A mathematical model of the cell cycle and its control
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1 Introduction

It is usually believed that each cancer is unique because of the complexity in factors of de-
velopment such as the variety of tissues, the numerous combinations of genetic alterations, the
succession of events as vasculogenesis and angiogenesis ([1], [13]). Several critical events are how-
ever common to the evolution of each cancer which are targets for potential therapeutic actions.
Among them is the suppression of apoptosis (programmed cellular death) and deregulation of
cell proliferation, we refer to [7] for a review of this aspect. This leads to try to understand
the tumour development at the level of a population of cells while ‘macroscopic’ models for the
neoplastic progression have been widely proposed and validated ([3] and the references therein).
One can hope that a better understanding and control of the cell cycle can be used practically in
cancer therapy. Our aim is to include in our model two key features of several anti-cancer drugs.
The first one is that they act on specific phases of the cell cycle, for instance by promoting or
inhibiting transition from a given phase to another, or to apoptosis. The second one is that
drugs efficiency and/or toxicity seems to be strongly related to a 24 hours rhythm imposed by
our circadian central clock [12].

Several mathematical approaches are proposed to model the cell cycle depending on the expected
output one wishes to achieve. Description of a single cell by a system of Ordinary Differential
Equations modeling the sequence of biomolecular events has been proposed by several authors
and specifically the circadian rythm is treated in [19]. When a population of cells is considered
one is lead to structure the population by ‘age’ in the phase and this is the point of view we
use here. The mathematical formalism for this purpose enters the class of Partial Differential
Equations. The simplest way to do so is related to the famous McKendrick-Von Foerster model,
also called renewal equation (see [2], [14] for instance)

%n(t, a) + %n(t, a)+d(a)n(t,a)=0, t>0,a>0, (1)
n(t,a=0)= />0 b(a)n(t,a)da, (2)
n(t=0,a)= nOZa). (3)



Here n(t,a) denotes the density of cells at time ¢ and age a, d(a) the death rate, and b(a) the
birth rate. This general model may be specialized to the case

b(a) =26(a = Ayp),

thus expressing that mitosis (doubling of the cell) arises at given age a = Aj. This type of model
has been used recently and compared to in vitro expreriments in [4]. The model we propose
below is a generalization of this kind of description. Let us point out that the simplicity of
the biological description in such a model led several authors to improvements. For instance
different individual cells, under constant environmental conditions, have been proved to exhibit
highly variable intermitotic intervals (Lebowitz and Rubinow [11] and the references therein)
and this observation led those authors to postulate an improved mathematical model where the
population is also structured in terms of a generation time 7, thus leading to the evolution for
the cell density n(t,a, )

%n(t, a, )+ g—an(t, a,7)+ D(a,7)n(t,a,7)=0, t>0,a>0,72>0,
n(t,a=0,7)= [bla,7,7")n(t,a,7")da dr’ (4)
n(t=0,a,7) = ng(a, 7).

A somewhat related but more general model is that of Rotenberg [17]. Then, the biological
hidden variable is a maturation velocity pu € [0, 1], and the observable state a is the biological
age, more relevant than the physical age, in other words, the degree of maturity (and then a/u
is the physical age in the previous models). Then, the density of population n(t,a, u) satisfies
the transport equation

0 d .
En(a a, :u) + M%"(ty a, :u) + D(a7 M)n(ta a, ,u) = / K ((L, 12 :ul)n(t7 a, :ul)d,uI7 (5)

with again boundary conditions at @ = 0, and initial data at ¢t = 0,

alt.a =0, = [ b il e, iyl

n(t =0,a,p) = nola, ).

This model enhances the stochasticity in the time evolution of the population thanks to the
kernel K which allows a random change of the maturation velocity, and also, as in the previous
models, in the birth process. We also refer to [6] for other models with the notion of maturity.
In this paper we first present a model which allows to keep more biologically based assumptions
than the equation (1)-(2). We refer specifically to the notion of phases in the cycle which
allow to introduce controls such as the effect of a circadian clock which blocks periodically the
phase transition. We give some mathematical results concerning the solutions and especially
the existence of a (Malthus) parameter for the total growth of the population. Then we propose
numerical tests to measure the effect of the circadian clock on the total growth.

2 A model for the cell cycle

The cell division (mitosis) is the result of a full cycle that a cell should undergo successfully
([10]). Tt is usually accepted that the cycle consists in four phases, (i) a growth phase, denoted
G1, where mostly the cell doubles its size, (ii) a synthesis phase, denoted by S, where the DNA



is duplicated, (iii) a rest phase, denoted by G2, which is used to check and repair the errors in
S phase, (iv) the mitosis, phase M, itself where the two DNA folds separate (anaphase) and the
cell divides finally. The important feature for our purpose is that the cell-cycle progression is
controlled by proteins (Cyclin Dependent Kinases, CDK in short, see [18]) and thus we wish to
keep this notion in the mathematical model. Also much of the cells stay at rest in a quiescent
phase called GO, typically, skin cells are constantly in the cycle, endothelial cells are known to
stay at rest and may be activated by Vascular Endothelial Growth Factors when angiogenesis
occurs. On another hand, the cell cycle duration is also extremely variable, from several minutes
to several days, depending on the cells [10], [9].

