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Abstract. The occurrence of gelation and the existence of mass-conserving solutions to the contin-
uous coagulation-fragmentation equation are investigated under various assumptions on the coag-
ulation and fragmentation rates, thereby completing the already known results. A non-uniqueness
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1 Introduction

Coagulation-fragmentation models describe the dynamics of cluster growth, the sizes of the clusters
evolving with time as the clusters undergo coagulation and fragmentation events. Hereafter, we
restrict ourselves to binary reactions, that is, we only take into account the merging of two clusters
to form a larger one and the break-up of a cluster into two smaller ones, without any loss of mass
during these events. Denoting by f(t, y) the size distribution function at time t, the continuous
coagulation-fragmentation equation reads [6]

∂f

∂t
= Q(f) , (t, y) ∈ (0,+∞)× R+ ,(1.1)

f(0, y) = f in(y), y ∈ R+ ,(1.2)

where the coagulation-fragmentation reaction term Q(f) = Qc(f)−Qf (f) is given by

Qc(f) = Q1(f)−Q2(f) , Qf (f) = Q3(f)−Q4(f) ,

Q1(f)(y) :=
1
2

∫ y

0

a(y′, y − y′) f(y′) f(y − y′) dy′ ,

Q2(f)(y) := f(y)
∫ ∞

0

a(y, y′) f(y′) dy′ ,

Q3(f)(y) :=
1
2

∫ y

0

b(y′, y − y′) dy′ f(y) ,

Q4(f)(y) :=
∫ ∞

0

b(y, y′) f(y + y′) dy′ .
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Here y ∈ R+ denotes the mass (or volume, or size) of the clusters and a and b denote the coagulation
and fragmentation rates, respectively. The rates a and b are assumed to depend only on the sizes
of the clusters involved in the reactions and satisfy

0 ≤ a(y, y′) = a(y′, y) ≤ A (1 + y) (1 + y′) , (y, y′) ∈ R2
+ ,(1.3)

0 ≤ b(y, y′) = b(y′, y) , (y, y′) ∈ R2
+ .(1.4)

Also, throughout the paper, the following assumption is made on the initial datum f in:

f in ∈ L1
1(R+) := L1(R+; (1 + y)dy) and is non-negative a.e.(1.5)

Introducing the (total) number M0(f(t)) and the (total) mass M1(f(t)) of clusters at time t
defined by

M`(t) = M`(f(t)) :=
∫ ∞

0

y` f(t, y) dy , ` ≥ 0 ,(1.6)

it is clear that M0(f) is increased by coagulation events and decreased by fragmentation events,
while M1(f) does not vary during these events. It is however a physically relevant and mathe-
matically challenging question to figure out whether the mass M1(f) of solutions to (1.1) is kept
constant throughout time evolution. In fact, several works in the physical literature have consid-
ered this question for the pure coagulation equation (b ≡ 0) and either formal arguments or explicit
solutions have been provided to show that the conservation of mass holds true for a(y, y′) = (yy′)α

when α ∈ [0, 1/2] and breaks down in finite time when α ∈ (1/2, 1] [23, 17, 16, 10, 8]. In the
latter case, we say that a gelation transition occurs. Still, mathematical proofs of the occurrence
of gelation including larger classes of coagulation rates and initial data, and also fragmentation,
have only been supplied recently, either by probabilistic arguments [11] (for the discrete model) or
by deterministic arguments [9]. In particular, it is shown in [9] that, if

a(y, y′) = yα y′
β + yβ y′

α
, b(y, y′) = (1 + y + y′)γ ,(1.7)

with 0 ≤ α ≤ β ≤ 1 and γ ∈ R, gelation occurs if λ := α + β > 1 and γ < (λ − 3)/2 (notice that
the parameter γ in (1.7) corresponds to the parameter −γ in [9]). On the other hand, existence
of mass-conserving solutions is known when a(y, y′) ≤ A0 (1 + y + y′) under various assumptions
on the fragmentation rates [19, 7, 14] which include the rates given by (1.7) whenever λ ≤ 1 and
γ ∈ R. Furthermore, it is known for the discrete model that a sufficiently strong fragmentation
prevents the occurrence of gelation [4] and a natural guess is that a similar result holds true for
the continuous model (1.1).

One of the main results of this paper is thus to establish the existence of a mass-conserving
solution to the continuous model (1.1) when the fragmentation is sufficiently strong with respect
to the coagulation (see Section 3). In particular, for the model case (1.7) with λ > 1, this is true if
γ > λ−2. Since gelation is known to occur for γ < (λ−3)/2 by [9] and (λ−3)/2 < λ−2, it remains
to check what happens when γ ∈ [(λ − 3)/2, λ − 2). It turns out that a further development of
the proof of [9] allows us to show that gelation also occurs in that case for sufficiently large initial
data (Section 2). More precisely, our main results are the following.

Theorem 1.1 Assume that the reaction rates are given by (1.7) with 0 ≤ α ≤ β ≤ 1 and γ ∈ R.
1. If λ := α+β ≤ 1 or if γ > λ− 2 there exists a weak solution to (1.1), (1.2) which conserves

the mass.
2. If λ > 1 and γ < λ− 2 there exists M∗

1 such that, if M1(f in) > M∗
1 then gelation occurs for

any weak solution to (1.1), (1.2), that is,

Tgel := inf
{
t ≥ 0 , M1(f(t)) < M1(f in)

}
<∞ .

We will actually prove Theorem 1.1 for a larger class of coefficients a and b and refer to
Theorems 2.1 and 3.1 for precise statements.
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Remark 1.2 1. In the case λ ≤ 1, the existence of a mass-conserving solution has been previously
established in [21, 7, 14] under additional assumptions on the fragmentation rates or the initial
data. Let us emphasize that there is no growth condition on γ in contrast to the above mentioned
results. On the other hand, the case γ > λ − 2 is new. A similar result has been proved for the
discrete model [4].

2. This result has been proved in [9] under the condition λ ∈ (1, 2] and γ < (λ− 3)/2. Herein,
we fill the gap γ ∈ [(λ− 3)/2, λ− 2).

Let us also point out that the “critical” exponent γc := λ− 2 has already been noticed in the
physical literature. In [20], the authors consider the coagulation-fragmentation equation under
similar homogeneity hypotheses on the coagulation and fragmentation rates. Assuming that no
gelation occurs, formal arguments lead them to a differential equation for the time evolution of the
cluster mean size s(t) := M2(f(t))/M1. They observed that, for γ > λ − 2, the cluster mean size
s(t) converges to a stable equilibrium as t→∞. Whilst, if γ < λ− 2, this equilibrium is unstable.
Another related analysis has been performed in [18] with coagulation and fragmentation rates a
and kb, a and b being homogeneous functions of degree λ ≤ 1 and γ ≥ −1, respectively, and k being
a positive real number. The asymptotic behaviour of the solutions in the limit y → ∞, t → ∞
and k → 0 is analysed by means of formal scaling arguments, the quantity T := t k1/(γ+2−λ) being
fixed.

Remark 1.3 As a final comment on Theorem 1.1 and [9, Theorem 1.4], we remark that, when λ >
1 and γ < λ−2, gelation is only known to take place if M1(f in) is large enough and one may wonder
whether gelation also occurs when M1(f in) is small. This is actually true in some particular cases
(see [9, Theorem 1.4]) but it is not yet understood in the general case. For homogeneous coagulation
and fragmentation rates of degree λ ∈ (1, 2] and γ < λ − 2, formal scaling arguments which we
perform in the appendix lead us to the following conjectures: for γ < (λ−3)/2, gelation should occur
for all initial data f in 6≡ 0 while there shall be mass-conserving solutions when γ ∈ ((λ−3)/2, λ−2)
for initial data f in with M1(f in) sufficiently small.

The remainder of the paper is devoted to some consequences of strong fragmentation: we first
prove a non-uniqueness result.

