ε′)/
√
ε and

Σ(ε, ε′) =
∫ ∞

max(0,ε−ε′)

eε−ε′∗
eε′+ε′∗−ε+b

eε′+ε′∗−ε+b − τ
min(

√
ε,
√
ε′ + ε′∗ − ε,

√
ε′,
√
ε′∗) dε

′
∗.

(4.33)
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Proof It follows from (4.17) and (4.31) that

S(p, p′) = eβ0 |p|2
2

∫ ∫
R3×R3

δ|p′|2+|p′∗|2−|p|2−|p∗|2=0 δp′+p′∗−p−p∗=0

× eβ0 |p∗|2
2 +b

eβ0 |p
′
∗|

2

2 +b − τ

dp∗dp
′
∗

eβ0 |p∗|2
2 +b − τ

=
∫ ∞

0

∫ ∞

0

δ|p′|2+|p′∗|2−|p|2−|p∗|2=0
eβ0 |p|2

2

eβ0 |p
′
∗|

2

2 +b − τ

eβ0 |p∗|2
2 +b

eβ0 |p∗|2
2 +b − τ

×
∫

S2

∫
S2
δp′+p′∗−p−p∗=0 dω∗dω

′
∗|p′∗|2d|p′∗‖p∗|2d|p∗|.

Therefore,

QBQ(F ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

δ|p′|2+|p′∗|2−|p|2−|p∗|2=0
eβ0 |p|2

2

eβ0 |p
′
∗|

2

2 +b − τ

eβ0 |p∗|2
2 +b

eβ0 |p∗|2
2 +b − τ

× [F ′(1 + F )e−β0 |p|2
2 − F (1 + F ′)e−β0 |p′|2

2 ]·

×
∫

S2

∫
S2

∫
S2
δp′+p′∗−p−p∗=0 dω∗dω

′
∗dω

′|p′∗|2d|p′∗‖p∗|2d|p∗‖p′|2d|p′|.

As we have already seen in Section 3,∫
S2

∫
S2

∫
S2
δp′+p′∗−p−p∗=0 dω∗dω

′
∗dω

′ =
4π2

|p‖p′‖p∗‖p′∗|
min

[
|p|, |p′|, |p∗|, |p′∗|

]
from where,

QBQ(F ) =
4π2

|p|

∫ ∞

0

[F ′(1 + F )e−β0 |p|2
2 − F (1 + F ′)e−

|p′|2
2θ ]eβ0 |p|2

2

{∫ ∞

0

∫ ∞

0

δ|p′|2+|p′∗|2−|p|2−|p∗|2=0
eβ0 |p|2

2

eβ0 |p
′
∗|

2

2 +b − τ

eβ0 |p∗|2
2 +b

eβ0 |p∗|2
2 +b − τ

min
[
|p|, |p′|, |p∗|, |p′∗|

]
|p′∗|d|p′∗‖p∗|d|p∗|

}
|p′|d|p′|

=
∫ ∞

0

[
F ′(1 + F )e−β0 |p|2

2 − F (1 + F ′)e−β0 |p′|2
2
]
S(|p|, |p′|)|p′|d|p′|,

S(|p|, |p′|) =
4π2

|p|

∫ ∞

0

∫ ∞

0

δ|p′|2+|p′∗|2−|p|2−|p∗|2=0
eβ0 |p|2

2

eβ0 |p
′
∗|

2

2 +b − τ

eβ0 |p∗|2
2 +b

eβ0 |p∗|2
2 +b − τ

×min[|p|, |p′|, |p∗|, |p′∗|]|p′∗|d|p′∗‖p∗|d|p∗|

=
4π2

|p|

∫ ∞

0

eβ0 |p|2
2

eβ0 |p
′
∗|

2

2 +b

eβ0 |p′|2+|p′∗|
2−|p|2

2 +b

eβ0 |p
′|2+|p′∗|

2−|p|2
2 +b − τ

1{|p′|2+|p′∗|2≥|p2|}

×min
[
|p|, |p′|,

√
|p′|2 + |p′∗|2 − |p|2, |p′∗|

]
|p′∗|d|p′∗|
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By defining

ε = β0 |p|2

2
, ε′ = β0 |p′|2

2
, ε∗ = β0 |p∗|2

2
, ε′∗ = β0 |p′∗|2

2
,

we have

S(
√

2ε/β0,
√

2ε′/β0) = 4π2
√

2(β0)−3/2e−b

∫ ∞

0

eε−ε′∗
eε′+ε′∗−ε+b

eε′+ε′∗−ε+b − τ
1{ε′+ε′∗≥ε}

×
min(

√
ε,
√
ε′ + ε′∗ − ε,

√
ε′,
√
ε′∗)√

ε
dε′∗ ≡ S(ε, ε′).

Finally

QBQ(F ) =
∫ ∞

0

[
F ′(1 + F ) e−ε − F (1 + F ′) e−ε′

]
S dε′

with S(ε, ε′) = Σ(ε, ε′)/
√
ε and

Σ(ε, ε′) =
∫ ∞

max(0,ε−ε′)

eε−ε′∗
eε′+ε′∗−ε+b

eε′+ε′∗−ε+b − τ
min(

√
ε,
√
ε′ + ε′∗ − ε,

√
ε′,
√
ε′∗) dε

′
∗.

By a change of variables in the integral definition of Σ see that it is a symmetric
function. We may then write equation (4.15) as

√
ε
∂F

∂t
=
∫ ∞

0

Σ
[
F ′(1 + F ) e−ε − F (1 + F ′) e−ε′

]
dε′.

and perform the usual change of variable

√
εF → F, b(ε, ε′) =

Σ(ε, ε′)
√
ε
√
ε′

to obtain the more suitable form

∂F

∂t
=
∫ ∞

0

b(ε, ε′)
[
F ′(

√
ε+ F ) e−ε − F (

√
ε′ + F ′) e−ε′

]
dε′, (4.34)

Notice that b is singular near the origin and as a consequence we can not apply
the results obtained in [22, 23].

We first want to give a precise mathematical sense to the collision term in
(4.34). Notice that it can be written t in the following way

Q(F ) =
∫ ∞

0

b(ε, ε′)
√
ε e−εF ′ dε′ − F

∫ ∞

0

b(ε, ε′)
√
ε′ e−ε′ dε′

+
∫ ∞

0

b(ε, ε′)(e−ε − e−ε′)FF ′ dε′.

Lemma 4.4 The function

`(ε) :=
∫ ∞

0

b(ε, ε′)
√
ε′ e−ε′ dε′. (4.37)
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satisfies ` ∈ C([0,∞)), ` ≤ C1(1 +
√
ε) for some positive constant C2, ` →

C2(b, τ) when ε→ 0 and ` ∼ γ
√
ε when ε→∞, with γ > 0. Moreover, we have

χ(ε, ε′) := (e−ε − e−ε′)b(ε, ε′) ∈ Cb([0,∞)× [0,∞)). (4.38)

As a conclusion, for any F such that (1 +
√
ε)F ∈ L1, Q(F ) belongs to L1 and

the map F 7→ Q(F ) is continuous from L1
1/2 to L1.

Proof of Lemma 4.4 In order to prove the properties of ` we write

`(ε) =
1√
ε

∫ ε

0

ζb(ε′) e−ε′ dε′ +
1√
ε

∫ ε

0

ξb(ε, ε′) e−ε′ dε′

where,

ζb(z) =
∫ ∞

0

ez−k ek+b

ek+b − τ
min(

√
z,
√
k) dk

ξb(z, y) =
∫ ∞

0

ez−k ek−z+y+b

ek−z+y+b − τ
min(

√
z,
√
k) dk.

Note that

ζb(z) ≤
∫ ∞

0

ez−k min(
√
z,
√
k)dk = γ(z)ez +

√
z ≡ ζ(z)

with γ(x) =
∫ x

0
e−y√ydy, and ξb(z, y) ≤ ζ(z). Assume first that ε→ 0. Then,

1√
ε

∫ ε

0

ζb(ε′) e−ε′ dε′ ≤ 1√
ε

∫ ε

0

ζ(ε′)e−ε′ dε′ → 0 as ε→ 0.

On the other hand,

1√
ε

∫ ∞

ε

ξb(ε, ε′) e−ε′ dε′

=
1√
ε

∫ ∞

ε

e−ε′
∫ ε

0

eε−ε′∗
eε′+ε′∗−ε+b

eε′+ε′∗−ε+b − τ

√
ε′∗dε

′
∗dε

′+

+
∫ ∞

ε

e−ε′
∫ ∞

ε

eε−ε′∗
eε′+ε′∗−ε+b

eε′+ε′∗−ε+b − τ

√
ε′∗dε

′
∗dε

′

→
∫ ∞

0

e−ε′
∫ ∞

0

e−ε′∗
eε′+ε′∗+b

eε′+ε′∗+b − τ

√
ε′∗dε

′
∗dε

′ = C2(b, τ) as ε→ 0.

Suppose now that ε→∞. We first note that,

1√
ε

∫ ε

0

ξb(ε, ε′) e−ε′ dε′ ≤ 1√
ε

∫ ε

0

ζ(ε′) e−ε′ dε′ → 0 as ε→∞.



44

Finally,

1√
ε

∫ ε

0

e−ε′ζb(ε′)dε′ =
1√
ε

∫ ε

0

∫ ε′

0

e−k ek+b

ek+b − τ

√
kdk dε′

+
1√
ε

∫ ε

0

√
ε′
∫ ∞

ε′
e−k ek+b

ek+b − τ
dkdε′ ≡ I1 + I2

and,

I2 ≤
1√
ε

∫ ε

0

√
ε′e−ε′dε′ = O(

1√
ε
),

lim
ε→∞

1
ε

∫ ε

0

∫ ε′

0

e−k
√
kdkdε′ =

∫ ∞

0

e−k
√
kdk ≡ γ

To prove (4.38) we just have to consider the two cases: If min(ε, ε′) → 0 then

χ ∼ e−max − e−min

√
max

−→
max→0,∞

0 uniformly in min .

If min(ε, ε′) →∞ then ε, ε′ →∞ and

|χ| ≤ e−min − e−max

√
max

√
min

emin ≤ 1.

�

The particle number of the solutions to (4.34) is constant in time (at least
formally) and this gives a first a priori bound in L1. But we have still need
to control higher moments of F . We show in the next Lemma how this may
be formally done for polynomial momments. Exponential moments may be
controlled in a similar way.

Lemma 4.5 Let F be a solution to equation (4.34). Then, there exists a posi-
tive constant C such that, formally:

d

dt
Y1(F ) +

γ

4

∫ ∞

0

F (1 +
√
ε)ε dε ≤ Cin, (4.39)

with

Yθ(F ) :=
∫ ∞

0

εθ d|F |(ε). (4.40)
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Proof of Lemma 4.5 Let F be a solution to (4.34). A formal straightforward
calculation gives

d

dt
Y1(F ) =

∫ ∞

0

∫ ∞

0

bFF ′[e−ε − e−ε′ ]ε dε′dε

+
∫ ∞

0

∫ ∞

0

b[
√
εF ′ε e−ε −

√
ε′F e−ε′ε] dε′dε

=
∫ ∞

0

∫ ∞

0

b

2
F F ′[e−ε − e−ε′ ](ε− ε′) dε′dε

+
∫ ∞

0

∫ ∞

0

b
√
ε′F e−ε′ [ε′ − ε] dε′dε.

Since the first term is non positive, we just have to manage with the second
term. In order to estimate it we compute

I(ε) :=
∫ ∞

0

b
√
ε′ e−ε′ [ε′ − ε] dε′

=
∫ ε

0

ζ(ε′)√
ε
e−ε′ [ε′ − ε] dε′ +

ζ(ε)√
ε

∫ ∞

ε

e−ε′ [ε′ − ε] dε′ = I1 + I2.

On the one hand,

I2 =
ζ(ε)√
ε

(∫ ∞

ε

ε′ e−ε′ dε′ − ε

∫ ∞

ε

e−ε′ dε′
)

=
ζ(ε)√
ε
e−ε = e−ε +

γ(ε)√
ε
≤ C.