Our cell population model uses the density of cells in the phase ¢, denoted by n;(t, a),at time ¢
and with age a in the cell, and say ¢ = 0 for the rest phase GO, and ¢ = 1,2...,] with I =4
in the above scenario. We call K;_;+1(a) > 0 the transition rate from phase i to phase i+ 1
depending on the age a in the phase i (K741 stands sometimes for K71 in order to simplify
some notations). As a simple model we can have in mind is

Kisivi(a) = ¥i 1g>a, ¥ > 0, (6)

a constant rate after some age a; is attained. These transition rates could be controlled by drugs
or by the circadian clock as mentioned in the introduction, thus leading to a variant

Rri—>i+1(t7 a) - ¢(t) 1{a2a¢}7 (7)
then 9 (¢) is a switch activated periodically at certain times in the circadian control, by a therapy
in case of therapeutic control.

Then the evolution of the density in the phase is modelled via a McKendrick-Von Foerster
equation as presented in the introduction. Variable d; > 0 is the death rate in the phase 7 : as
mentioned in our introduction, it could also be controlled by drugs with a circadian rhythm;
v;(a) > 0 is the evolution speed in the phase which could also be controlled by some nutriments
for instance in phase G1. Hence, for 1 <¢ < I, ¢t > 0 and a > 0, we have

%ni(t, a) + a‘a—a[vi(a)m(t, a)] + di(a)n;(t,a) + Ki5ip1(a)n;(t,a) = 0, 5
8
v;(0)n;(t,a =0) = fa'ZO Ki_15:(a’) ni—1(t,d’) da'.

For ¢ = 1, the renewal condition does not make sense because the phase ¢+ — 1 does not exist and
we replace it by

v1(0)ny(t,a=0) = 2TM/ Ki1(a') ni(t,d') dd’, (9)
a’>0

where 0 < 73y < 1 is the rate of cells which continue the cycle after mitosis. For the sake of
simplicity we have not described the phase GO which receives the extra cells after mitosis and
possibly can introduce new cells in the cycle. Of course our model is completed by a Cauchy
data set

n;(t=0,a) =nd(a) >0, Vi=1,...,1, VYa>0. (10)

This model thus retains some aspects of Rotenberg [17] model (see the introduction) with a
discrete set of maturation states (p in (5) corresponds to ¢ in (8)) while keeping the main
feature that enough phase progression is needed for transition to the next phase. It also has
the advantage of indicating clearly possible control points for further modelling. This kind of
system can either create exponential growth or exponential decay of the total population size
depending on the death and transition parameters and of course the control parameters. This
feature is analyzed in next section.



3 Mathematical results

The above system of transport equations is endowed with a natural maximum principle which
preserves the nonnegativity of n; and of a natural L' theory which reflects the conservation
of densities by the drift term. These are usual properties that can be handled by various well
understood mathematical methods and we state an existence result for completeness. More in-
teresting is the large time asymptotic analysis which can hardly be performed here by standard
methods based on Laplace transform. We rather use entropy methods introduced in this context
n [16], see also [15], [20].

We always assume below that all the (nonnegative) coefficients (d;, v;, K;—;4+1) are continuous
and

0o >T > wia) > v >0, v;(+) is Lipschitz continuous. (11)
Kisipi(a) < K < oo, (12)
d; .
dia) — 00, Kigit1(a) >0 for alarge. (13)
a

Theorem 3.1 (Eristence) With the assumptions (11)- (13) and
ni € L'(IRY),

there exists a unique distributional solution n; € C(IRY; L'(IRT)), n; > 0, to the system (8)-(10).
It satisfies the a priori bound

Z /OO n’L (t7 a) da S et (QTM_l)HI{]—)lHLOO i (14)
i 0

The a priori bound here is very crude and does not use the precise structure of the operators
involved in the dynamics. It is aimed to show why L' theory is natural through its simplicity.
Concerning the time behavior, it turns out that the population grows with an exponential rate
of parameter A. A more accurate result is indeed

Theorem 3.2 (Long time behavior) With the assumptions of Theorem 3.1, there exists a unique
parameter X € IR and unique (up to a multiplicative constant) C functions ¢;(a) > 0, ¢;(a) — 0
as ¢« — oo such that

Z / ni(t, a)pi(a) da Z/ a)da Yt >0. (15)