Theorem 1.4 Assume that
a(y, y′) ≤ Ca (1 + y + y′)λ ,

Cb(1 + y + y′)γ ≤ b(y, y′) ≤ C ′b(1 + y + y′)γ
′
,

(1.8)

with λ ∈ [0, 2], γ > max{λ − 2,−1} and γ′ ∈ [γ, 2 + γ). There exists a solution f to (1.1), (1.2)
such that

M1(f(t)) > M1(f in) for every t > 0 .

Since Theorem 3.1 guarantees the existence of a mass-conserving solution to (1.1), (1.2) under
the assumptions of Theorem 1.4, we realize that there is no uniqueness of the solution to (1.1),
(1.2) in that case. This non-uniqueness phenomenon was already known for the pure fragmentation
equation [2, 22, 3] and we thus extend it to the coagulation-fragmentation equation. Observe that
the solution constructed in Theorem 1.4 is unphysical as its mass increases.

We finally derive a modified coagulation model, the so-called Flory model [26], from the
coagulation-fragmentation equation with strong fragmentation. An alternative derivation has been
proposed in [1].

Theorem 1.5 Let α ∈ [0, 1]. For ε ∈ (0, 1), we consider

a(y, y′) = yα y′ + y (y′)α and bε(y, y′) = ε (1 + y + y′)1/2 .(1.9)
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Then there exists a family of mass-conserving solutions (fε) to (1.1), (1.2) and a sequence (εk),
εk → 0, such that

fεk
−→ f in C([0, T ];w − L1(R+))

for every T > 0, where f is a solution to the modified coagulation equation

∂f

∂t
= Qmc(f) , (t, y) ∈ (0,+∞)× R+ ,(1.10)

f(0) = f in , y ∈ R+ ,(1.11)

where

Qmc(f)(y) :=
1
2

∫ y

0

a(y′, y − y′) f(y′) f(y − y′) dy′

− y f(y)
∫ ∞

0

y′
α
f(y′) dy′ − yα f(y)M1(f in)

if α ∈ [0, 1), and

Qmc(f)(y) :=
1
2

∫ y

0

a(y′, y − y′) f(y′) f(y − y′) dy′ − 2 y f(y)M1(f in)

if α = 1.

Here and below, if X is a Banach space and T > 0, C([0, T ];w−X) denotes the space of weakly
continuous functions from [0, T ] in X.

Remark 1.6 The choice bε(y, y′) = ε (1+y+y′)1/2 is in some sense arbitrary and could be replaced
by bε(y, y′) = ε (1 + y + y′)γ for γ ∈ (0, 1).

Before proving the above mentioned results, we point out that the key point in the analysis of
(1.1) are the following identities: for every measurable functions f and ψ, we have∫ ∞

0

Qc(f)ψ dy =
1
2

∫ ∞

0

∫ ∞

0

a(y, y′) f(y) f(y′) ψ̃(y, y′) dydy′ ,(1.12)

ψ̃(y, y′) = ψ(y + y′)− ψ(y)− ψ(y′) ,(1.13)

and ∫ ∞

0

Qf (f)ψ dy =
1
2

∫ ∞

0

∫ ∞

0

b(y, y′) f(y + y′) ψ̃(y, y′) dydy′(1.14)

= −1
2

∫ ∞

0

f(z) kψ(z) dz ,

with
kψ(z) =

∫ z

0

b(y, z − y) (ψ(y) + ψ(z − y)− ψ(z)) dy .(1.15)

As an immediate consequence, when we choose ψ(y) = y in (1.12)-(1.14), so that ψ̃ vanishes,
we get formally the conservation of mass

d

dt

∫ ∞

0

y f(t, y) dy = 0 .(1.16)
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4



2 On the occurrence of gelation

In this section, we prove the second assertion of Theorem 1.1. We actually consider a larger class
of rates a and b and prove the following result.

Theorem 2.1 Assume that

a(y, y′) ≥ yα (y′)β + yβ (y′)α and b(y, y′) ≤ B (1 + y + y′)γ ,(2.1)

where
0 ≤ α ≤ β ≤ 1 , λ := α+ β > 1 and (λ− 3)/2 ≤ γ < λ− 2 .(2.2)

Consider f in ∈ L1
1(R+) and denote by f a weak solution to (1.1), (1.2). There exists M∗

1 such
that, if M1(f in) > M∗

1 , then gelation occurs.

Notice that (2.2) implies that −1 < γ ≤ 0. The cornerstone of the proof of Theorem 2.1 is the
following proposition.

Proposition 2.2 Let Φ : R+ → R+ be a non-decreasing function satisfying Φ(0) = 0 and f be a
weak solution to (1.1), (1.2). Then, for every t1 ≥ t0 ≥ 0,∫ t1

t0

(∫ ∞

0

f(t, y) yλ/2 Φ(y) dy
)2

dt

≤ CΦ,1+γ−λ/2 (4M1(t0)CΦ,(λ/2)−γ−2 +B2 (t1 − t0)CΦ,1+γ−λ/2)(2.3)

where
CΦ,k :=

∫ ∞

0

Φ′(A)Ak dA.(2.4)

Remark 2.3 Notice that (2.3) only gives relevant information on f when both C1+γ−λ/2 and
C(λ/2)−γ−2 are finite.

Proof of Proposition 2.2. We choose ψ(y) := ψA(y) = y ∧ A in (1.12) and (1.14) and notice that
ψ̃A and kψA

defined by (1.13) and (1.15) satisfy

−ψ̃A(y, y′) ≥ A1{y≥A, y′≥A} ,

kψA
(z) ≤ A B (1 + z)γ (z −A)+ ,

by (2.1). Using that a(y, y′) ≥ (yy′)λ/2 by (2.1), we thus obtain

1
2

∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dt ≤ M1(t0)
A

+
B

2

∫ t1

t0

∫ ∞

A

f(t, z) z (1 + z)γ dzdt.

Since 1 + γ − (λ/2) < 0 by (2.2), let ν be such that

0 < ν and 1 + ν + γ − λ/2 ≤ 0 .

Thanks to the Young inequality, we get∫ ∞

A

f(t, z) zλ/2
{
z1+ν−λ/2 (1 + z)γ

zν

}
dz ≤ 1

Aν

∫ ∞

A

f(t, z) zλ/2 dz

≤ 1
2B

(∫ ∞

A

f(t, z) zλ/2 dz
)2

+
B

2A2 ν
.
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Gathering the preceding two estimates, we deduce that, for A > 0,∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

dt ≤
{

4
A
M1(t0) +

B2

A2 ν
(t1 − t0)

}
.

Using the Fubini theorem and the Cauchy-Schwarz inequality, we obtain, for each µ ≥ 0,∫ t1

t0

(∫ ∞

0

f(t, y) yλ/2 Φ(y) dy
)2

ds ≤

≤
∫ t1

t0

(∫ ∞

0

Φ′(A)
∫ ∞

A

f(t, y) yλ/2 dy dA
)2

ds

≤
∫ t1

t0

(∫ ∞

0

Φ′(A)
Aµ

dA

) (∫ ∞

0

Φ′(A)Aµ
(∫ ∞

A

f(t, y) yλ/2 dy
)2

dA

)
ds

≤ C−µ

∫ ∞

0

Φ′(A)Aµ
∫ t1

t0

(∫ ∞

A

f(t, y) yλ/2 dy
)2

ds dA

≤ C−µ

∫ ∞

0

[
4M1(t0)Aµ−1 +B2 (t1 − t0)Aµ−2 ν

]
Φ′(A) dA .

The inequality (2.3) then follows with the choice µ = ν := (λ/2)− γ − 1 > 0. ut

Corollary 2.4 Assume further that λ < 2. Then there exists a constant C1 = C1(λ, γ) such that∫ t1

t0

(∫ ∞

R

f(t, y) y dy
)2

dt ≤

≤ C1

(
M1(t0)R1−λ +B2 (t1 − t0)R2 (2+γ−λ)

)
.(2.5)

Proof. We define Φ = Φr by

Φr(y) :=
(
y1−λ/2 − r1−λ/2

)+ ≥ (21−λ/2 − 1
)

1[2 r,+∞)(y) .