On the other hand,

I1 ≤
1√
ε

∫ ε

0

γ(ε′)(ε′ − ε) dε′ ≤ γ(m)√
ε

∫ ε

m

(ε′ − ε) dε′ =
γ(m)√

ε

(
− ε2

2
+mε− m2

2
)
.

Since γ(m) → γ when m→∞ and the term of greater order have a minus sign,
we obtain

I ≤ C − γ

4
(1 +

√
ε)ε,

and (4.39) follows. �
We state now the global existence result for the equation (1.26).

Theorem 4.6 For any initial datum Fin ∈ L1
1(R+), F ≥ 0, there exists a

solution F ∈ C([0,∞), L1
1/2)) to the equation

∂F

∂t
= QBQ(F ), for ε > 0, t > 0

with QBQ defined in (4.32), and such that

lim
t→0

‖F (t)− Fin‖L1(R+) = 0.
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Proof of Theorem 4.6 We first introduce the regularized problem:

∂Fn

∂t
=
∫ ∞

0

bn(ε, ε′)
[
F ′n(

√
εn + Fn) e−ε − Fn(

√
ε′n + F ′n) e−ε′

]
dε′, (4.41)

with

bn(ε, ε′) =
ζ(ε ∧ ε′ ∧ n)√

ε ∧ ε′ ∧ n
√
ε ∨ ε′ ∨ 1/n

, εn = ε ∨ 1
n
.

The existence of a solution Fn to this equation follows from the existence result
in [EM] since bn ∈ L∞. We obtain a priori estimates on the sequence (Fn) in
the two following Lemmas and then pass to the limit using Lemma 4.4

Lemma 4.7 The sequence of solutions (Fn) satisfies

d

dt
Y1(Fn) +

γ

3

∫ ∞

0

Fn

√
ε(ε ∧ n) dε ≤ Cin + Y1(Fn). (4.42)

for n large enough. This implies that Y1(Fn) is bounded in L∞(0, T ) and∫∞
0
Fn
√
ε(ε ∧ n) dε is bounded in L1(0, T ) for any T > 0.

Proof of Lemma 4.7 By the same computation as in Lemma 4.5, which
makes now perfectly sense by the properties of Fn, we deduce

d

dt
Y1(Fn) =

∫ ∞

0

∫ ∞

0

bn
2
Fn F

′
n[e−ε − e−ε′ ](ε− ε′) dε′dε+

∫ ∞

0

Fn In dε.

The first term in the right hand side is non positive and the second satisfies:

In(ε) :=
∫ ∞

0

bn
√
ε′n e

−ε′ [ε′ − ε] dε′

≤
∫ ε

0

γ(ε′ ∧ n)
√
ε′n√

εn
√
ε′ ∧ n

eε′∧n−ε′ [ε′ − ε]dε′ +
ζ(ε ∧ n)√
ε ∧ n

e−ε.

Note that the last term is bounded. Let fix ` ≥ 1 such that γ(`) > 2γ/3. For n
and ε such that ε ∧ n ≥ ` we write∫ ε

0

γ(ε′ ∧ n)
√
ε′n√

εn
√
ε′ ∧ n

eε′∧n−ε′ [ε′ − ε]dε′

≤ 2γ
3
√
ε

∫ ε

0

√
ε′√

ε′ ∧ n
eε′∧n−ε′(ε′ − ε) dε′ + γ

∫ `

0

ε√
ε′ ∧ n

dε′

≤ 2γ
3
√
ε

∫ ε∧n

0

(ε′ − ε) dε′ + γ 2
√
`ε ≤ 2

√
`γε− γ

3
√
ε(ε ∧ n).

We then conclude as in the proof of Lemma 4.5. �

Lemma 4.8 The set (Fn) is a Cauchy sequence in C([0, T ];L1
1/2(R+)) for any

T > 0.
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Proof of Lemma 4.8 We just compute

∂

∂t
(Fm − Fn) = Qn(Fm)−Qn(Fn) +Qm(Fm)−Qn(Fm)

and

d

dt
‖Fm − Fn‖L1

1/2

≤
∫ ∞

0

|Fm − Fn|
∫ ∞

0

bn
√
ε′n e

−ε′ [
√
ε−

√
ε′] dε′ dε

+
∫ ∞

0

∫ ∞

0

|FmF
′
m − FnF

′
n||e−ε − e−ε′ bn(1 +

√
ε) dε′dε

+
∫ ∞

0

∫ ∞

0

(bm − bn)Fm F ′m|e−ε − e−ε′ |(1 +
√
ε) dε′dε

+
∫ ∞

0

∫ ∞

0

|bm
√
ε′m − bn

√
ε′n|Fm e−ε′ [2 +

√
ε′ +

√
ε] dε′dε,

≡ J1 + J2 + J3 + J4

(4.43)

with bm,n = bm − bn. We now estimate each of the terms Ji, i = 1, 2, 3, 4
separately.
1. Estimate of J1. The first term is nothing but

J1(n) =
∫ ∞

0

|Fm − Fn| In dε

with

In(ε) :=
∫ ∞

0

bn
√
ε′n e

−ε′ [
√
ε′ −

√
ε] dε′

≤ζ(ε ∧ n)√
ε ∧ n

∫ ∞

ε

e−ε′(
√
ε′ −

√
ε) dε′ =: I ′n.

For ε ≥ 1, integration by parts gives

I ′n =
ζ(ε ∧ n)√
ε ∧ n

∫ ∞

ε

e−ε′

√
ε′
dε′ ≤ ζ(ε ∧ n)√

ε ∧ n
e−ε ∈ L∞(R+).

Since I ′n is bounded for ε ≤ 1, there exists a constant K1 > 0 such that

J1 ≤ K1‖Fm − Fn‖L1 . (4.44)

2. Estimate of J2. We notice that

χn := bn(e−ε − eε′)

≤ ζ(ε ∧ ε′)√
ε ∧ ε′

e−ε − ε−ε′

√
ε ∨ ε′

1ε∧ε′≤1 +
ζ(ε ∧ ε′ ∧ n)√
ε ∧ ε′ ∧ n

max(e−ε, ε−ε′)1ε∨ε′≥1
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is uniformly bounded in R2
+ as we have already shown in the proof of Lemma

4.4. Then, we deduce

J2≤‖χn‖L∞
ε,ε′

[‖(Fm − Fn)(1 +
√
ε)‖L1‖Fm‖L1 + ‖Fm − Fn‖L1‖Fm(1 +

√
ε)‖L1

≤K2‖Fm‖L1
1/2
‖Fm − Fn‖L1

1/2
,

(4.45)
for some constant K2 > 0.
3. Estimate of J3. Since x 7→ ζ(x)/

√
x is increasing (at least for the large values

of x) we have 0 ≤ bn ≤ bm. We then notice that

0 ≤ bm − bn =
ζ(ε ∧ ε′)√
ε ∧ ε′

( 1√
ε ∨ ε′ ∨ 1/m

−
√
n
)
1ε∨ε′<1/n

+
1√
ε ∨ ε′

(ζ(ε ∧ ε′ ∧m)√
ε ∧ ε′ ∧m

− ζ(n)√
n

)
1ε∧ε′n.

On the one hand, we have

(bm − bn)|e−ε − e−ε′ |1ε∨ε′<1/n

≤ ζ(ε ∧ ε′)√
ε ∧ ε′

1√
ε ∨ ε′ ∨ 1/m

|e−ε − e−ε′ |1ε∨ε′<1/n

≤ ‖ζ(x)√
x
‖L∞(0,1)

√
ε ∨ ε′1ε∨ε′<1/n ≤

K3√
n
1ε∨ε′<1/n .

On the other hand

(bm − bn)|e−ε − e−ε′ |1ε∧ε′≥n ≤
ζ(ε ∧ ε′ ∧m)√
ε ∧ ε′ ∧m

1√
ε ∨ ε′

|e−ε − e−ε′ |1ε∧ε′≥n

≤ 2√
ε ∨ ε′

‖ζ(x) e
−x

√
x

‖L∞1ε∧ε′≥n ≤
K3√
n
1ε∧ε′>n

for some constant K3 > 0. We deduce that

J3 ≤
K3√
n
Y0(Fm)‖Fm‖L1

1/2
. (4.46)

4. Estimate of J4. Since 0 ≤
√
ε′n bn ≤

√
ε′m bm for n large enough, we may

write √
ε′m bm −

√
ε′n bn

≤
√
ε′ ∨ 1/m√

ε ∨ ε′ ∨ 1/m
ζ(ε ∧ ε′)√
ε ∧ ε′

1ε∨ε′<1/n +
√
ε′√

ε ∨ ε′
ζ(ε ∧ ε′ ∧m)√
ε ∧ ε′ ∧m

1ε∧ε′>n.

On the one hand we compute∫ ∞

0

(bm
√
ε′m − bn

√
ε′n) e−ε′ [2 +

√
ε+

√
ε′]1ε∨ε′<1/n dε

′ ≤

≤ 4
∫ 1/n

0

(bm
√
ε′m − bn

√
ε′n) dε′ ≤ 4‖ζ(x)√

x
‖L∞(0,1)

1
n
.

(4.47)



49

On the other hand,∫ ∞

0

(bm
√
ε′m − bn

√
ε′n) e−ε′ [2 +

√
ε+

√
ε′]1ε∧ε′≥n dε

′

≤
∫ ε

0

√
ε′√
ε

ζ(ε′ ∧m)√
ε′ ∧m

e−ε′ [2 +
√
ε+

√
ε′] dε′1ε≥n

+
ζ(ε ∧m)√
ε ∧m

∫ ∞

ε

e−ε′ [2 +
√
ε+

√
ε′] dε′1ε≥n

≤
∫ ε

0

ζ(ε′ ∧m)√
ε′ ∧m

e−ε′
√
ε′[3 +

√
ε′√
ε

] dε′1ε≥n + ‖ζ(x)√
x
e−x‖L∞(3 + 2

√
ε)1ε≥n.

To estimate the first term in the last right hand side, we successively consider
the cases ε ≤ m and ε ≥ m and make use of the following elementary estimate∫ ε

m

(ε′)γ e−ε′ dε′ ≤ (1 +mγ) e−m,

with γ = 1/2 and γ = 1. When ε ≤ m we have∫ ε

0

ζ(ε′ ∧m)√
ε′ ∧m

e−ε′
√
ε′[3+

√
ε′√
ε

] dε′ =
∫ ε

0

ζ(ε′) e−ε′ [3+
√
ε′√
ε

] dε′ ≤ 4‖ζ(x) e−x‖L∞ε.

(4.48)
Now, when ε ≥ m, we get∫ ε

0

ζ(ε′ ∧m)√
ε′ ∧m

e−ε′
√
ε′[3 +

√
ε′√
ε

] dε′ =

=
∫ m

0

ζ(ε′) e−ε′ [3 +
√
ε′√
ε

] dε′ +
ζ(m)√
m

∫ ε

m

e−ε′
√
ε′[3 +

√
ε′√
ε

] dε′

≤ 4‖ζ(x) e−x‖L∞ m+ ‖ζ(x)√
x
e−x‖L∞(1 +

√
m),

using (4.48). As a conclusion, we have proved that∫ ∞

0

(bm
√
ε′m−bn

√
ε′n) e−ε′ [2+

√
ε+
√
ε′]1ε∧ε′≥n dε

′ ≤ K ′
4((ε∧m)+

√
ε+1)1ε≥n.

(4.49)
Therefore, combining (4.47) and (4.49), we get

J4 ≤
K4√
n

∫ ∞

0

Fm(1 +
√
ε(ε ∧m)) dε. (4.50)

From (4.42)-(4.46), (4.50) and Lemma 4.7 we obtain

d

dt
‖Fm − Fn‖L1

1/2
≤ A(t)‖Fm − Fn‖L1

1/2
+
B(t)√
n

with A ∈ L∞(0, T ) and B ∈ L1(0, T ) for any T > 0. We end the proof using
the Gronwall Lemma. �
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The equation (4.15)-(4.32) is of the form given by equation (1.1) in [22, 23]:

ε2
∂F

∂t
(ε) =

∫ ∞

0

b(ε, ε′)(F ′(1 + F )e−ε − F (1 + F ′)e−ε′)dε′

with ε2ε′
2
b(ε, ε′) = S(ε, ε′). We then refer to [23, Theorem 2] for the proof of

the following proposition.