We have

CΦr,k =
1− λ/2

(λ/2)− k − 1
r1−λ/2+k ,

for k such that k − λ/2 < −1. The conditions CΦr,1+γ−λ/2 < ∞ and CΦr,(λ/2)−γ−2 < ∞ are
fulfilled since −1 < γ < λ− 2 by (2.2). We then obtain (2.5) by taking r = R/2. ut

Corollary 2.5 There exists a constant C2 = C2(λ, γ) such that∫ T

0

M2
1 (t) dt ≤ C2 (M1(0) +M0(0) +B2 T ) .(2.6)

Proof. Since a(y, y′) ≥ (y y′)λ/2 by (2.1), it follows from (1.1), (1.12) and (1.14) with ψ = 1 that

1
2

∫ T

0

M2
λ/2(t) dt ≤M0(0) +

B

2

∫ T

0

∫ ∞

0

f(t, z) z (1 + z)γ dzdt.

Since γ ≤ 0, we have 1 + γ ≤ 1 + γ/2 ≤ λ/2. Therefore,

1
2

∫ T

0

M2
λ/2(t) dt ≤M0(0) +

B

2

∫ T

0

Mλ/2(t) dt ,
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and the Young inequality yields∫ T

0

M2
λ/2(t) dt ≤ 4(M0(0) +B2 T ) .

If λ = 2, this is exactly the claim (2.6). If λ < 2, we combine the above inequality and (2.5) with
R = 1 to obtain (2.6). ut
Proof of Theorem 2.1. We argue by contradiction and assume that M1(t) = M1(0) for t ≥ 0. By
(2.6) we deduce that

M1(0)2 T ≤ C2 (M1(0) +M0(0) +B2 T ) ,

whence a contradiction for T large enough if M1(0) > C
1/2
2 B. ut

Proposition 2.2 actually enables us to obtain more precise information on the behaviour of
f(t, y) for large values of y.

Corollary 2.6 (i) For any δ > 1, there exists a constant C = C(λ, γ, δ) such that∫ t1

t0

(∫ ∞

e

f(t, y)
yλ−γ−1

(ln(y))δ
dy

)2

dt ≤ C (M1(t0) +B2 (t1 − t0)) .(2.7)

Notice that 1 < λ− γ − 1 < 2.
(ii) For any τ > 2γ − (λ − 3) > 0, there exists a constant C = C(λ, γ, τ) such that, for each

R > 0, ∫ t1

t0

(
1
Rτ

∫ R

0

f(t, y) yλ−γ−1+τ dy

)2

dt ≤ C

(
M1(t0)
R3−λ+2 γ

+B2 (t1 − t0)
)
.(2.8)

Proof. We first prove (i). We define Φ(y) =
(
y(λ/2)−γ−1/(ln(y))δ − r(λ/2)−γ−1/(ln(r))δ

)+ with
δ > 1 and r = e/2. We easily verify that Φ is increasing and that the associated constants
CΦ,(λ/2)−γ−2 and CΦ,1+γ−(λ/2) are finite. The estimate (2.7) follows from (2.3) for this choice of
Φ and Corollary 2.4 with R = e.

We next proceed as in [9, Theorem 2.7] with Φ(y) := (y∧R)` to prove (ii), with ` = λ/2−γ−1+τ .
ut

Remark 2.7 Observe that, in (2.7) and (2.8), we have the weight yλ−γ−1 instead of the weight
y(λ+1)/2 obtained in [9, Theorem 2.7] for the case γ < (λ − 3)/2. On the other hand, we do not
know whether a bound from below similar to [9, Corollary 2.9] is available here.

3 Existence of mass-conserving solutions

In this section, we prove the first assertion of Theorem 1.1, that is, the existence of a mass-
conserving solution to (1.1), (1.2) when a and b are given by (1.7) with either α + β ≤ 1 or
γ > λ−2. Such a result is actually valid for a larger class of coefficients when the coagulation term
Qc(f) is either “weak” or suitably dominated by the fragmentation term Qf (f). More precisely,
we assume that:

The coagulation coefficient a : R2
+ → R is a measurable function and there are

some real numbers A0 > 0 and 0 ≤ α ≤ β ≤ 1 such that

0 ≤ a(y, y′) = a(y′, y) ≤ A0

{
(1 + y)α (1 + y′)β + (1 + y)β (1 + y′)α

}
for (y, y′) ∈ R2

+.

(3.1)
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The fragmentation coefficient b : R2
+ → R is a measurable function such that

(i) for each R ∈ R+ there is bR > 0 such that

0 ≤ b(y, y′) = b(y′, y) ≤ bR , (y, y′) ∈ (0, R)2 ,

(ii) there are R0 > 0, S0 ≥ R0 and C0 > 0 such that∫ R0

0

b(y′, y − y′) dy′ ≤ C0

∫ R0

0

y′ b(y′, y − y′) dy′ for y ≥ S0 .

(3.2)

Let us point out here that, in contrast to the previous works [7, 14, 21], no a priori growth condition
on b is imposed by the assumption (3.2) (ii). Indeed, examples of fragmentation coefficients fulfilling
(3.2) are

(y + y′)κ , (yy′)κ , yκ + (y′)κ ,

where κ is an arbitrary non-negative real number.
Introducing λ := α+ β ∈ [0, 2], we notice that

a(y, y′) ≤ A0

{
(1 + y)λ + (1 + y′)λ

}
, (y, y′) ∈ R2

+ ,(3.3)

by the Young inequality. As expected from the analysis of the discrete coagulation-fragmentation
equations [2] and from the previous studies of (1.1) [21, 7], the coagulation term is sufficiently weak
if λ ≤ 1. Thus, as we shall see below, there is at least a mass-conserving solution to (1.1), (1.2)
without any additional assumption on b. On the other hand, if λ ∈ (1, 2], gelation occurs in the
absence of fragmentation [9]. For the discrete coagulation-fragmentation equations, it has been
noticed in [4] that a sufficiently strong fragmentation term prevents the occurrence of the gelation
phenomenon. When λ ∈ (1, 2], we will thus impose an additional condition on b, namely,{there are B0 > 0 and γ > λ− 2 such that

b(y − y′, y′) ≥ B(y) := B0 (1 + y)γ for y ≥ 1 and y′ ∈ (0, y) .
(3.4)

The main result of this section then reads:

Theorem 3.1 Assume that the kinetic coefficients a and b satisfy (3.1), (3.2) and that

(i) either λ ∈ [0, 1],

(ii) or λ ∈ (1, 2] and b fulfils (3.4).

For any initial datum f in satisfying (1.5), there is at least one density-conserving weak solution f
to (1.1), (1.2), that is,

0 ≤ f ∈ C([0,+∞);L1(R+)) with f(0) = f in ,

Qc(f) , Qf (f) ∈ L1
loc([0,+∞)× R+) ,∫ ∞

0

y f(t, y) dy =
∫ ∞

0

y f in(y) dy , t ≥ 0 ,(3.5)

and (1.1) holds in the mild sense : for 0 ≤ t0 < t1 there holds

f(t1, .)− f(t0, .) =
∫ t1

t0

Q(f(t, .)) dt a.e. in R+.(3.6)

Observe that the coefficients a and b given by (1.7) enjoy the properties (3.1) and (3.2). The
first assertion of Theorem 1.1 then readily follows from Theorem 3.1.
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The proof of Theorem 3.1 relies on a compactness method and requires to derive several es-
timates on the solutions f to approximations of (1.1), (1.2). The starting point is to obtain an
L1(0, T )-bound on Mλ1 , the moment of order λ1 of f , where λ1 = max {1, λ}. While such a bound
is obvious for λ ∈ [0, 1], it relies on the assumption (3.4) for λ ∈ (1, 2]. Thanks to the bound
on Mλ1 , we may control the behaviour of yf(t, y) and the fragmentation term for large values
of y. This in turn allows us to obtain a uniform bound on the L1-norm of f on bounded time
intervals. These estimates then enable us to proceed as in [14] to conclude that f lies in a relatively
sequentially weakly compact subset of L1((0, T )×R+, (1 + y)dydt) which does not depend on the
approximation. Theorem 3.1 then follows by a compactness argument.

3.1 Estimates for compactly supported solutions

In this section, we assume that a and b are coagulation and fragmentation coefficients satisfying
the assumptions of Theorem 3.1 together with the additional requirement that

a(y, y′) = b(y, y′) = 0 if y + y′ > %

for some % > S0. We next assume that f in satisfies (1.5) and has compact support with Supp f in ⊂
[0, %]. Thanks to these assumptions, we may argue as in [21, Section 3] (see also [19, 7]) and prove
that there is a unique solution f ∈ C([0,+∞);L1(R+)) to (1.1), (1.2) such that

Supp f(t, .) ⊂ [0, %] and
∫ ∞

0

y f(t, y) dy =
∫ ∞

0

y f in(y) dy := M1(3.7)

for each t ≥ 0. We finally assume an additional integrability property on f in, namely that there is
a non-negative, convex and non-decreasing function Φ ∈ C1([0,+∞)) ∩W 2,∞

loc ([0,+∞)) such that
Φ(0) = 0 , Φ′(0) ≥ 0 and Φ′ is concave ,

lim
r→+∞

Φ′(r) = lim
r→+∞

Φ(r)
r

= +∞ ,

(3.8)

and
LΦ :=

∫ ∞

0

Φ(y) f in(y) dy <∞ .(3.9)

We now derive several properties enjoyed by f which do not depend on %. In the following,
we denote by C, (Ci)i≥1, positive constants which depend only on A0, α, β, R0, S0, C0, ‖f in‖L1 ,
M1, Φ, LΦ and also on B0 and γ when (3.4) holds true. The dependence of C upon additional
parameters will be indicated explicitly.

Following [4], we prove that, when λ ∈ (1, 2], (3.4) entails a control on the second moment M2

of f for positive times.

Lemma 3.2 When (3.4) holds true with γ > −1, we have

M2(t) ≤ C
(
1 + t−1/(1+γ)

)
, t ∈ R+ .(3.10)

Proof. We take ψ(y) = y2 in (1.12) and use (3.3) and (3.7) to obtain∫ ∞

0

y2 Qc(f)(t, y) dy ≤ 2 A0

∫ ∞

0

∫ ∞

0

(1 + y)λ yy′ f(t, y) f(t, y′) dydy′

≤ C (1 +M1+λ(t)) .(3.11)
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On the other hand, it follows from (3.4), (3.7) and (1.14) with ψ(y) = y2 that∫ ∞

0

y2 Qf (f)(t, y) dy ≥ C

∫ ∞

1

y3 (1 + y)γ f(t, y) dy

≥ C

∫ ∞

0

y3+γ f(t, y) dy − C

∫ 1

0

y3+γ f(t, y) dy

≥ C1 (M3+γ(t)− 1) .(3.12)

We then infer from (1.1), (3.11) and (3.12) that

dM2

dt
+ C1 M3+γ ≤ C (1 +M1+λ) .

Now, since γ > λ− 2, the Hölder inequality and (3.7) yield

M2+γ
1+λ ≤M2+γ−λ

1 Mλ
3+γ ≤ C Mλ

3+γ .

The previous differential inequality then becomes

dM2

dt
+ C1 M3+γ ≤ C

(
1 +M

λ/(2+γ)
3+γ

)
.

We use once more the fact that λ < 2 + γ together with the Young inequality to conclude that

dM2

dt
+ C2 M3+γ ≤ C .

Finally, since γ > −1, we have 2 ∈ (1, 3 + γ) and it follows from the Hölder inequality and (3.7)
that

M2+γ
2 ≤M1+γ

1 M3+γ ≤ C M3+γ .

Inserting this estimate in the previous differential inequality, we end up with

dM2

dt
+ C3 M

2+γ
2 ≤ C ,

from which (3.10) readily follows (since 2 + γ > 1). ut
The estimates (3.4) and (3.10) clearly allow us to control the behaviour of f and Qc(f) for large

values of y and positive times. Some further computations are needed to control the fragmentation
term, and the short time behaviour as well. First, as a consequence of Lemma 3.2, we obtain the
following integrability property of Mλ.

Lemma 3.3 Let T ∈ R+. When λ ∈ (1, 2] and (3.4) holds true, there is C(T ) such that∫ T

0

Mλ(t) dt ≤ C(T ) .(3.13)

Proof. Since λ ∈ (1, 2], the assumption (3.4) implies that γ > −1 and we infer from (3.7), (3.10)
and the Hölder inequality that

Mλ(t) ≤M1(t)2−λ M2(t)λ−1 ≤ C
(
1 + t−(λ−1)/(1+γ)

)
,

from which (3.13) readily follows as λ− 1 < 1 + γ. ut
We next develop further a device already used in [14] to estimate the behaviour of f and

Qf (f) for large values of y. In [14], an additional growth condition was required on b, namely,
b(y, y′) ≤ C (1+y) (1+y′) and we show here that this condition can be replaced by (3.2) (ii) which
is much weaker. We actually prove that the integrability property (3.8) enjoyed by f in propagates
through time evolution.
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Proposition 3.4 For T ∈ R+, we have∫ ∞

0

Φ(y) f(t, y) dy ≤ C(T ) , t ∈ [0, T ] ,(3.14)

∫ T

0

∫ ∞

0

{∫ y

0

b(y′, y − y′) Φ̃(y′, y − y′) dy′
}
f(s, y) dyds ≤ C(T ) ,(3.15)

where Φ̃ is given by (1.13).

Proof. Owing to the properties of Φ, we have

0 ≤ Φ̃(y, y′) ≤ 2
y′ Φ(y) + y Φ(y′)

y + y′
, (y, y′) ∈ R2

+ ,(3.16)

where the second inequality follows from [13, Lemma A.2]. A first consequence of (1.14) and (3.16)
is that ∫ ∞

0

Φ(y) Qf (f)(y) dy ≥ 0 .(3.17)

We next derive an upper bound for the coagulation term: introducing

Ψ(y, y′) := Φ̃(y, y′) (1 + y)α (1 + y′)β , (y, y′) ∈ R2
+ ,

we have
Ψ(y, y′) ≤ 2λ ‖Φ′′‖L∞(0,2) yy

′ ≤ C (yy′) ,

for (y, y′) ∈ (0, 1)2, while (3.16) entails that

Ψ(y, y′) ≤ 2λ Φ̃(y, y′) (y′)β ≤ C {y′ Φ(y) + y Φ(y′)}

for 0 ≤ y ≤ 1 ≤ y′ and 0 ≤ y′ ≤ 1 ≤ y since 0 ≤ α ≤ β ≤ 1. Finally, if (y, y′) ∈ (1,+∞)2, we infer
from (3.16) that

Ψ(y, y′) ≤ 2λ Φ̃(y, y′) yα (y′)β ≤

 C {y′ Φ(y) + y Φ(y′)} if λ ∈ [0, 1] ,

C
{
(y′)λ Φ(y) + yλ Φ(y′)

}
if λ ∈ (1, 2] .

Inserting the estimates for Ψ in (1.12) with ψ = Φ and using (3.7) leads to∫ ∞

0

Φ(y) Qc(f)(t, y) dy ≤ C (1 +Mλ1(t))
(

1 +
∫ ∞

0

Φ(y) f(t, y) dy
)

(3.18)

with λ1 := max {1, λ}. Consequently, we deduce from (1.1) and (3.18) that

d

dt

∫ ∞

0

Φ(y) f(t, y) dy +
∫ ∞

0

Φ(y) Qf (f)(y) dy

≤ C (1 +Mλ1(t))
(

1 +
∫ ∞

0

Φ(y) f(t, y) dy
)
.