Proposition 4.9 Let 0 ≤ F ∈M1
rad([0,∞) such that

M(F ) :=
∫ ∞

0

v2dF (v) = N ≥ 0 (4.51)

Then the following two assertions are equivalent:
(i) F = BN with

ε2BN (ε) =

{
ε2

eε+µ−1 , if N ≤ N0 ≡
∫∞
0

ε2dε
eε−1 ,

ε2

eε−1 + (N −N0)δ0 otherwise.

(ii) F is the solution of the maximization problem:

H(F ) = max{H(F ′), F ′ satisfying (4.51)},

where the entropy H given by (4.21) reads:

H(F ) =
∫ ∞

0

[(1 + F ) ln(1 + F )− F lnF − εF ]ε2dε. (4.52)

Theorem 4.10 (Asymptotic behaviour) For every Fin ∈ L1
1(R+), Fin ≥ 0,

let N = M(Fin), and F ∈ C([0,∞), L1
1/2(R

+)) the corresponding solution to
(4.33) with initial data Fin. Then

F (t, .) ⇀
t→∞

BN weakly ? in
(
Cc(R+)

)′
lim

t→∞
‖g(t, .)− BN‖L1((k0,∞)) = 0 ∀k0 > 0.

(4.53)

The proof of this theorem is the same as that of [23, theorem 6]; thus we skip
it.

5 The collision integral for relativistic quantum
particles

In this section, we follow the books by de Groot, van Leeuwen and van Weert
[29] and Glassey [26]
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5.1 Parametrizations

In this Section we introduce the Boltzmann equation for relativistic particles.
A particle is now determined by the pair (X,P ) representing the position and
momentum in the time-position and momentum space R4 ×R4 where we write
X = (Xµ), with X0 = t, (X1, X2, X3) = x, P = (Pµ) with (P 1, P 2, P 3) = p.
Moreover, since the particle has to be on its mass shell, we have

P 0 ≡ p0 :=
√
|p|2 +m2c2. (5.1)

where c is the speed of the light. The gas is described by its density F =
F (X,P ). In this context, the Boltzmann equation as it may be found in [29, 26]
is

〈P,∇XF 〉 = Q(F ), (5.2)

where the collision kernel reads

Q(F )(P ) =
∫

R4

∫
R4

∫
R4
Wq(F )δP+P∗−P ′−P ′

∗
χ(P∗)χ(P ′)χ(P ′∗) dP

′dP ′∗dP∗. (5.3)

Here, ∇X = (c−1∂t,∇x) and 〈·, ·〉 represents the Lorentz inner product in R4

and we use the abbreviation |P |2 = P · P for any P ∈ R4. We refer to the
Appendix 7 for more details on the Lorentz space. Notice nevertheless that

〈P,∇XF 〉 =
4∑

µ,ν=1

ηµνP
µ(∇XF )ν , and (∇XF )ν = (c−1∂t,−∇x)

Moreover, W = W(P, P∗, P ′, P ′∗) is a given non negative function related to the
differential cross-section σ, see (5.10) and (5.11) below, and as before,

q(F ) = F ′F ′∗(1 + τF )(1 + τF∗)− FF∗(1 + τF ′)(1 + τF ′∗) (5.4)

with τ ∈ {−1, 0, 1}, F = F (X,P ), F∗ = F (X,P∗), F ′ = F (X,P ′), F ′∗ =
F (X,P ′∗).

Finally, we have defined

∀R ∈ R4 χ(R) = δR2−m2c2H(R0) (5.5)

where H stands for the Heaviside function. With these notations, if we denote
f(t, x, p) := F (X,P ), we have

〈P,∇X〉 =
p0

c

∂

∂t
+ p · ∇x . (5.6)

Therefore, equation (5.2) reads

∂

∂t
f +

cp

p0
· ∇xf = Q(F (t, x, .))(p0, p) :=

c

p0
Q(F (t, x, .))(p0, p). (5.7)

By Lemma 6.1

χ(P ) =
1

2p0
δP 0=p0 (5.8)
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we obtain, performing the integration in variables P 0
∗ , P ′0, P ′0∗,

Q(F )(p0, p) =
∫

R3

∫
R3

∫
R3

cW
8p0p0

∗p
′0p′0∗

q(f)δC dp′dp′∗dp∗, (5.9)

where C is defined by (1.1) with of course E(p) = p0/c. Gathering (5.7) and
(5.9) we then recover (1.5), (1.6) with

w =
cW

8p0p0
∗p
′0p′0∗

. (5.10)

The function w is determined by the differential cross section as follows

c
sσ(s, θ)

2p0p0
∗p
′0p′0∗

= w (5.11)

where

s = (P + P∗)2, cos θ =
(P∗ − P ) · (P ′∗ − P ′)

(P∗ − P )2
. (5.12)

The parameter s times c2 is the square of the energy in the center of momentum
system and θ is the scattering angle (see Remark 5.1). The differential cross
section σ = σ(s, θ) is a function of the energy and the scattering angle. Since
we consider identical particles it satisfies the symmetry relation:

σ(s, θ) = σ(s, π − θ).

Thus, the differential cross section determines the structure of the collision in-
tegral. See Appendix 8 for more details about this function and its physical
meaning. The 12-fold integral in (5.3) can be reduced to a 5-fold integral by
carrying out the delta function integrations. This can be done in two different
ways. They correspond to the two different parametrizations of the collision
manifold which are well known for the classical Boltzmann equations.

5.1.1 The center of mass parametrization

We deduce this parametrization starting from the formulation (5.3) of the col-
lision kernel. To this end we first perform a change of variables in the P ′ and
P ′∗ integrals. So, given P and P∗ fixed, consider the Lorentz transformation Λ
from R4 into itself defined by:

Λ
(√

s
0

)
= (P + P∗). (5.13)

It is given by the 4× 4 matrix

Λ =

(
γ(v) γ(v)v>

γ(v)v I + γ(v)−1
|v|2 vv>

)
(5.14)
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with
v =

p+ p∗√
|p+ p∗|2 + s

∈ R3, γ(v) =
1√

1− |v|2
∈ R (5.15)

and
(vv>)ik = vivk, vv> ∈M3×3. (5.16)

Define now,
P ′ = ΛQ′, P ′∗ = ΛQ′∗. (5.17)

For the sake of brevity we shall denote:

P ′ = P ′(Q′), P ′∗ = P ′∗(Q
′
∗), p′ ≡ p′(Q′), p′∗ = p′∗(Q

′
∗). (5.18)

By the definition of Lorentz transform we have that s and θ are invariant (see
Appendix 7) by the change of variable. Then:

Q(f)(p)

=
4c
p0

∫
R4

∫
R4

∫
R4
sσ(s, θ)q(f)δΛ−1(P+P∗)−Q′−Q′

∗
χ(P 0

∗ )χ(Q′0∗)χ(Q′0) dQ′dQ′∗dP∗,

(5.19)
with now

q(f) =f(p′∗(Q
′
∗))f(p′(Q′))(1 + τf(p))(1 + τf(p∗))·

− f(p)f(p∗)(1 + τf(p′(Q′))(1 + τf(p′∗(Q
′
∗)),

(5.20)

where we have used that if (u0, u∗, u2, u3) = Λ(v0, v∗, v2, v3), then signu0 =
sign v0, and that

δ(P + P∗ − ΛQ′ − ΛQ′∗) = δ(Λ−1(P + P∗)−Q′ −Q′∗).

We integrate with respect to Q′0, Q′∗
0, and Q′∗

0. Thanks to (5.8) we have

Q(f)(p) =
c

2p0

∫
R3

∫
R3

∫
R3
sσ(s, θ)q(f)δ{(√s,0)−Q′−Q′

∗}
dq′

q′0
dq′∗
q′0∗

dp∗
p0
∗
, (5.21)

with P = (p0, p), P∗ = (p0
∗, p∗), Q

′ = (q′0, q′), Q′∗ = (q′∗
0
, q′∗). Observing that

(q′0, q′) + (q′∗
0
, q′∗) = (

√
s, 0) if and only if q′ = −q′∗, q′

0 + q′∗
0 =

√
s,

we get

q′
0 = q′∗

0 =
√
s

2
. (5.22)

Therefore, integrating in q′∗ we get

Q(f)(p) =
c

p0

∫
R3

∫
R3
σq(f)δ√s

2 −
√
|q′|2+m2c2 dq

′ dp∗
p0
∗
. (5.23)

We finally, change to spherical coordinates in the q′ integral:

dq′ = |q′|2 d|q′| dΩ (5.24)
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and use, again by Lemma 6.1,

δ(
√
s

2
−
√
|q′|2 +m2c2) =

√
s

s− 4m2c2
δ(|q′| − 1

2

√
s− 4m2c2) (5.25)

to obtain

Q(f)(p) =
c

p0

∫
R3

∫ ∞

0

∫
S2

√
s

s− 4m2c2
σq(f)δ|q′|− 1

2

√
s−4m2c2 |q′|2 d|q′| dΩ

dp∗
p0
∗

and finally

Q(f)(p) =
c

4p0

∫
R3

∫
S2

√
s(s− 4m2c2)σq(f) dΩ

dp∗
p0
∗
. (5.26)

Let us go back to the expression of q(f) in order to give an explicit formula
in terms of p, p∗ and Ω. Remember that

q(f) =f(p′∗(Q
′
∗))f(p′(Q′))(1 + τf(p))(1 + τf(p∗))

− f(p)f(p∗)(1 + τf(p′(Q′))(1 + τf(p′∗(Q
′
∗))

where P ′ = ΛQ′, P ′∗ = ΛQ′∗, and Λ(
√
s, 0) = (P + P∗) = (p0 + p0

∗, p + p∗), so
that we just have to express p′ = p′(Q′) and p′∗ = p′∗(Q

′
∗). As we have said just

before

Q′ = (
√
s

2
, |q′|Ω), Q′∗ = (

√
s

2
,−|q′|Ω).

Therefore,

p′ = Λ(
√
s

2
, q′)

=
(
γ(v)

√
s

2
+ γ(v)|q′|v>Ω , γ(v)v

√
s

2
+ |q′|Ω +

γ(v)− 1
v2

|q′|vv>Ω
)

p′∗ = Λ(
√
s

2
,−q′)

=
(
γ(v)

√
s

2
− γ(v)|q′|v>Ω , γ(v)v

√
s

2
− |q′|Ω− γ(v)− 1

v2
|q′|vv>Ω

)
with

v =
p+ p∗√

|p+ p∗|2 + s
=

p+ p∗
p0 + p0

∗
, γ(v) =

1√
1− |v|2

=
p0 + p0

∗√
(p0 + p0

∗)2 − |p+ p∗|2
,

(5.27)
and

|q′| = 1
2

√
s− 4m2c2 =

1
2

√
(p0 + p0

∗)2 − |p+ p∗|2 − 4m2c2. (5.28)

Finally we obtain

p′ =
p+ p∗

2
+

1
2

√
(p0 + p0

∗)2 − |p+ p∗|2 − 4m2c2
(
Ω +

γ(v)− 1
|v|2

vv>Ω
)
,

p′∗ =
p+ p∗

2
− 1

2

√
(p0 + p0

∗)2 − |p+ p∗|2 − 4m2c2
(
Ω +

γ(v)− 1
|v|2

vv>Ω
)
.

(5.29)
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Since the variable Ω describes the whole sphere S2, it can then be parametrized
in spherical coordinates of polar axis q:

Ω =
q

|q|
cos θ + (cosφ~ı+ sinφ~) sin θ (5.30)

in such a way that
dΩ = sin θdθdφ. (5.31)

To see this, we observe that

cos θ =
(P∗ − P ) · (P ′∗ − P ′)

(P∗ − P )2
=

(Q∗ −Q) · (Q′∗ −Q′)
(Q∗ −Q)2

(1)

=
(q0∗ − q0)(q′∗

0 − q′
0)− (q∗ − q) · (q′∗ − q′)

(q0∗ − q0)2 − |q∗ − q|2
=
q · q′

|q|2
, (2)

where we use fact that q0∗ = q0 = q′∗
0 = q′

0 =
√
s/2 and q = −q∗, q′ = −q′∗.