Owing to (3.17) and since Mλ1 ∈ L1(0, T ) by either (3.7) (if λ ∈ [0, 1]) or Lemma 3.3 (if λ ∈ (1, 2]),
the assertions (3.14) and (3.15) follow from the previous differential inequality by the Gronwall
lemma. ut

Since no growth condition is required on b, the estimate (3.15) provides a control on Q4(f).
More precisely, we have the following result:

Corollary 3.5 For each R ≥ R0 and S ≥ S0 + 2R, we have∫ T

0

∫ ∞

S

∫ R

0

b(y′, y − y′) dy′ f(s, y) dyds ≤ ωT,R(S) −→
S→+∞

0 .(3.19)
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Proof. For 0 ≤ R ≤ S, we put

I(R,S, s) :=
∫ ∞

S

∫ R

0

b(y′, y − y′) dy′ f(s, y) dy .(3.20)

Consider now R > R0 and S ≥ S0 + 2R. By (3.2) we have∫ R

0

b(y′, y − y′) dy′ ≤ C0

∫ R0

0

y′ b(y′, y − y′) dy′ +
1
R0

∫ R

R0

y′ b(y′, y − y′) dy′ ,

whence

I(R,S, s) ≤ C

∫ ∞

S

∫ R

0

y′ b(y′, y − y′) dy′ f(s, y) dy .

Since Φ is convex with Φ(0) = 0, we have

Φ̃(y − y′, y′) ≥ y′ (Φ′(y − y′)− Φ′(y′)) ≥ y′ (Φ′(S −R)− Φ′(R))

for (y, y′) ∈ (S,+∞)× (0, R). Therefore, I(R,S, s) is bounded from above by

C

Φ′(S −R)− Φ′(R)

∫ ∞

S

∫ R

0

b(y′, y − y′) Φ̃(y′, y − y′) dy′ f(s, y) dy ,

whence (3.19) by (3.8) and (3.15). ut
We next derive an estimate on f in L1(R+). Observe that such a bound is not obvious as

no growth condition is assumed on b. Indeed, from a physical point of view, the L1-norm of f
represents the number of clusters which is increased by fragmentation reactions and could thus
grow without bound. However, the condition (3.2) (ii) allows us to exclude such a behaviour.

Lemma 3.6 For T ∈ R+, we have

‖f(t)‖L1 ≤ C(T ) , t ∈ [0, T ] .(3.21)

Proof. We take ψ = 1[0,R0] in (1.12) and (1.14). Noticing that

− (ψ(y) + ψ(y′)) ≤ ψ̃(y, y′) ≤ 0 ,

we have ∫ R0

0

Qc(f)(t, y) dy ≤ 0 ,(3.22)

and we infer from (3.2) and (3.7) that

−
∫ R0

0

Qf (f)(t, y) dy ≤
∫ 3S0

0

f(t, y)
∫ y

0

b(y′, y − y′) dy′dy

+
∫ ∞

3S0

f(t, y)
∫ R0

0

b(y′, y − y′) dy′dy

≤ b3S0 M1 + I(R0, 3S0, t) .

It then follows from (3.19) that

−
∫ T

0

∫ R0

0

Qf (f)(t, y) dydt ≤ C(T ) + ωT,R0(3S0) ≤ C(T ) .(3.23)

Combining (1.1), (3.22) and (3.23) yields∫ R0

0

f(t, y) dy ≤ ‖f in‖L1 + C(T ) , t ∈ [0, T ] .
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The assertion (3.21) is now a straightforward consequence of (3.7) and the above estimate. ut
Owing to Proposition 3.4 and Lemma 3.6, it remains to control the behaviour of f(t) on subsets

of R+ with small measure in order to establish that f(t) lies in a relatively weakly sequentially
compact subset of L1

1(R+) for each t ∈ [0, T ].

Lemma 3.7 For T ∈ R+, R > R0, δ ∈ (0, 1) and t ∈ [0, T ], we put

Eδ,R(t) := sup
{∫

E

f(t, y) dy , E ⊂ (0, R) , |E| ≤ δ

}
.

Given ε ∈ (0, 1), there is C4(T,R, ε) such that, if δ ≤ C4(T,R, ε),

sup
t∈[0,T ]

Eδ,R(t) ≤ C5(T,R)
(
Eδ,R(0) + ε

)
.

Proof. Let E be a measurable subset of (0, R) with |E| ≤ δ, t ∈ (0, T ] and s ∈ (0, T ). We first
infer from (3.3), (1.12) with ψ = 1E and (3.21) that∫

E

Qc(f)(s, y) dy ≤ C (1 +R)λ
∫ R

0

∫ R−y

0

1E(y + y′) f(s, y) f(s, y′) dy′dy

≤ C(R)
∫ R

0

f(s, y)
∫ R

0

1E−y(y′) f(s, y′) dy′dy

≤ C(R, T ) Eδ,R(s) ,(3.24)

since the Lebesgue measure on R+ is translation-invariant. It next follows from (3.2), (1.14) with
ψ = 1E and (3.21) that, for every S ≥ S0 + 2R,

−
∫
E

Qf (f)(s, y) dy ≤ bS |E|
∫ S

0

f(s, y) dy

+
∫ ∞

S

f(s, y)
∫ R

0

b(y′, y − y′) dy′dy

≤ C(T, S) δ + I(R,S, s) ,(3.25)

where I(R,S, s) is defined by (3.20). Combining (1.1), (3.19), (3.24) and (3.25), we obtain∫
E

f(t, y) dy ≤
∫
E

f in(y) dy + C(R, T )
∫ T

0

Eδ,R(s) ds

+ C(T, S) δ + ωT,R(S)

for any mesurable subset of (0, R) with |E| ≤ δ. Consequently,

Eδ,R(t) ≤ Eδ,R(0) + C(R, T )
∫ T

0

Eδ,R(s) ds

+ C(T, S) δ + ωT,R(S) ,

whence, by the Gronwall lemma,

Eδ,R(t) ≤ C(T,R)
(
Eδ,R(0) + C(T, S) δ + ωT,R(S)

)
, t ∈ [0, T ] .

Lemma 3.7 then readily follows from (3.19) and the above inequality, choosing first S > S0 + 2R
large enough and then δ small enough. ut

To summarize the outcome of this section, we realize that the reaction terms Qc(f) and Qf (f)
are bounded in L1((0, T ) × (0, R)) for any R ≥ 1, thanks to the bounds (3.7), (3.19) and (3.21).
Next, the estimates (3.14), (3.19) and Lemma 3.7 ensure the sequential weak compactness of f in
L1((0, T )× R+, (1 + y)dtdy) and of Qc(f) and Qf (f) in L1((0, T )× (0, R)) for any R ≥ 1.
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3.2 Proof of Theorem 3.1

We are now ready to complete the proof of the existence of a mass-conserving solution to (1.1),
(1.2). Let a and b be coagulation and fragmentation coefficients satisfying the assumptions of
Theorem 3.1.

We introduce the following sequence of approximating equations: given an integer n ≥ S0, we
put

an(y, y′) := a(y, y′) 1[0,n](y + y′) , bn(y, y′) := b(y, y′) 1[0,n](y + y′) ,

for (y, y′) ∈ R2
+ and f inn (y) := f in(y) 1[0,n](y), y ∈ R+. Then, an, bn and f inn clearly fulfil the

requirements of Subsection 3.1 (with % = n) and we denote by fn ∈ C([0,+∞);L1(R+)) the unique
solution to (1.1), (1.2) with kinetic coefficients an, bn and initial data f inn such that

Supp fn(t, .) ⊂ [0, n] and
∫ ∞

0

y fn(t, y) dy =
∫ ∞

0

y f inn (y) dy(3.26)

for each t ≥ 0. We next recall that (1.5) and a refined version of the de la Vallée-Poussin theorem
[5, 15] ensure that there is a non-negative, convex and non-decreasing function Φ ∈ C1([0,+∞)) ∩
W 2,∞

loc ([0,+∞)) such that (3.8) and (3.9) hold true for f in. Since Φ is non-decreasing and f inn ≤ f in,
this last property is also enjoyed by f inn , that is,∫ ∞

0

Φ(y) f inn (y) dy ≤ LΦ(3.27)

for n ≥ S0. We finally put

Eδ,Rn (t) := sup
{∫

E

fn(t, y) dy , E ⊂ (0, R) , |E| ≤ δ

}
for T ∈ R+, n ≥ S0, R > R0, δ ∈ (0, 1) and t ∈ [0, T ]. Since f inn ≤ f in ∈ L1(R+), we clearly have

lim
δ→0

sup
n≥S0

Eδ,Rn (0) = 0(3.28)

for each R > R0.
Since the data an, bn and f inn fulfil the requirements of Subsection 3.1 uniformly with respect

to n ≥ S0, the analysis performed in Subsection 3.1 allows us to establish the weak compactness
of the sequence (fn(t)) in L1

1(R+) for each t ∈ [0, T ].

Proposition 3.8 Under the assumptions of Theorem 3.1, for each T ∈ R+, there is a weakly
compact subset KT of L1

1(R+) such that fn(t) ∈ KT for every t ∈ [0, T ] and n ≥ S0.

Proof. Let t ∈ [0, T ]. On the one hand, we infer from Lemma 3.6, Lemma 3.7, (3.26) and (3.28)
that (fn(t))n≥S0 is bounded in L1

1(R+) and satisfies

lim
δ→0

sup
n≥S0

Eδ,Rn (t) = 0

for each R > R0. On the other hand, it follows from (3.8), (3.14) and (3.27) that

lim
S→+∞

sup
n≥S0

∫ ∞

S

y fn(t, y) dy = 0 .

Proposition 3.8 is then a straightforward consequence of the Dunford-Pettis theorem, observing
that the above bounds and limits are uniform with respect to t ∈ [0, T ]. ut

We next argue as in the proof of Proposition 3.8 along the lines of [12, Lemma 2.7] to check
the time equicontinuity of the family {fn(t) , t ∈ [0, T ]} in L1(R+).
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Lemma 3.9 For t ∈ [0, T ), there holds

lim
h→0

sup
n≥S0

∫ ∞

0

|fn(t+ h, y)− fn(t, y)| dy = 0 .(3.29)

We are now ready to complete the proof of the existence of a mass-conserving solution to (1.1),
(1.2).
Proof of Theorem 3.1. Owing to Proposition 3.8 and Lemma 3.9, we may apply a variant of the
Arzelà-Ascoli theorem (see, e.g., [24, Theorem 1.3.2]) to conclude that there are a subsequence of
(fn) (not relabeled) and a function

f ∈ C([0,+∞);w − L1
1(R+))

such that
fn −→ f in C([0, T ];w − L1

1(R+))(3.30)

for every T ∈ R+. Clearly, (3.26) and (3.30) ensure that f is non-negative with f(0) = f in and∫ ∞

0

y f(t, y) dy =
∫ ∞

0

y f in(y) dy , t ≥ 0 .

Thanks to (3.1) and (3.30), we have Qc(f) ∈ L1
loc((0,+∞) × R+) and it is by now a standard

matter to show that (3.30) implies that

Qc(fn) ⇀ Qc(f) weakly in L1((0, T )× (0, R))

for every T ∈ R+ and R ∈ R+ (see, e.g., [21, 14]). Similarly,

Q3(fn) ⇀ Q3(f) weakly in L1((0, T )× (0, R)) .

It remains to pass to the limit in the fragmentation term Q4. For that purpose, we first notice
that (3.2), (3.19) and (3.30) ensure that

(t, y, y′) 7→ 1[0,y](y′) b(y′, y − y′) f(t, y) ∈ L1((0, T )× R+ × (0, R))(3.31)

for any T ∈ R+ and R ∈ R+. Indeed, by (3.8) and (3.19), there is S1 > max{S0, R} such that∫ T

0

∫ ∞

S1

∫ R

0

bn(y′, y − y′) fn(t, y) dy′dyds ≤ 1 .

It then follows from the above inequality, (3.2) and Lemma 3.6 that, for S > S1 and n > S,∫ T

0

∫ S

0

∫ R

0

b(y′, y − y′) fn(t, y) dy′dydt

=
∫ T

0

∫ S

0

∫ R

0

bn(y′, y − y′) fn(t, y) dy′dydt

≤ R bS1

∫ T

0

∫ S1

0

fn(t, y) dydt+ 1 ≤ C(T,R, S1) .

Since the right-hand side of the above estimate does not depend on n neither on S, we may first
let n→ +∞ by (3.30) and then S → +∞ to conclude that (3.31) holds true. Consequently, by the
Fubini theorem, Q4(f) ∈ L1((0, T ) × (0, R)) for any R ≥ 1. It is then not difficult to check that
(3.2), (3.19), (3.30) and (3.31) imply that

Q4(fn) ⇀ Q4(f) weakly in L1((0, T )× (0, R))

for every T ∈ R+ and R ∈ R+. Consequently, f satisfies (3.6) and we may argue as in [14,
Appendix] to conclude that f ∈ C([0,+∞);L1(R+)), which completes the proof of Theorem 3.1. ut

Remark 3.10 Observe that the solution f to (1.1), (1.2) constructed in Theorem 3.1 satisfies
(3.10) and Mk ∈ L1(0, T ) for k ∈ [0, 2 + γ). Indeed, this follows at once from Lemma 3.2,
Lemma 3.3 and (3.30).
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4 Non-uniqueness

This section is devoted to the proof of Theorem 1.4 which is adapted from [25] where a similar result
is proved for the Boltzmann equation. Let (ϕn)n≥1 be a sequence of mollifiers with Supp ϕn ⊂
[−1/n, 1/n] and put

f inn (y) := f in(y) +
ϕn(y − n)

y

for y ∈ R+ and n ≥ 1. Obviously,

f inn ⇀ f in in L1(R+) ,(4.1)
M1(f inn ) = 1 +M1(f in) ,(4.2)

so that (f inn ) does not converge weakly to f in in L1(R+, ydy). The assumption (1.8) on a and b
allows us to apply Theorem 3.1 to deduce that, for each n ≥ 1, there is a weak solution fn to (1.1)
with initial datum f inn which satisfies M1,n(t) = 1 +M1(f in),

M2,n(t) ≤ C
(
1 + t−1/(1+γ)

)
,(4.3) ∫ T

0

M`,n(s) ds ≤ C(`, T )(4.4)

for each T > 0 and ` ∈ [0, 2 + γ), where M`,n(t) := M`(fn(t)).
We now prove that{

(fn) is relatively compact in C([0, T ];w − L1(R+)) and C((0, T ];w −
L1(R+, ydy)).

(4.5)

Since (f inn ) is weakly compact in L1(R+) by (4.1), a refined version of the de la Vallée-Poussin theo-
rem [15] ensures that there is a non-negative, convex and non-decreasing function Φ ∈ C1([0,+∞))∩
W 2,∞

loc ([0,+∞)) satisfying (3.8) and

sup
n≥1

∫ ∞

0

Φ(f inn (y)) dy ≤ C .(4.6)

Lemma 4.1 For each T > 0 and R ≥ 1, there is C(T,R) such that, for t ∈ [0, T ],

sup
n≥1

∫ R

0

(fn(t, y) + Φ(fn(t, y))) ≤ C(T,R) .(4.7)

Taking Lemma 4.1 for granted, we next argue as in Lemma 3.9 with the help of (4.4) to prove
the time equicontinuity (3.29) of the sequence {fn(t) , t ∈ [0, T ]}. We then proceed as in the proof
of Theorem 3.1 to deduce the claim (4.5) from the above bounds and the Dunford-Pettis theorem.
Observe that the weak compactness in L1(R+, ydy) only holds for positive times because of the
blow-up at t = 0 of the estimate (4.3) on M2,n. Arguing as in [14] with the help of (4.4) then
ensure the existence of a non-negative function f such that

fn −→ f in C([0, T ];w − L1(R+)) and C((0, T ];w − L1(R+, ydy)) ,

and f is a weak solution to (1.1) with f(0) = f in. Moreover, since M1,n(t) = 1 + M1(f in) for
t > 0, the second convergence result warrants that

M1(f(t)) = 1 +M1(f in) > M1(f in)

for each t > 0. ut
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Proof of Lemma 4.1. We proceed along the lines of [14] with the help of (4.4). We take ψ = 1[0,1]

in (1.12) and (1.14). Since 1̃[0,1] ≤ 0, we use (1.8) and the mass conservation to obtain

d

dt

∫ 1

0

fn dy ≤ C

∫ 1

0

∫ ∞

y

(1 + y′)γ
′
fn(y′) dy′dy

≤ C (M0,n +Mγ′,n)

≤ C

(
1 +Mγ′,n +

∫ 1

0

fn dy

)
.