Finally since

|q| =
√
q02 −m2c2 =

√
q′0

2 −m2c2 = |q′|,

we get cos θ = qq′

|q||q′| .

Remark 5.1 The reference frame of the variables (Q,Q∗, Q′, Q′∗) in the previ-
ous calculation is called the center of momentum system. The geometry of the
collision is particularly simple in this frame since

Q+Q∗ = Q′ +Q′∗ =
(√

s
0

)
(5.32)

and the scattering angle θ is

cos θ =
qq′

|q‖q′|
. (5.33)

It is easily seen that this is the angle formed by the trajectories before and after
the collision for each of the particles.

Finally the Møller velocity is

v =
c

2p0p0
∗

√
s(s− 4m2c2) (5.34)

and the collision integral in (5.26) may be written as

Q(f)(p) =
1
2

∫
R3

∫
S2
vσ(s, θ)q(f)dΩdp∗. (5.35)
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5.1.2 Another expression for the collision integral

(We closely follow in this part the Appendix II of Glassey and Strauss [GS],
see also [26]). There is another way to reduce the 12-fold original integral to
a 5-fold by using a slightly different parametrization. Let us start again from
the original equation, perform directly the integration in the p′0, p′∗

0 and p0
∗

variables to obtain:

Q(f)(p) =
c

2 p0

∫
R3

∫
R3

∫
R3
δ
(
(P + P∗)− (

√
|p′|2 +m2c2, p′)

− (
√
|p′∗|2 +m2c2, p′∗)

)
sσq(f)

dp′

p′0
dp′∗
p′∗

0

dp∗
p∗0

.

(5.36)

We integrate now in p′∗ to obtain

Q(f)(p) =
c

16p0

∫
R3

∫
R3
δ(p0 + p0

∗ − p′
0 − p′∗

0)sσq(f)
1
p′∗

0

dp′

p′0
dp∗
p∗0

. (5.37)

We perform now the change of variables

p′ = p+ r · ω , p′∗ = p∗ − r · ω (5.38)

with ω ∈ S2 and r ∈ R in such a way that p+ p∗ = p′ + p′∗. for every p and p∗
in R3. We use now Lemma 6.1 (ii’) to obtain

δ(p0 + p0
∗ − p′

0 − p′∗
0)

= 2(p0 + p0
∗)δ((p

′0 + p′
0
∗)

2 − (p0 + p0
∗)

2)

= 4(p0 + p0
∗)p

′0p′
0
∗δ(4p

′02
p′

0
∗
2
− [(p0 + p0

∗)
2 − p′

02
− p′

0
∗
2
]2).

(5.39)

Observe that

P(r) ≡ 4p′0
2
p′

0
∗
2
− [(p0 + p0

∗)
2 − p′

02
− p′

0
∗
2
]2

= 4p′0
2
p′

0
∗
2
− [(p0 + p0

∗)
2 − (p′0

2
+ p′

0
∗
2
)]2

= −(p0 + p0
∗)

4 + 2(p0 + p0
∗)

2(p′0
2

+ p′
0
∗
2
)− (p′0

2
− p′

0
∗
2
)2,

(5.40)

where by the change of variables (5.38),

p′
02
− p′

0
∗
2

= |p|2 − |p∗|2 + 2r(p+ p∗) · ω

It is now a simple matter to check that P is a polynomial of degree two whose
roots are r = 0 and

a(p, p∗, ω) =
2(p0 + p0

∗)(ω · (p̂− p̂∗))p0p∗
0

(p0 + p∗0)2 − (ω · (p+ p∗))2
≡ 2

N

D
,

p̂ =
p

p0
, p̂∗ =

p∗
p0
∗
.

(5.41)
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Therefore, P(r) = Dr(r − a(p, p∗, ω)). We may then write

δ(p0 + p∗
0 − p′

0 − p′∗
0)

1
p′∗

0

1
p′0

dp′

= 4(p0 + p0
∗)δ(4p

′02
p′

0
∗
2
− [(p0 + p0

∗)
2 − p′

02
− p′

0
∗
2
]2)dp′

= 4(p0 + p0
∗)δ(Dr(r − a(p, p∗, ω))) r2 dr dω.

(5.42)

Using Lemma ??, we get

δ(p0 + p0
∗ − p′

0 − p′∗
0)

1
p′∗

0

1
p′0

dp′

= 4(p0 + p0
∗)|Da|−1[δ(r) + δ(r − a)] r2 dr dω.

(5.43)

The first delta function drops because of the factor r2 and we are led them to:

δ(p0 + p∗
0 − p′

0 − p′∗
0)

1
p′∗

0

1
p′0

dp′

= 4(p0 + p∗
0)2|N |D−2δ(r − a) dr dω

= 8
(p0 + p∗

0)2|ω · (p̂− p̂∗)|p0p∗
0

[(p0 + p∗0)2 − (ω · (p+ p∗))2]2
δ(r − a) dr dω.

(5.44)

Finally,

Q(f)(p) =
∫

R3

∫
S2

Γ(p, p∗, ω)q(f) dωdp∗,

Γ(p, p∗, ω) = 4c sσ
(p0 + p0

∗)
2|ω · (p̂− p̂∗)|

[(p0 + p0
∗)2 − (ω · (p+ p∗))2]2

.

(5.45)

Observe that Γ(p, p∗, ω) = Γ(p∗, p, ω) and since D ≥ 2,

0 ≤ Γ(p, p∗, ω) ≤ c sσ(p0 + p0
∗)

2|ω · (p̂− p̂∗)|.

5.2 Particles with different masses

Similar calculations can be performed if we consider collisions of two quantum
relativistic particles with different massesm∗ ,m2 and with momenta P = (p0, p)
and P∗ = (p0

∗, p∗) such that

p0 =
√
|p|2 +m2

∗c
2, p0

∗ =
√
|p∗|2 +m2

2c
2. (5.46)

Let us denote by f de density distribution of the particles P of mass m∗ and g
that of the particles P∗ of mass m2. These functions satisfy the coupled system
(4.2). Let us consider here only the integral Q1,2(f, g) ≡ Q(f, g) since Q2,1(g, f)
is completely similar:

Q(f, g)(p) =
8c
p0

∫
R4

∫
R4

∫
R4
sσq(f, g)δP+P∗−P ′−P ′

∗=0

× χ2(P 0
∗ )χ1(P ′

0)χ2(P ′∗
0) dP ′dP ′∗dP∗

q(f, g) =g(p′∗)f(p′)(1 + τf(p))(1 + τ ′g(p∗))
− f(p)g(p∗)(1 + τf(p′))(1 + τ ′g(p′∗)),

(5.47)
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with χi(P ) = δP 2−m2
i c2 H(P 0) for i = 1, 2, and τ, τ ′ ∈ {−1, 0, 1}.

As before, the integral collision may be written as

Q(f, g) =
∫

R3

∫
S2
νσq(f, g) dΩdp∗, (5.48)

where the Møller velocity is in this case: (where Ω and θ are defined as above)

ν =
c

2p0p0
∗

√
(s− (m∗ −m2)2c2)(s− (m∗ +m2)2c2). (5.49)

and the dependence of p′ and p′∗ in function of p, p∗ and Ω in the expression
(5.47) of q(f, g) is

p′ =
p+ p∗

2
+

√
(s− (m∗ −m2)2c2)(s− (m∗ +m2)2c2)

2
√
s

(
Ω +

γ(v)− 1
|v|2

vv>Ω
)
,

p′∗ =
p+ p∗

2
−
√

(s− (m∗ −m2)2c2)(s− (m∗ +m2)2c2)
2
√
s

(
Ω +

γ(v)− 1
|v|2

, vv>Ω
)
.

An expression similar to (5.45) may also be obtained for the collision integral
Q(f, g). From the expression in (5.47), we perform an integration in the p′0,
p′∗

0 and p0
∗ variables to obtain

Q(f, g)(p) =
c

p0

∫
R3

∫
R3

∫
R3
δ
(
(P + P∗)− (

√
|p′|2 +m2

∗c
2, p′)

− (
√
|p′∗|2 +m2

2c
2, p′∗)

)
sσq(f, f)

dp′

p′0
dp′∗
p′∗

0

dp∗
p∗0

.

We integrate now in p′∗ to obtain

Q(f, g)(p) =
c

p0

∫
R3

∫
R3
δ(p0 + p0

∗ − p′
0 − p′∗

0)sσq(f, g)
1
p′∗

0

dp′

p′0
dp∗
p∗0

. (5.50)

We may then apply the calculations from (5.38) to (5.44) and obtain finally

Q(f, g)(p) =
∫

R3

∫
S2

Γ(p, p∗, ω)q(f, g) dωdp∗,

Γ(p, p∗, ω) = 8c sσ
(p0 + p0

∗)
2|ω · (p̂− p̂∗)|

[(p0 + p0
∗)2 − (ω · (p+ p∗))2]2

.

(5.51)

Remark 5.2 The expressions (5.34)-(5.35) and (5.48)-(5.49) correspond to the
center of mass angular parametrizations of the collisions in the classical and non
quantum Boltzmann equation.

5.3 Boltzmann-Compton equation for photon-electron
scattering

In this section, we consider the system of Boltzmann equations for a dilute gas
of low energy electrons and weakly dense photons. We assume that particles P
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are photons and so are massless, m∗ = 0 and particles P∗ are electrons of mass
m2 > 0 that we take to be m2 = m. From the preceding sub Section 5.2, if
f describes the density of photons and g the density of electrons the collision
integral writes

Q(f, g)(p) =
c

2|p|

∫
R3

∫
S2

(s−m2c2)σ(s, θ)q(f, g)dΩ
dp∗
p0
∗

(5.52)

where,
s = (P + P∗)2 = (|p|+

√
|p∗|2 +m2c2)2 − |p+ p∗|2

= c2 + 2|p|
√
|p∗|2 +m2c2 − 2(p, p∗)

(5.53)

and

p′ =
p+ p∗

2
+
s−m2c2

2
√
s

(
Ω +

γ(v)− 1
v2

vv>Ω
)
, (5.54)

p′∗ =
p+ p∗

2
− s−m2c2

2
√
s

(
Ω +

γ(v)− 1
v2

vv>Ω
)
. (5.55)

In this context, the differential cross section σ is given by the Klein Nishina
formula given in Appendix 8.

We briefly consider now the so called classical limit, which amounts to con-
sider the higher order term in (5.52) when c→∞. Notice first that

s−m2c2 ∼ 2|p|mc, and v ∼ 1 as c→∞. (5.56)

Since the photons have low energy we have p0 ∼ p′
0 from where we deduce

σ(s, θ) ∼ 1
2
r20{1 + cos2 θ}, as c→∞, (5.57)

(c.f. [46, p. 163]) and finally

lim
c→∞

s−m2c2

2
√
s

= |p|. (5.58)

Then, in the classical limit we obtain

Q(f, g)(p) =
c r20
2

∫
R3

∫
S2
{1 + cos2 θ}q(f, g)dΩ dp∗ (5.59)

with
p′ =

p+ p∗
2

+ |p|Ω, p′∗ =
p+ p∗

2
− |p|Ω. (5.60)

5.3.1 Dilute and low energy electron gas at equilibrium

We assume moreover that the dilute and low energy electron gas is at equi-
librium. Then, the density of electrons is given by a Maxwell Boltzmann dis-
tribution. It is therefore possible to write the corresponding collision integral
in a more explicit way as it was already done in Section 4. To this end it is
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convenient to express this collision integral in a Carleman’s type parametriza-
tion. It should be possible to obtain it from (5.52) but nevertheless we proceed
in a simpler way. We consider then the classical limit, c → ∞ directly in the
integral collision (5.47), where σ is again the Klein Nishina differential cross
section. Arguing as above we obtain that the collision integral reads

Q(f)(p) =
c r20

2|p||p′|

∫
R3

∫
R3

∫
R3

(1 + cos2 θ)q(f)δΣdp∗dp′∗dp
′

where Σ is now the manifold of 4-uplets (p, p∗, p′, p′∗) such that,

p+ p∗ = p′ + p′∗, and |p|+ |p∗|2

2mc
= |p′|+ |p′∗

2|
2mc

. (5.61)

By the hypothesis on the electron gas, we may take g(p′∗) = e−β0 |p′∗|
2

2m eµ for
some β0 > 0 and µ ∈ R constants . By (5.61) we deduce

g(p′∗) = e−β0(|p|−|p′|)e−β0 |p∗|2
2m eµ, (5.62)

and the integral collision reads,

Q(f)(p) =
r20
2
eµ

∫
R3

∫
R3

∫
R3

{1 + cos2 θ}
|p||p′|

e−β0 |p∗|2
2m +β0|p′|q(f)δΣdp′dp∗dp′∗,

(5.63)
with

q(f) = e−β0|p|f(p′)(1 + f(p))− e−β0|p′|f(p)(1 + f(p′)).

Note that the integration in the p′∗ variable is straightforward. Let us state the
following auxiliary Lemma.

Lemma 5.3 With A = |p| − |p′|+ |p−p′|2
2mc and w = p′ − p, we have

S(p, p′) =
∫

R3

∫
R3
δΣe

−β0 |p∗|2
2mc dp∗dp

′
∗ =

2πm2 c

β0|w|
e
−β0 A2mc2

2|w|2 .

Proof. Since

|p|+ |p∗|2

2mc
− |p′| − |p+ p∗ − p′|2

2mc
= A− 1

mc
(p∗, w),

we have

S(p, p′) =
∫ ∞

0

∫
S2
δ
A− |p∗|

mc (Ω∗,w)
dΩ∗e−β0 |p∗|2

2m |p∗|2d|p∗|.

From ∫
S2
δ
A− |p∗|

mc (Ω∗,w)
dΩ∗ =

2πmc
|p∗‖w|

H(1− A2m2c2

|p∗|2|w|2
)
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(where H stands for the Heaviside’s function) we obtain

S(p, p′) =
2πmc
|w|

∫ ∞

Amc
|w|

|p∗|e−β0 |p∗|2
2m d|p∗| (5.64)

which completes the proof. �

The collision kernel reads now

Q(f)(p) =
cr20
2
eµ

∫
R3

S(p, p′)
|p||p′|

{1 + cos2 θ}eβ0|p′|q(f)dp′.

Now, we assume that the photon distribution is radial. This is a further sim-
plification which allows to write the equation in polar coordinates. We denote
ε = |p|, ε′ = |p′|, and, with a slight abuse of notation, S(p, p′) = S(ε, ε′, θ),

Q(f)(ε) =
cr20
2ε2

eµ

∫ ∞

0

B(ε, ε′)q(f)eβ0ε′dε′ (5.65)

with
B(ε, ε′) = 2π εε′

∫ π

0

(1 + cos2 θ)S(ε, ε′, θ) sin θ dθ. (5.66)

Finally, the Boltzmann-Compton equation reads:

∂tf =
∫ ∞

0

b(ε, ε′) (f ′(1 + f)e−β0ε − f(1 + f ′)e−β0ε′)ε′2dε dε′, (5.67)

where

b(ε, ε′) =
c r20
2
eµB(ε, ε′)

ε2ε′2
eβ0ε′

= 2
m2c2 r20π

2

β0εε′
eµeβ0ε′

∫ π

0

(1 + cos2 θ)
1
|w|

e
−β0 A2mc

2|w|2 sin θ dθ

with |w|2 = ε2 + ε′
2 − 2ε ε′ cos θ.

Remark 5.4 Note that equation (5.67) is formally the same as (4.15)-(4.32)
in Section 4 above and (1.1) of [23]. In particular, these equations have the
same entropy function, given by (4.52). Nevertheless, in each of these cases, the
functions b(ε, ε′) which appear in the collision have different, although similar,
behaviour in the domain ε > 0, ε′ > 0. It is in particular easy to check that
the function b in (5.67) does not satisfy any of the conditions (2.1), (2.2) (2.3)
imposed in the existence theorems obtained in [23]. The global existence of
solutions in L1 is then still an open question for this equation.

5.4 The Kompaneets equation

In this subsection we present the deduction of the Kompaneets equation from
the Boltzmann-Compton equation, and we mainly follow [33] and [35, Vol. 3].
The Kompaneets limit is valid for

ε, ε′ � mc2.
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We by start performing the change of variables β0ε = ε, f(ε) = g(ε) in (5.67)
and, by abuse of notation, still denote the variable as ε. This gives

ε2
∂g

∂t
= β0−3

∫ ∞

0

(
g′(1 + g) e−ε − g(1 + g′)e−ε′

)
ε2ε′

2
b(
ε

β0
,
ε′

β0
) dε′.

In a similar way as in the usual Fokker Planck approximation (cf. [34, vol.
10, Ch. 2]), one notices that the main contribution to the integral in (5.67)
should come from the region where |ε′ − ε|/|ε| << 1. This is due to the fact
that the kernel b(ε, ε′) given in (5.67) is rather peaked around ε′ = ε. More
precisely, as we shall see below (cf. (5.75)), for any ε > 0 fixed and θ ∈ [0, π]:

lim
m→∞

b(ε, ε′)
ε′

ε
(ε′ − ε)2 = C(θ)δε′=ε

where C(θ) is a constant depending on θ and also on m, c, β0. I.e., in the
non relativistic limit of Compton scattering, the dominant contribution to the
collision integral comes from the region where |p|−|p′|(= ε−ε′) is small, and not
from the region where p− p′ is small. This is consistent with the fact that the
cross section for the non relativistic limit of Compton scattering, as described by
the Klein-Nishina formula (cf. Appendix 8, Relativistic case), has no singular
behaviour when the momentum transfer p′ − p goes to zero.

We may then first expand g(ε′) and e−ε′ around ε to obtain

g(ε′)(1 + g(ε)) e−ε − g(ε)(1 + g(ε′)) e−ε′

∼
{

(ε′ − ε)g′(ε) + [(ε′ − ε)− 1
2
(ε′ − ε)2]g(ε)

− [(ε′ − ε)− 1
2
(ε′ − ε)2]g2 +

1
2
(ε′ − ε)2g′′ + (ε′ − ε)2gg′

}
e−ε.

From where,

β03
ε2
∂g

∂t
∼ a(ε)g(ε) + (a(ε) + b(ε))g′(ε) + b(ε)g′′(ε) + 2 b(ε) gg′ + a(ε)g2

with,

a(ε) = ε2
∫ ∞

0

((ε′ − ε)− 1
2
(ε′ − ε)2)b(

ε

β0
,
ε′

β0
)e−εε′

2
dε′

b(ε) = ε2
1
2

∫ ∞

0

(ε′ − ε)2b(
ε

β0
,
ε′

β0
)e−εε′

2
dε′.

Therefore, if we set

α(ε) = exp
∫ ε

0

a(σ)
b(σ)

dσ (5.68)

and

d(ε) = b(ε) exp(−
∫ ε

0

a(σ)
b(σ)

dσ) (5.69)
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we have

β03
ε2
∂g

∂t
∼ d(ε)

∂

∂ε
[α(ε)(

∂g

∂ε
+ g + g2)]. (5.70)

The second step is to identify the two functions d and α. To this end one
argues as follows. We first assume that the equation (5.70) preserves the total
number of particles, namely that

d

dt

∫ ∞

0

ε2 g(ε, t) dε = 0. (5.71)

This is reasonable as far as (5.70) is a good approximation of the Boltzmann-
Compton equation. It requires that the following boundary conditions are sat-
isfied:

lim
ε→0

α(ε)(
∂g

∂ε
+ g + g2) = lim

ε→∞
α(ε)(

∂g

∂ε
+ g + g2) = 0 (5.72)

i.e. that the particle flux is zero at the boundary of the domain. Then, by a
formal integration by parts on R+, d(ε) has to be constant. Let us denote it by
d.

We have now to identify α. By (5.68) and (5.69), b(ε) = dα(ε) where, we
recall

b(ε) = ε2
1
2

∫ ∞

0

(ε′ − ε)2b(
ε

β0
,
ε′

β0
)e−εε′

2
dε′

and

b(
ε

β0
,
ε′

β0
) = 2β0m

2c2 r20π
2

εε′
eµeε′

∫ π

0

(1 + cos2 θ)
1
|w|

e
−β0 A2mc

2|w|2 sin θdθ ,

with

|ω| = 1
β0

(ε2 + ε′
2 − 2εε′ cos θ)1/2, A =

ε

β0
− ε′

β0
+
|ω|2

2mc
.

By the change of variables, s = cos θ we slightly simplify this expression and
obtain

b(ε) = m2c2r20π
2eµ e−εε

∫ 1

−1

(1 + s2)
∫ ∞

0

(ε′ − ε)2
eε′ e−β0 A2mc

2|ω|2

|ω|
ε′dε′ds. (5.73)

To handle with the expression under the integral in (5.73) first notice that by
(5.61),

ε′
2

2mc
+ ε′[1− εs

mc
− (

p∗
mc

· p
′

|p′|
)] +

ε2

2mc
− ε+ ε(

p∗
mc

· p
|p|

) = 0. (5.74)

A straightforward calculation gives

∆ = 1+(
ε s

mc
+(

p∗
mc

· p
′

|p′|
))2− ε2

m2c2
− 2ε
mc

(
p∗
mc

· p
|p|

)−2(
ε s

mc
+(

p∗
mc

· p
′

|p′|
))+

2ε
mc

.
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Since all the terms in the right hand side, except 1, are small when m � 1,
ε = O(1), |p∗| = O(1), we may use

√
1 + z ∼ 1 + z/2− z4/8 + · · · to obtain

√
∆ ∼ 1− εs

mc
− (

p∗
mc

· p
′

|p′|
) +

ε

mc
− ε

mc

p∗
mc

·
(
p

|p|
− p′

|p′|

)
− ε2

m2c2
(1− s).

Then, the two solutions of (5.74) are

ε′ = mc(
ε s

mc
+ (

p∗
mc

· p
′

|p′|
)− 1)± mc

√
∆

= εs+ p∗ ·
p′

|p′|
−mc±mc

√
∆.

The root with minus sign is negative, which is inconsistent with the fact that
ε′ ≥ 0. The root with the plus sign gives,

ε′ ∼ ε− ε2

mc
(1− s)− ε

mc
p∗ ·

( p
|p|
− p′

|p′|
)
.

Therefore,

|w|2 =
1
β02 (ε2 + ε′

2 − 2εε′s) ∼ 1
β02 (ε2 + (ε+

ε2

2mc
)2 − 2ε(ε+

ε2

2mc
) s)

=
1
β02 (ε2 + ε2(1 +

ε

2mc
)2 − 2ε2(1 +

ε

2mc
) s) ∼ 2

ε2

β02 (1− s)

Let us define

ε0 = ε+
ε2

β0mc
(1− s).

The quantity ε− ε0 is the energy transfer of the photon as measured in the rest
frame of the initial electron (lab frame). We have then

|w|2 ∼ 2mc
(ε0 − ε)
β0

, and A =
ε

β0
− ε′

β0
+
|w|2

2mc
∼ ε0 − ε′

β0
.

and therefore,

∫ ∞

0

(ε′ − ε)2
e
−β0 A2mc

2|w|2 eε′

|w|
ε′dε′ ∼ β0√

2(1− s)ε

∫ ∞

0

(ε′ − ε)2e−
|ε′−ε0|

2

4|ε−ε0| eε′ε′dε′

∼ β0 |ε− ε0|√
2(1− s)ε

∫ ∞

0

(ε′ − ε0)2

|ε− ε0|
e
− |ε′−ε0|

2

4|ε−ε0| eε′ε′dε′

∼ Cβ0 e
ε√

2(1− s)ε
|ε− ε0|3/2ε

∼ C
ε3 eε(1− s)
m3/2c3/2

√
2β0

,
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where we use the fact that ε ∼ ε0 and that

lim
m→0

1
|ε− ε0|1/2

(ε′ − ε0)2

|ε− ε0|
e
− |ε′−ε0|

2

4|ε−ε0| = Cδε′=ε , C =
∫ ∞

−∞
r2 e−r2

dr. (5.75)

Using this in (5.73) we obtain

b(ε) = m2c2r20π
2eµ e−εε

∫ 1

−1

(1 + s2)
∫ ∞

0

(ε′ − ε)2
eε′ e−β0 A2mc

2|ω|2

|ω|
ε′dε′ds

∼ C

√
mc

2β0
r20π

2eµ ε4
∫ 1

−1

(1 + s2)(1− s) ds ≡ Λε4,

where Λ is independent of ε and s. The limiting equation reads,

ε2
∂g

∂t
= Λβ0−3

d−1 ∂

∂ε
[ε4(

∂g

∂ε
+ g + g2)].