Since γ′ < 2 + γ, the Gronwall lemma and (4.4) imply that

sup
n≥1

∫ 1

0

fn(t, y) dy ≤ C(T ) for t ∈ [0, T ] .

Consequently, by the mass conservation, we end up with

sup
n≥1

M0,n(t) ≤ C(T ) , t ∈ [0, T ] .(4.8)

Next, the convexity and non-negativity of Φ imply that

u Φ′(v) ≤ Φ(u) + v Φ′(v) , u, v ≥ 0 .(4.9)

For R ≥ 1, it follows from (1.1), (1.8), (4.8) and (4.9) that

d

dt

∫ R

0

Φ(fn) dy ≤ C

∫ R

0

∫ y

0

(1 + y′)λ fn(y′) fn(y − y′) Φ′(fn(y)) dy′dy

+ C

∫ R

0

∫ ∞

y

(1 + y′)γ
′
fn(y′) Φ′(fn(y)) dy′dy

≤ C

∫ R

0

∫ y

0

(1 + y′)λ fn(y′) Φ(fn(y − y′)) dy′dy

+ C

∫ R

0

∫ y

0

(1 + y′)λ fn(y′) fn(y) Φ′(fn(y)) dy′dy

+ C

∫ ∞

0

∫ R

0

(1 + y′)γ
′
fn(y′) (Φ(1) + fn(y) Φ′(fn(y))) dy′dy

≤ C (1 +Mλ,n)
∫ R

0

(Φ(fn(y)) + fn(y) Φ′(fn(y))) dy

+ C (1 +Mγ′,n)
∫ R

0

(Φ(1) + fn(y) Φ′(fn(y))) dy .

Now, owing to the convexity of Φ and the concavity of Φ′, we have u Φ′(u) ≤ 2 Φ(u) for u ≥ 0,
whence

d

dt

∫ R

0

Φ(fn) dy ≤ C (1 +Mλ,n +Mγ′,n)
∫ R

0

Φ(fn) dy ,

and we conclude as before by (4.4) and the Gronwall lemma. ut

5 A modified coagulation model

In this section, we prove Theorem 1.5 and give some qualitative properties of solutions to the
modified coagulation equation (1.10).
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Proof of Theorem 1.5. For ε > 0, the coagulation and fragmentation rates given by (1.9) satisfy
λ = 1+α and γ = 1/2 > α− 1 = λ− 2. We are thus in a position to apply Theorem 1.1 to deduce
that there is a mass-conserving solution fε to (1.1), (1.2). In particular, fε solves

∂fε
∂t

=
1
2

∫ y

0

a(y′, y − y′) fε(y′) fε(y − y′) dy′

− y fε(y)
∫ ∞

0

(y′)α fε(y′) dy′ − yα fε(y)M1(f in) ,

+ ε

(∫ ∞

y

b1(y, y′ − y) fε(y′) dy′ −
1
2

∫ y

0

b1(y′, y − y′) dy′ fε(y)
)
.

In addition, we may proceed as in [14] to show that the family (fε) is relatively compact in
C([0, T ];w − L1(R+)) for every T > 0. Consequently, there are a subsequence (fεk

) of (fε) and a
non-negative f in C([0,+∞);w − L1(R+)) such that

fεk
−→ f in C([0, T ];w − L1(R+)) ,(5.1)

for each T > 0 and
M1(f(t)) ≤M1(f in) , t ≥ 0 .(5.2)

It is then straightforward to pass to the limit in the equation satisfied by fεk
and conclude that f

is a solution to (1.10), (1.11). ut

We now briefly discuss the occurrence of gelation for (1.10).

Proposition 5.1 Consider an initial datum f in satisfying (1.5) and let f be a weak solution to
(1.10), (1.11) such that

M1(f(t)) ≤M1(f in) , t ≥ 0 .(5.3)

Then gelation occurs, that is, there is Tgel ∈ [0,+∞) such that M1(f(t)) < M1(f in) for t > Tgel
and ∫ t1

t0

(∫ ∞

e

y1+(α/2)

ln(y)δ
f(t, y) dy

)2

dt <∞ ,(5.4) ∫ t1

t0

(
M1(f in)−M1(f(t))

) ∫ ∞

e

yα+1

ln(y)δ
f(t, y) dydt <∞(5.5)

for each δ > 1 and t1 > t0 ≥ 0.

Note that the solution to (1.10), (1.11) constructed in Theorem 1.5 satisfies (5.3) by (5.2), so
that Proposition 5.1 applies at least to this particular solution.
Proof. We first observe that, for ψ ∈ L∞(R+), we have

d

dt

∫ ∞

0

f(y) ψ(y) dy =
1
2

∫ ∞

0

∫ ∞

0

a(y, y′) f(y) f(y′) ψ̃(y, y′) dydy′(5.6)

−
(
M1(f in)−M1(f(t))

) ∫ ∞

0

yα ψ(y) f(y) dy ,

where a and ψ̃ are given by (1.9) and (1.13), respectively. The only difference between (5.6) and the
corresponding expression for (1.1) is the last term of the above identity. Observe in particular that,
thanks to (5.3), this term is non-positive whenever ψ ≥ 0. We then proceed as in [9, Theorem 1.1
& Corollary 2.3] to prove that gelation occurs and that (5.4) holds true.

We next prove (5.5). Let A > 0 and take ψ(y) = y ∧A in (5.6) to obtain∫ t1

t0

(
M1(f in)−M1(f(t))

) ∫ ∞

A

yα f(t, y) dydt ≤ M1(f(t0))
A

(5.7)
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for t1 > t0 ≥ 0. We now proceed as in [9] and consider a non-decreasing function Φ : R+ → R+

with Φ(0) = 0 such that

CΦ :=
∫ ∞

0

Φ′(A)
A

dA <∞ .(5.8)

We multiply (5.7) by Φ′(A) and integrate over (t0, t1)× R+ with respect to (t, A) and obtain∫ t1

t0

(
M1(f in)−M1(f(t))

) ∫ ∞

0

f(t, y) yα Φ(y) dydt ≤ CΦ M1(t0) .(5.9)

We choose Φ(y) =
(
yα+1/ln(y)δ − rα+1/ln(r)δ

)+

with δ > 1 and r = eδ and argue as in [9,
Corollary 2.3] to conclude that (5.5) holds true. ut

Remark 5.2 Observe that, if t0 ≥ Tgel, M1(f in) > M1(f(t)) for t ∈ (t0, t1] and (5.5) implies that∫ ∞

e

yα+1

ln(y)δ
f(t, y) dy <∞

is finite for almost every t ∈ (t0, t1). On the other hand, if t0 < Tgel, this argument fails. For
α = 1, it is actually conjectured in [8, Section 4] that the solution f(t) to (1.10), (1.11) decays
exponentially for large y for each t 6= Tgel and algebraically as y−5/2 for t = Tgel. Even the weaker
result ∫ t1

t0

(∫ ∞

0

y1+(α/2) f(t, y) dy
)2

dt = ∞

for t1 > Tgel > t0, which is true for (1.1) (see [9]), is not available for (1.10).