Finally, we perform the change of time variable t → Λt/dβ03 and still denote
by t the new variable. The function h(t, ε) of the new variables satisfy then,

ε2
∂h

∂t
=

∂

∂ε
[ε4(

∂h

∂ε
+ h+ h2)].

This is the so called Kompaneets equation such as it appears for example in
[33, 35, 44]. See also [7, 21].

6 Appendix: A distributional lemma

For a function Ψ : Rm → R we define δΨ = δΨ=0 by

〈δΨ=0, ϕ〉 = lim
ε→0

∫
Rm

ρε(Ψ(y))ϕ(y) dy ∀ϕ ∈ Cc(Rm) (3)

where (ρε) is any approximation of the 1-dimensional Dirac measure at the
origin. Then, we have:

Lemma 6.1 For any a, b ∈ R, a 6= 0

δa x−b =
1
a
δx=b/a. (4)

For a 6= b,

δ(x−a)(x−b) =
1

|b− a|
(δx−a + δx−a). (5)

Remark 6.2 As two particular cases we obtain

∀a > 0 δx2−a21x>0 =
1

2 a
δx=a, (6)

∀a > 0 δx(x−a)1x>0 =
1
a
δx=a. (7)
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Proof of Lemma 6.1 Since (4) is evident and (6), (7) are immediate conse-
quences of (5), we just prove (5). Let (ρε) be a sequence of L1(R) such that
ρε ⇀ δ in D′(R). Then

〈δ(x−a)(x−b), φ〉 := lim
ε→0

〈ρε((x− a)(x− b)), φ〉

= lim
ε→0

∫
R
ρε((x− a)(x− b))φdx = lim

ε→0
Iε + Jε,

with

Iε =
∫ a+b

2

−∞
ρε((x− a)(x− b))φdx, Jε =

∫ ∞

a+b
2

ρε((x− a)(x− b))φdx.

Without any loss of generality we may assume that a < b. Set y = (x −
a)(x − b) = x2 − (a + b)x + a b. The function x 7→ y(x) is monotone for
any x ≤ (a + b)/2 so that it is an allowed change of variable. We compute
2x = a+ b±

√
4 y + (a− b)2 and dy = [2x− (a+ b)] dx = ±

√
4 y + (a− b)2 dx,

and hence

Iε =
∫ ∞

−(b−a)2
4

ρε(y)φ
(a+ b

2
±
√
y +

(a− b

2
)2) dy√

4 y + (a− b)2

→ 1
|b− a|

φ
(a+ b− |a− b|

2
)

=
φ(a)
|b− a|

.

Similarly, we prove Jε → φ(a)/|b− a|. �

7 Appendix: Minkowsky space and Lorentz
transform

We call P = (P 0, p) ∈ R4 with P 0 ∈ R, p ∈ R3, or indifferently P = (Pµ), the
Lorentz metric which is defined by

〈P,Q〉 = P 0Q0 − p · q ∀P,Q ∈ R4. (8)

We also write

〈P,Q〉 = PµQµ = P>η Q =
4∑

µ,ν=0

ηµν P
µQν , with Qµ = ηµν Q

µ,

where

η = (ηµν) =
(

1 0>

0 −I3

)
(9)

is the Minkowsky matrix. The inner product 〈, 〉 on R4 is symmetric, non
degenerated but not positive.
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Definition A Lorentz transform is a linear operator Λ : R4 → R4 such that

〈ΛP,ΛQ〉 = 〈P,Q〉 ∀P,Q ∈ R4. (10)

7.1 Examples of Lorentz transforms

Rotations For a rotation R of R3 (R ∈ SO(3)),

Λ =
(

1 0>

0 R

)
(11)

is a Lorentz transform.

Boosts For v ∈ R3 such that v := |v| < 1,

Λ =
(
γ γv>

γv I + γ−1
v2 vv

>

)
, γ =

1√
1− v2

. (12)

is a Lorentz transform.

Remark 7.1 Any Lorentz transform is the composition of a boost and a rota-
tion, see [42].

For (β0, β) ∈ R4 with β0 > |β| we define b > 0 and u ∈ R3 by

b2 := (β0)2 − |β|2, u

c
:=

β

β0
. (13)

Then, setting

γ :=
1√

1− (u/c)2
, we have (βµ) = (β0, β) =

(
γβ̄, γβ̄

u

c

)
. (14)

For such a 4-vector (β0, β) we define the boost transform Λ = Λ(βµ) associated
to v := u/c. It satisfies

Λ
(
b
0

)
=
(
β0

β

)
. (15)

Lemma 7.2 Any Lorentz transform Λ satisfies detΛ = ±1.

Proof For

Λ =
(
a b>

c d

)
define Λ? =

(
a −c>
−b d>

)
with a ∈ R, b, c ∈ R3 and d ∈M(R3). We easily verify that 〈ΛP,Q〉 = 〈P,Λ?Q〉
for all P,Q ∈ R4. In particular, by definition of a Lorentz transform, one has

〈Λ?ΛP,Q〉 = 〈ΛP,ΛQ〉 = 〈P,Q〉 for aall P,Q ∈ R4,

so that Λ?Λ = Id4. Since det Λ? = det Λ, we get (det Λ)2 = 1. �
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Definition 7.3 For s ∈ R we define the set

Ms
+ := {P ∈ R4, : 〈P, P 〉 = s, : P 0 > 0} = {(

√
s+ |p|2, p), p ∈ R3}. (16)

We write Λ ∈ L↑+, if Λ is a Lorentz transform such that detΛ = +1 and
(ΛP )0 > 0 for any P ∈Ms

+, with s > 0.

The boost Λ associated to (β0, β) belongs to L↑+ since detΛ = 1 and

(ΛP )0 = γp0 + γu · p =
1
b

[β0p0 + β · p] ≥ 1
b

[β0|p| − |β||p|] ≥ 0

for any P ∈Ms
+ with s > 0.

Lemma 7.4 Let f : R → R and (βµ) = (β0, β) ∈ R4 such that b2 := β02 −
|β|2 > 0. We define F : R3 → R by F (p) = f(βµpµ) = f(β0p0 − β · p) with
p0 :=

√
s+ |p|2, s > 0. Then, there are some constants Ai = Ai(f,b) such that∫

R3
pµF

dp

p0
= A1 β

µ (17)∫
R3
pµpνF

dp

p0
= A2η

µν +A3β
µβν . (18)

In particular, one has

N(F ) :=
∫

R3
F dp = A1β

0 (19)

P (F ) :=
∫

R3
Fp dp = A3β

0β (20)

E(F ) :=
∫

R3
Fp0 dp = A2 +A3(β0)2 (21)

G(F ) := s

∫
R3
F
dp

p0
= 4A2 +A3b2. (22)

Proof Using Lemma 7.2 we have

δP 2=sH(P 0) =
(
δ
(P 0−

√
s+|p|2)(P 0+

√
s+|p|2)

)
H(P 0)

=
1

2
√
s+ |p|2

(
δ
P 0−

√
s+|p|2 + δ

P 0+
√

s+|p|2
)
H(P 0)

=
1

2
√
s+ |p|2

δ
P 0−

√
s+|p|2 .

where H is the Heaviside function. Therefore, we get the fundamental identity∫
R4
F (P )δP 2=sH(p0) dP =

∫
R3

{∫
R
F (P )

1
2
√
s+ |p|2

δ
P 0−

√
s+|p|2 P

0
}
dp

=
∫

R3
F (p0, p)

dp

p0
.
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For Λ ∈ L↑+ we get∫
R3
F (Λ(p0, p))

dp

p0
=
∫

R4
F (ΛP )δP 2=sH(p0) dP

=
∫

R4
F (Q)δQ2=sH(q0) dQ =

∫
R3
F (p0, p)

dp

p0
.

Now we choose as Λ the boost associated to (βµ) and using (15) we have, setting
P = ΛQ, we get∫

R3
pµf(βνpν)

dp

p0
=
∫

R3
pµf(b(Λ−1P )0)

dp

p0

= Λµ

∫
R3
qf(bq0)

dq

q0
= Λν

(
bA1

0

)
,

with

A1 :=
∫

R3
q0f(bq0)

dq

q0
,

since ∫
R3
qif(bq0)

dq

q0
= 0

for i = 1, 2, 3 by rotation symmetry. This proves (17). Similarly,∫
R3
pµpνf(βσpσ)

dp

p0
= Λµ

µ′Λ
ν
ν′

∫
R3
qµ′qν′f(β̄q0)

dq

q0
= Λµ

µ′Λ
ν
ν′αµ′δµ′ν′

with

α0 =
∫

R3
(q0)2f(β̄q0)

dq

q0
α1 = α2 = α3 =

∫
R3

(q1)2f(β̄q0)
dq

q0
.

By simple computations,

Λ2 =
(

2γ2 − 1 2γ2v>

2γ2v I + 2γ2vv>

)
= −(η)µν + 2

(
γ2 γ(γu/c)>

γ(γu/c) (γu/c)(γu/c)>

)
= −(η)µν +

2
b2
βµβν ,

and Λµ
0 =

(
γ
γu

)
= βµ

b . Therefore

∫
R3
pµpνf(βσpσ)

dp

p0
= α1Λ

µ
µ′Λ

ν
µ′ + (α0 − α1)Λ

µ
0Λν

0

= α1(Λ2)µν + (α0 − α1)Λ
µ
0Λν

0

= −α1η
µν +

α0 + α1

b2
βµβν ,
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and (18) is proved. The statements (19), (20) and (21) follow. Finally, we
compute, thanks to (18),∫

R3
ηµνp

µpνf
dp

p0
= A1η

µνηµν +A2β
µβνηµν ,

so that ∫
R3

((p0)2 − |p|2)f dp
p0

= 4A1 +A2[(β0)2 − |β|2] = 4A1 +A2β̄
2,

and (22) follows, remarking that (p0)2 − |p|2 = s. �

8 Appendix: Differential cross section

We present in this Appendix some short notes about differential cross sections,
mainly taken from the volumes 3 and 10 of the Landau and Lifschitz.

Following Landau and Lifshitz vol.10, §2 let us consider collisions between
two molecules of a monatomic gas, one of which has momentum p in a given
range dp and the other in a range dp∗ and which acquire in the collision values
in the ranges dp′ and dp′∗ respectively. For brevity we refer simply to a collision
of molecules with p and p∗, resulting in p′ and p′∗. The total number of such
collisions per unit time and unit volume of the gas may be written as a product
of the number of molecules per unit volume, f(t, p)dp, and the probability that
any of them has a collision of the type concerned. This probability is always
proportional to the number of molecules p∗ per unit volume, f(t, p∗)dp∗ and
to the number of molecules p′ and p′∗ per unit volume, (1 + τf(t, p′))dp′ and
(1 + τf(t, p′∗))dp

′
∗. Thus the number of collisions p, p∗ → p′, p′∗ per unit time

and volume may be written as

W (p′, p′∗; p, p∗)ff∗(1 + τf ′)(1 + τf ′∗)dpdp∗dp
′dp′∗,

where as usual, τ = 1 for Bose particles, τ = −1 for Fermi particles and τ = 0
for non quantum particles. The coefficient W is a function of all its arguments.
The ratio of Wdp′dp′∗ to the absolute value of the relative velocity v − v∗ of
the colliding molecules has the dimensions of area, and is the effective collision
cross section:

dσ =
W (p′, p′∗; p, p∗)

|p− p∗|
dp′dp′∗

The function W can in principle be determined only by solving the mechan-
ical problem of collision of particles interacting according to some given law.
However, certain properties of this function can be elucidated from general ar-
guments.

The first property is called detailed balance and reads:

W (p′, p′∗; p, p∗) = W (p, p∗; p′, p′∗);

i.e. each microscopic collision process is balanced by the reverse process. It is a
direct consequence of the following two symmetries:
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1. The symmetry of the laws of the mechanic (classical or quantum) under
time reversal: according to this, the number of collisions p, p∗ → p′, p′∗ is
equal, in equilibrium, to the number −p′,−p′∗ → −p,−p∗ from where one
obtains:

W (p′, p′∗; p, p∗) = W (−p,−p∗;−p′,−p′∗).

2. The symmetry of the molecules under spatial inversion i.e. change of the
signs of all coordinates. This symmetry implies

W (−p,−p∗;−p′,−p′∗) = W (p, p∗; p′, p′∗)

and the detailed balance follows.

Moreover, we may also use the fact that, we do not integrate in the whole
momentum space but only along the manifold determined by the conservation
of energy and conservation of the momentum. Let us assume for the sake of
brevity that the two particles have the same mass equal to one. Then, the two
conservation properties read:

p′ + p′∗ = p+ p∗

|p|2

2
+
|p∗|2

2
=
|p′|2

2
+
|p′∗|2

2
.

The expression of W may therefore be written

W (p′, p′∗; p, p∗)dp
′dp′∗

= H(p′, p′∗; p, p∗)δ(p
′ + p′∗ − p− p∗)δ(

|p′|2 + |p′∗|2 − |p|2 − |p∗|2

2
) dp′ dp′∗

= H(p+ p∗ − p′∗, p
′
∗; p, p∗)δ(

|p′|2 + |p′∗|2 − |p|2 − |p∗|2

2
) dp′∗

On this manifold we can write

p′ = q(p, p∗, ω) = p− (p− p∗, ω)ω
p′∗ = q∗(p, p∗, ω) = p∗ + (p− p∗, ω)ω,

ω ∈ S2

from where,
W (p′, p′∗; p, p∗)dp

′dp′∗ = B(p, p∗, ω)dω.

Finally, since the two interacting particles constitute a closed physical system,
W has to be Galilean invariant (or Lorentz invariant in the relativistic case).
Consider for the sake of simplicity the classical case. This implies

W (Tp′, Tp′∗;Tp, Tp∗) = W (p′, p′∗; p, p∗)

for any rotation T = R ∈ SO(3) and any translation T (p) = a+ p with a ∈ R3.
Also we have

(q(p+ a, p∗ + a, ω), q∗(p+ a, p∗ + a, ω)) = (q(p, p∗, ω) + a, q∗(p, p∗, ω) + a)
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in such a way that

B(p+a, p∗+a, ω) = W (p+a, p∗+a, p′+a, p′∗+a) = W (p, p∗, p′, p′∗) = B(p, p∗, ω) .

Therefore, B(p, p∗, ω) = B(0, p∗ − p, ω) that we denote

B(0, p∗ − p, ω) ≡ B(p∗ − p, ω).

On the other hand, we also have

(q(Rp,Rp∗, Rω), q∗(Rp,Rp∗, Rω)) = (Rq(p, p∗, ω), Rq∗(p, p∗, ω))

in such a way that

B(R(p∗ − p), Rω) = B(Rp,Rp∗, Rω)
= W (Rp,Rp∗, Rp′, Rp′∗) = W (p, p∗, p′, p′∗) = B(p∗ − p, ω)

for every rotation R ∈ SO(3). Therefore

B(p∗ − p, ω) = B(|p∗ − p|, p∗ − p

|p∗ − p|
, ω).

Note that B(p∗ − p, ω)f(p∗)dωdp∗ is the probability per unit time and unit
volume that any of the colliding particles p has a collision of the type considered.
The effective collision cross section is then defined by

dσ =
B(p∗ − p, ω)
|p− p∗|

dω.

8.1 Scattering theory

The differential cross section depends on a crucial way on the kind of interaction
between the two colliding particles that one considers. If the interaction between
particles only depends on the distance between the two particles, we may assume
without any loss of generality that

B(|p∗ − p|, p∗ − p

|p∗ − p|
, ω) = B(|p∗ − p|, p∗ − p

|p∗ − p|
· ω),

i.e. the function B only depends on the modulus of the difference of momentum
of the two incident particles and of the angle α formed by the two directions
p∗ − p and p′∗ − p′.

On the other hand, like any problem of two bodies, the problem of elastic
collision amounts to a problem, of the scattering of a single particle with the
reduced mass in the field U of a fixed centered force. This simplification is
effected by changing to a system of coordinates in which the center of mass of
the two particles is at rest. We set

Ω =
p− p∗
|p− p∗|

− 2(
p− p∗
|p− p∗|

, ω)ω
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in such a way that with this new variable,

p′ =
p+ p∗

2
+
|p− p∗|

2
Ω,

p′∗ =
p+ p∗

2
− |p− p∗|

2
Ω.

Then we have dω = 1
4 cos αdΩ, for α = angle between p− p∗ and ω.

Then, we use a spherical coordinate system with axis p− p∗:

Ω =
p− p∗
|p− p∗|

cos θ + (cosφh+ sinφi) sin θ.

With these new variables,

|(p− p∗, ω)| = |p− p∗| sin
θ

2
and cosα = sin

θ

2
.

Therefore,

dω =
dΩ

4 cosα
=

1 sin θdθdφ
4 cosα

=
sin θ

4 sin(θ/2)
dθdφ =

1
2

cos(θ/2)dθdφ

from where,

B(z, ω)dω =
B(z, ω)
4 cosα

dΩ =
cos(θ/2)

2
B(z, ω)dθdφ.

The differential cross section, σ(z, θ) is then such that

B(z, ω)dω = σ(z, θ) dΩ ≡ σ(z, θ) sin θdθdφ.

Then write

dσ(p, p∗, θ) = σ
(|p− p∗|, θ)
|p− p∗|

dΩ.

The angle θ is the angle formed by the incident and scattered trajectory of the
particle interacting with the central potential. In classical mechanics, collisions
of two particles are entirely determined by their velocities and impact parameter.
For a detailed study of the different differential cross section depending on the
potential U considered in the classical case the reader may consult the detailed
work by Cercignani [8]. It is shown in particular that:
1.- If U is a power law potential: U(ρ) = |ρ|1−n, n 6= 2, 3, then

B(|p∗ − p|, p∗ − p

|p∗ − p|
· ω) = |p∗ − p|γβ(

p∗ − p

|p∗ − p|
· ω),

where p and p∗ are the velocities of the two particles.
2.- Coulomb potential. If U(ρ) = α|ρ|−1, then

σ(|p− p∗|, θ) =
α2

16|p∗ − p|4 sin4 θ
2

.
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This is known as the Rutherford’s formula (see Landau & Lifschitz vol. 1 §19).
3. Hard sphere potential. For the so called Hard sphere potential U defined as

U(ρ) = lim
n→∞

Un(ρ), Un(r) =

{
n if |ρ| < a

0 if |ρ| > a

we have σ = a2.

Remark 8.1 In the general case, where the two interacting particles p and p∗
have masses m1 and m2 respectively , similar arguments and calculations can be
performed. In particular, the center of mass parametrization may be written:

p′ =
m1m2

m1 +m2
(p+ p∗) +

m1

m1 +m2
|p− p∗|Ω,

p′∗ =
m1m2

m1 +m2
(p+ p∗)−

m2

m1 +m2
|p− p∗|Ω.

One defines again the angle θ by

Ω =
p− p∗
|p− p∗|

cos θ + (cosφh+ sinφi) sin θ.

As before, W (p′, p′∗; p, p∗)dp
′dp′∗ = σ(z, θ)dθdφ and

dσ(p, p∗, θ) = σ
(|p− p∗|, θ)
|p− p∗|

dθdφ.

Remark 8.2 ([34, Vol.10, §2.]) Although the free motion of particles is as-
sumed to be classical, this does not at all mean that their collision cross section
need not be determined quantum mechanically; in fact, it usually must be so
determined.

In quantum mechanics the very wording of the scattering problem must be
changed, since in motion with definite velocities the concept of path is mean-
ingless, and so is the impact parameter. The purpose of the theory is then only
to calculate the probability that, as a result of the collision, the particles will
scattered through any given angle. It is not our purpose to present in detail the
derivation and the properties of the differential cross section from the scattering
theory in detail. We only want to present the general idea, the relevant results
for our study and some precise references for the interested readers.

We only give here a brief description of what M. Reed and B. Simon present
as “näıve” scattering theory, or a stationary picture of it ([47], Vol.3, Notes on
§X1.6). It is nevertheless the usual in the textbooks of quantum mechanics as
for instance vol.3, §123 of Landau Lifschitz.

For a fixed R3-vector p and a positive real number E let us consider the
function of ρ = (x, y, z) and t called plane wave:

e−
i
~ Ete

i
~ p·ρ.
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This plane wave describes a state in which the particle has a definite energy E
and momentum p. The angular frequency of this wave is E/~ and its wave vector
k = p/~; the corresponding wavelength 2π~/|p| is the de Broglie wavelength of
the particle. The mass is m = |p|2/2E and the velocity is v = p/m.

Consider now a free particle, with mass m, total energy E, moving in the
direction of the z-axis and by abuse of notation ley us denote its plane wave as

ψ1(ρ) = eikz, ∀ρ = (x, y, z) ∈ R3.

Assume that it is scattered by a radially symmetric potential U(r) (ρ = (r, θ, ϕ)
in polar coordinates).

The basic ansatz of näıve scattering theory is that the scattering state is the
solution of the linear Schrödinger equation

∆ψ(ρ) + k2ψ(ρ)− 2m
~2

U(r)ψ(ρ) = 0

such that

ψ(ρ) ∼ eikz + f(k, θ)
eikr

r
as r →∞.

This is, at large r we see the incident plane wave moving in the positive sense
of the z- axis and a spherical divergent wave, modulated by the function f ≡
f(k, θ), called the scattering amplitude. This extra term describes the “scattered
particle”.

The scattered particle is described far from the center, as a spherical diver-
gent wave, i.e. a wave moving in the “increasing” sense of the radial direction

f(k, θ)eikr/r.

Remember that the square of the modulus of the wave ψ is the density of
probability to find the particle at the point ρ. The presence of the factor 1/r is
just to preserve that property since we are in R3. The density of probability is
not necessarily the same in all the points but has to be independent of the ϕ and
r variables due to the spherical symmetry of the potential. This is taken into
account by the coefficient f(k, θ) which is the amplitude diffusion and depends
only on the angle θ between the direction of the incoming particle, which is
e3 = (0, 0, 1), and the direction where we are looking for the scattered particle,
i.e. ρ/r.

As it is pointed out in [47], at first sight, this ansatz looks absurd, for, if
ψ ∼ eikz + f(θ)r−1eikr for r → ∞, then, for all the time ψ has both a plane
wave coming in and an outgoing spherical wave. The point of the argument is
to consider an initial state which is more localized i.e. given by the function:

ψ(ρ) =
∫
g(k)

(
eikz + f(θ)r−1eikr

)
dk

and g peaked around k = k0. Then following the same idea, for r and t large,
the wave would be given by

ψ(ρ) ∼
∫
g(k)eik(z−kt)dk + r−1f(θ)

∫
g(k)eik(r−kt) dk.
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Then, essentially by the Riemann-Lebesgue lemma, the first integral for z and
t large has appreciable size only for z ∼ k0t and the second integral if r ∼ k0t.
Therefore, if t→ −∞, the second term is negligible for all r ≥ 0 and we recover,
asymptotically only the incident wave.