We finally prove that M1(f(t)) decays more rapidly for large times than for (1.1), at least for
initial data vanishing near y = 0. It is likely that this is also true for general initial data, but we
restrict ourselves to this particular situation for simplicity.

Proposition 5.3 For any weak solution to (1.10), (1.11) satisfying (5.3) and such that f in ≡ 0
on [0, δ] for some δ > 0, there is C = C(δ, f in) > 0 such that

M1(f(t)) ≤ Ce−Ct , t ≥ 0 .

Proof. On the one hand, we take Φ(y) =
(
y1−α − (δ/2)1−α

)+ in (5.9) to obtain∫ t1

t0

(
M1(f in)−M1(f(t))

) ∫ ∞

δ

y f(t, y) dydt ≤ C(δ) M1(t0) .

On the other hand, it is straightforward to check that f(t, y) ≡ 0 for (t, y) ∈ R+ × (0, δ). Conse-
quently, we have ∫ ∞

t0

(
M1(f in)−M1(f(t))

)
M1(f(t)) dt ≤ C(δ) M1(t0) .

For t ≥ 2 Tgel, we have
(
M1(f in)−M1(f(t))

)
≥ τ for some τ > 0 and Proposition 5.3 follows. ut

Notice that the decay rate of M1(f(t)) obtained in Proposition 5.3 is in agreement with [8].
The corresponding result for (1.1) is that M1(f(t)) decays at the slower rate C (1 + t)−1.

A Occurrence of gelation by scaling arguments

We assume that the coagulation and fragmentation rates a and b are homogeneous, for instance,

a(y, y′) = yα (y′)β + yβ (y′)α , b(y, y′) = (y + y′)γ ,(A.1)

with 0 ≤ α ≤ β ≤ 1 and γ ∈ R. Putting λ := α + β, it follows from Theorem 3.1 that gelation
can only occur for λ > 1, and this will be assumed to be the case in all the following. Therefore,
if only coagulation was present, we would have gelation for any non-zero solution to (1.1).
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A.1 Dominant coagulation

We start by considering the situation where the effects of the fragmentation are so small that we
may expect that all the solutions are still gelling. In order to obtain some insight on this possibility,
let f be a solution of the coagulation-fragmentation equation with gelation time T ≥ 0 and define
the scaled function:

fµ(t, y) = µa f(T + (t− T )µ−1, µb y)(A.2)

for all µ > 1, with

a =
3 + λ

λ− 1
> 0 , b =

2
λ− 1

> 0 .

Then,

Qc(f)(µby) =
1
2

∫ µby

0

a(y′, µb y − y′) f(y′) f(µb y − y′) dy′

− f(µb y)
∫ ∞

0

a(µb y, y′) f(y′) dy′

=
1
2
µb
∫ y

0

a(µb y′, µb (y − y′)) f(µb y′) f(µb (y − y′)) dy′

− µb f(µb y)
∫ ∞

0

a(µb y, µb y′) f(µb y′) dy′

=
1
2
µ(λ+1)b

∫ y

0

a(y′, y − y′) f(µb y′) f(µb (y − y′)) dy′

− µ(λ+1)b f(µb y)
∫ ∞

0

a(y, y′) f(µb y′) dy′

= µ(λ+1)b−2aQc(fµ)(y).

A similar calculation gives

Qf (f)(µb y) = µ(γ+1)b−aQf (fµ)(y) .

We deduce that the function fµ satisfies:

∂fµ
∂t

= Qc(fµ)− µ(γ+1)b−1Qf (fµ) , (t, y) ∈ (0,+∞)× R+ .(A.3)

If

(γ + 1)b− 1 > 0
(
⇐⇒ γ >

λ− 3
2

)
,

the coefficient in front of the fragmentation term can be made as large as we wish. This would
make the fragmentation more and more important for the gelling solutions to (1.1). It then does
not seem possible in that case that gelation occurs for all solutions to (1.1).

Suppose on the contrary that

(γ + 1)b− 1 < 0
(
⇐⇒ γ <

λ− 3
2

)
.

Then, the coefficient in front of the fragmentation term can be made as small as we want. It is
then reasonable to expect that the equation (A.3) behaves more and more like the pure coagulation
equation for which we know that gelation occurs for all solutions. It is then reasonable to conjecture
that this is also the case for the complete equation. Moreover, since the equation (A.3) tends
formally to the coagulation equation as µ → ∞, we may even expect the profile of the gelling
solutions at the gelation time to be the same as that of the pure coagulation equation.
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A.2 Balance between coagulation and fragmentation

We consider now the possibility for (1.1) to have a mass-conserving solution f and, according to the
analysis of Section A.1, this requires γ > (λ− 3)/2. We then define the following scaled function

fµ(t, y) = µa f(µ t, µb y)(A.4)

for all µ > 1, with

a = 2b , b = − 1
γ + 1

.

These conditions ensure that (γ + 1)b+ 1 = 0 and∫ ∞

0

y fµ(t, y) dy =
∫ ∞

0

y f(t, y) dy , (t, µ) ∈ [0,+∞)× (1,+∞) .

As above,

Qc(f)(µby) = µ(λ+1)b−2aQc(fµ)(y) , Qf (f)(µby) = µ(γ+1)b−aQf (fµ)(y) ,

and therefore,

∂fµ
∂t

= µ(λ+1)b+1−a Qc(fµ)−Qf (fµ) , (t, y) ∈ (0,+∞)× R+ .(A.5)

Notice that

(λ+ 1)b+ 1− a = (λ− 1)b+ 1 =
γ − (λ− 2)
γ + 1

,

and we have 1 + γ > 0 since λ > 1 and γ > (λ− 3)/2. Consequently, if

γ − λ+ 2 < 0 ,(A.6)

the coefficient in front of the coagulation term can be made as small as we wish. We may then
conjecture that the effects of coagulation should be very small compared to those of fragmentation.
This would allow for the existence of mass-conserving solutions. Since we have already shown that,
if (A.6) holds true and M1(f in) is large enough, gelation occurs, we may conjecture that only small
initial data could give rise to mass-conserving solutions.

A.3 Gelation

Let us finally recover formally the possibility for a solution to (1.1) to exhibit gelation at time
T > 0, as it is proved in the second assertion of Theorem 1.1. To this end we consider the change
of variables:

fµ(t, y) = µa f(T + (t− T )µ−1, µb y)(A.7)

for all µ > 1 (so that T + (t− T )µ−1 ≥ 0 for t ∈ [0, T ]), with

a =
λ− γ

γ + 1
, b =

1
γ + 1

.

We then have
∂fµ
∂t

= Qc(fµ)−Qf (fµ) , (t, y) ∈ (0,+∞)× R+ ,(A.8)

and ∫ ∞

0

y fµ(0, y) dy = µa−2b

∫ ∞

0

f in(y) dy .
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Therefore, if a − 2b > 0, or equivalently if (A.6) holds, and µ >> 1, the first moment of fµ(0, y)
is as large as we need. This is in complete agreement with the second assertion of Theorem 1.1
(Notice that, if a− 2b < 0, the first moment of fµ(0) cannot be made large since µ cannot be too
small in order for fµ to be well defined).

We summarize the above analysis in Figure A.1, the coagulation and fragmentation rates a and
b being still given by (A.1). The parameter λ ranging in (1, 2], there is a mass-conserving solution
to (1.1), (1.2) for any initial datum f in satisfying (1.5) when γ > λ− 2 (region I in Figure A.1, see
Theorem 3.1). When γ ∈ ((λ−3)/2, λ−2) (region II in Figure A.1), Theorem 1.1 and Section A.2
indicate that gelation occurs when M1(f in) is large while there should be mass-conserving solutions
when M1(f in) is small. Finally, gelation should occur for every non-zero solution to (1.1), (1.2)
when γ < (λ− 3)/2 (region III in Figure A.1) as expected from the analysis in Section A.1.

Figure A.1: (I) mass conservation. (II) gelation for large initial data and mass conservation for
small initial data. (III) gelation.
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