Therefore, the probability per unit time that the scattered particle will pass
through the surface element dS = r2dΩ is (v/r2)|f |2dS = v|f |2dΩ, where v is
the velocity of the particle. We have then:

σ(k, θ)dΩ = |f(k, θ)|2dΩ

and we recover the well known formula dσ = |f(θ)|2dΩ.
We are then lead to see how do we get information about the function f(k, θ).

It is well known that the solutions of the linear Schrödinger equation may be
written as

ψ(r) =
∞∑

l=0

AlPl(cos θ)Rk,l(r)

where Al are constants and the Rk,l(r) are radial functions satisfying the equa-
tion

1
r2

d

dr
(r2

dR

dr
) + [k2 − l(l + 1)

r2
− 2m

~
U(r)]R = 0

and the Pl are the Legendre polynomials. The coefficients Al are constants
which have to be chosen so that the condition at r → ∞ is fulfilled. This
implies that:

Al =
1
2k

(2l + 1)il exp(iδl)

where for every l, δl is a constant called phase shift.
To see this observe that, the asymptotic form of each of the functions Rk,l

is

Rk,l(r) ∼
2
r

sin(kr − lπ

2
+ δl) =

1
ir
{(−i)l exp[i(kr + δl)]− il exp[−i(kr + δl)]}

Therefore, it is formally deduced that

ψ(r) ∼
∞∑

l=0

AlPl(cos θ)
i

r

{
exp[−i(kr − lπ

2
+ δl)]− exp[i(kr − lπ

2
+ δl)]

}
.

On the other hand, the plane wave expansion in spherical harmonics gives

eikz =
∞∑

l=0

(−i)l(2l + 1)Pl(cos θ)(
r

k
)l(

1
r

d

dr
)l sin kr

kr
.

As r →∞ we have

eikz ∼ 1
kr

∞∑
l=0

il(2l + 1)Pl(cos θ) sin(kr − lπ

2
)

=
∞∑

l=0

il(2l + 1)Pl(cos θ)
i

2kr
{

exp[−i(kr − lπ

2
)]− exp[i(kr − lπ

2
)]
}
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For Al = 1
2k (2l + 1)il exp(iδl), as indicated above,

ψ − eikz ∼ i

2kr

∞∑
l=0

(2l + 1)Pl(cos θ)[(−1)le−ikr − Sle
ikr]

with Sl = e2iδl . Then

f(k, θ) =
1

2 i k

∞∑
l=0

(2l + 1)[Sl − 1]Pl(cos θ).

Integrating dσ over all the values of the angles we obtain the total cross section

σ = 2π
∫ π

0

|f(k, θ)|2 sin θdθ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl

and since the Legendre polynomials are orthonormal,∫ π

0

P 2
l (cos θ) sin θdθ =

2
2l + 1

.

The coefficients fl(k, θ) = 1
2i k (Sl − 1) are called partial amplitude diffusion.

8.2 Study of the general formula of f(k, θ)

This formula is valid for all radial potential U(r) vanishing at infinity. Its study
reduces to that of the phases δl. (We quote [34, Vol. 10, §124]).

Under the assumption that U(r) ∼ r−n as r → ∞, we have the following
two statements:
1.- If n > 2 then the total cross section is finite and the differential cross section
is integrable.
2.- If n ≤ 2 the total cross section is infinite and the differential cross section is
not integrable. From a physical point of view this is due to the fact that, since
the field is slowly decreasing with the distance, the probability of diffusion of
very small angles becomes very large. Remember that in classical mechanics,
for every positive potential U(r) vanishing only at infinity, any particle with
large but finite impact parameter is deviated by a small but non zero angle and
so the total cross section is infinite, whatever is the decay of U(r). (In that
sense, it may be considered that the quantum scattering is more regular, or less
singular, than the classical one).

Concerning the differential cross section itself we have the following two
statements:
1.- If n ≤ 3 the differential cross section becomes infinite as θ → 0
2.- If n > 3 the differential cross section is finite as θ → 0

Finally, if n ≤ 1, then the total cross section is infinite, i.e. the differential
cross section is not integrable; the differential cross section is singular as θ → 0
but it is well defined for θ 6= 0 and is given by

f(k, θ) =
1

2 i k

∞∑
l=0

(2l + 1)Pl(cos θ)(e2iδl − 1).
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8.3 Non radial interaction

Let us consider again the incident plane wave eikz in the radial potential con-
sidered above, moving in the (0, 0, 1) direction, which is reflected and which at
a large distance point ρ = (r, θ, φ) is seen as eikz + f(θ)eikr/r. Observe that,
given the vector ρ = (x, y, z) = (r, θ, φ), we have

z = r e3 ·
ρ

r
, e3 = (0, 0, 1),

i.e. z may be seen as r times the scalar product of the two unitary vectors giving
the directions of the incident and scattered particle’s velocities. Consider now a
general potential U(ρ), and n a unitary vector of R3. Consider then an incident
particle in the direction n, scattered by U(ρ). The wave describing this particle
would then be the solution of the Schrödinger equation

−∆ψ(ρ)− k2ψ(ρ) + U(ρ)ψ(ρ) = 0

such that at the point ρ = (r, θ, ψ) with |ρ| → ∞,

ψ(ρ) ∼ eikrnn′ +
1
r
f(n, n′)eikr

where n′ = r/ρ. The amplitude diffusion depends on the two directions of the
incident and scattered particles and not only on the angle that they form.

Born’s formula ([34, Vol. 3, §126]) This s formula gives an explicit relation
between the differential cross section and the potential U(ρ), non necessarily
radial. As we have seen, in that case the amplitude diffusion depends on the
incident and scattered directions and not only on the angle they form. The
explicit expression is:

f(q, q′) = − m

2π~2

∫
R3
U(r)e−i(q′−q)·ρdV (ρ)

dσ

dΩ
=

m2

4π2~4
|
∫

R3
U(ρ)e−i(q′−q)·ρdV (ρ)|2, |q′ − q| = 2k sin

θ

2
,

where θ is the angle between the two vectors q and q′.
One may approximate the differential cross section by the Born’s formula

whenever the perturbation field U(ρ), not necessarily spherically symmetric,
may be considered as a perturbation. [This corresponds to the case where all
the phases δl are small]. This is possible when one of the following conditions
are fulfilled:

|U | � ~2

ma2
or |U | � ~v

a
=

~2

ma2
ka

where a is the rayon of action of U(ρ) and U its order of magnitude in the
main region of its existence. In the first case, the Born’s approximation may be
applied for all the velocities. In the second case, it may be applied for particles
with sufficiently large velocities.
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Moreover, if the potential is spherically symmetric, U = U(r), then we obtain

f(k, θ) = −m
~2

∫ ∞

0

U(r)
sin[2rk sin θ

2 ]
k sin θ

2

rdr.

When θ = 0, this integral diverges provided U(r) decreases as r−3 or slower
when r →∞.

8.4 Scattering of slow particles:

([34, Vol. 3, §132]). We consider the limiting case where:
1.- The potential U(r) is radial and decreases at large distances more rapidly
than 1/r3.
2.- The velocities of the particles undergoing scattering are so small that their
wavelength is large compared with the radius of action a of the field U(r), i.e.
ka << 1, and their energy is small compared with the field within that radius,

Under these conditions, the total amplitude may be approximated as f(θ) ∼
f0 which is the first partial amplitude. Therefore, dσ(k, θ) = |f0|2dΩ. At
low velocities, the scattering is isotropic, and the differential cross section is
independent of the particle energy.

If the potential decreases as U(r) ∼ r−n with n < 3 the above approximation
is not valid.

8.5 Some examples of differential cross sections

(i) Coulomb interaction: (Rutherford formula ([34, Vol. 3 §135].) The scatter-
ing by central coulomb potential is particularly important with respect to the
applications in physics. Moreover, the quantumechanic problem of the colli-
sions may be solved explicitly until the end. So, if we assume the potential to
be U(ρ) = |ρ|−1, the differential cross section is

σ(k, θ) =
1

4k4 sin4 θ
2

.

Observe that it is the same as the differential cross section obtained for the
classical Coulomb interaction.
(ii) Hard sphere potential. (Slow particles; [34, Vol. 3 §132, Problem 2].) For
the Hard sphere potential U(r) = limn→∞ Un(r), with

Un(r) =

{
n if r < a

0 if r > a,

the differential cross section, under the conditions ka� 1 and for small values
of k is σ = a2. Observe that this implies that the total cross section is 4π a2,
which is four times the result following classical mechanics.
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(iii) Yukawa potential. (Born approximation; [34, Vol. 3 §126, Problem 3])
Assume that U(r) = α e−r/a

r . Then the Born approximation is

σ = (
αma

~2
)2

4a2

(q2a2 + 1)2
,

with q = 2k sin(θ/2) This approximation is valid whenever αma/~2 � 1 or
α/~v � 1. In the first case it is valid for all the velocities. In the second, only
for velocities sufficiently large.

One may find in [34], Vol. 3, §132, problem 1 and problem 2 the Born ap-
proximations of the differential cross sections corresponding to the spherical well
and uniform potential barrier and in §126 problem 2 to the Gaussian potential.

Collisions of identical particles ([34, Vol. 3 §137].) If the two particles are
identical, then they are indiscernible and

W (p′, p′∗; p, p∗) = W (p′∗, p
′; p, p∗).

The wave function of a system of two particles has to be symmetric or anti-
symmetric with respect to the particles depending whether their total spin is
odd or even. Therefore, the wave function, describing the scattering, obtained
by solving the Schrödinger equation has to be symmetrized or antisymmetrized.
Their asymptotic expansion has then to be written as

ψ ∼ eikz ± e−ikz +
1
r
eikr[f(θ)± f(π − θ)].

In that way, if the total spin of the particles in the collision is even, the differ-
ential section is

dσs = |f(θ) + f(π − θ)|2dΩ.
If the total spin is odd, then the differential section is

dσa = |f(θ)− f(π − θ)|2dΩ.

We have assumed in these two formulas that the total spin of the particles in
the collision has a fixed value. But in general, we deal with collisions in which
the particles do not have their spins in a determined state. In order to find
the differential cross section one has then to take the mean over all the possible
states of the spin where we consider all of them equiprobable. For an half integer
s, the probability for a system of two particles of spin s to have a spin S even is
s/(2s+ 1). The probability to have a spin S odd is (s+ 1)/(2s+ 1). Then the
differential cross section for interacting identical particles of half integer spin s
is

dσ =
s

2s+ 1
dσs +

s+ 1
2s+ 1

dσa.

Similarly, for interacting identical particles of integer spin s:

dσ =
s+ 1
2s+ 1

dσs +
s

2s+ 1
dσa.
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8.6 Relativistic case

The differential cross sections in the relativistic case are calculated in a com-
pletely different way. Let us first mention here that for short range interaction,
one still has sσ(s, θ) ≡ constant (cf. [46]). We conclude with the following
example.

Photon-electron scattering Let P = (p0, p) and P∗ = (p0
∗, p∗) be the 4-

momenta of the photon and electron before collision, and P ′ = (p′0, p′) and
P ′∗ = (p′∗

0
, p′∗) their 4-momenta after the collision. Define the center of mass

coordinates:
s = (P + P∗)2, t = (P − P ′)2.

The differential Compton cross section is given by the Klein-Nishina formula:

σ(s, θ) =
1
2
r20(1− ξ){1 +

1
4

ξ2(1− x)2

1− 1
2ξ(1− x)

+ [
1− (1− 1

2ξ)(1− x)
1− 1

2ξ(1− x)
]2}

where m is the mass of the electron,

x = 1 +
2st

(s−m2)2
, ξ =

((P + P∗)2 −m2c2)
(P + P∗)2

, r0 =
e2

4πmc2
.

See e.g. [29]. If the energy of the photons is low, the non relativistic limit of
the Klein Nishina differential cross section is

ξ ∼ 2|p|mc
m2c2

=
2|p|
mc

and so it gives

σ(s, θ) ∼ 1
2
r20{1 + cos2 θ}, as c→∞.

This is the Thomson formula for the efficient cross section of the diffusion of an
incident electromagnetic wave diffused by a single free charge at rest, (in that
case, θ is the angle formed by the direction of the diffusion and the direction of
the electric field of the incident wave [34, Vol. 2, §78.7].
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