An explicit formula for the Malthus parameter A is given below, equation (19), that allows to
check whether there is extinction i.e. A < 0 or growth i.e. A > 0. It can be seen as the
first eigenvalue for the underlying operator the existence of which follows by the Krein-Rutman
theorem ([5]), but below we give a direct and constructive proof. We can also go further and
make more precise the long time asymptotics as follows



Theorem 3.3 (Time asymptotics) With the assumptions and notations of of Theorem 3.2, there
exists a unique positive solution (up to a multiplicative constant) to

alvi(@) Ni(@)] + [di(a) + Kisita(a) + A]Ni(a) = 0,

(16)
v;(0)N;(a=0) = fa’ZO Ki—15i(a") Ni—y(a') dd,
and one has
/ |n;(t, a)eM — MoN;(a)|da — 0, as t— oo, (17)
a=0

with My the constant such that

Z/ da_MOZ/N

These theorems follows from classical methods which where extended to Rotenberg model in
[16]. Notice that the convergence rate in (17) can be proved to be exponential in simple situa-
tions, but we do not know of simple formulas based on the coefficients of the equation itself (d;,
Ki_15i, ... ). Their proofs are thus simple variants of the arguments that can be found in a
more sophisticated form in [16] and we only sketch the main arguments.

Proof of Theorem 3.1. We do not give a proof of this very classical result which is based on
Banach-Picard fixed point theorem, and we only mention briefly the derivation of the a priori
bound (14). The positivity of the solution is obvious because (n;)_ (the negative part is defined
by a_ = maxz(0,—a)) is a subsolution with a vanishing initial data and thus remains negative
(therefore zero) for all times. The L! bound is obtained by integration in age, using the positivity

of the d;
d o0 o0
yn > / ni(t,a)da+ / Kigipa(a)ni(t,a)da < Y~ vi(0)ni(t,0),
Y i=1,...,170 i=1,....179 i=1,...,I

therefore, the boundary fluxes exactly compensate (as expected in the model) the transition
rates and it remains

Z / ni(t,a)da < (2rar — 1) [J° Kisq(a)ng(t, a)da

i=1,.
< (QTM — 1)||I§[_>1HLoo fO ny t,a)d

< (2TM - 1)”I(I—>1HL°° Zi:l,...,] fooo n; (tv a) da,
and the result follows.

Proof of Theorem 3.2. The stationary dual problem to (11)-(12) is given by an eigenvalue
problem: find A such that there is a solution to

vi(a) 550i(a) = [di(a) + Kisig1(a) + Aéi(a) = —¢i41(0) Kisita(a), s
18
¢i(a) =0 as a — oo.

Here we have used the notation K;_;y1(a) = K;;y1(a) fori=1,...,1 —1 and K;_(a) =
QTMI(]_H((L)



In other words, multiplying (11)-(12) by ¢;(a), multiplying equation (18) by n;(t,a) and inte-
grating da and summing up in ¢, we arrive at

) ’_Z I/OOO p(a)ni(t,a) da| — e Z vi(a = 0)ni(t,a = 0)¢;(a = 0)

1=1,...,1

_at Z ¢¢+1(0)/0 Kiiy1(a)n(t, a) da,
i=1,...,1

(this uses the condition at infinity for the dual problem!). After rearranging the sum on the
right and taking into account the renewal condition (12), the above equation reduces to

—At h ¢(a)n;(t,a)da| = 0.
i:lz,.;,f/o

Therefore the result of Theorem 3.2 is reduced to proving the existence of a solution to the dual
problem with the announced properties. To do so, we write the solution when A is given and
show that a single A is possible in order to satisfy the condition at infinity. We have

6i(a) = PO 4,(0) - ¢i+1(0)/ Ki:i(:)(a—)6_(Di(g)+”i?“)g)da,
0 i

() — “ di(o) + Kisiy1(0) .
Di( )_/0 or ) do.

Because the problem is defined up to a multiplicative constant (we look for the first eigenvalue
of a positive operator) we may choose ¢1(0) = 1. Then, the vanishing condition at infinity for

¢1 gives
0o I -1
A
0 vi(a)

Notice that our assumptions show that this integral is well defined for A > d/v at least. The
vanishing condition at infinity for ¢ then gives

Sl 7 \ 1
¢3(0) = ¢ (0) |:/0 %e—(l)ﬂa)ﬁ-mﬂdg] ‘

After a complete cycle, we arrive at the condition

Sl e N -1
1= 61(0) = 61(0) [ /0 K;%;()U)e—wmmg) da] |

in other words the value of A is given by the formula

with

1= H/ Iﬁz—>z+1 —(Di(")"‘vi?a)”)da. (19)

A condition that is fullfilled by a single value of A because this product defines a decreasing and
C" function, it vanishes for A — oo and it tends to oo for A = co. This concludes the existence
of a solution ¢; to the dual problem (notice that all the required properties are indeed satisfied)
and thus the Theorem 3.2 is proved.



Proof of Theorem 3.3. We refer to [16] for a proof and we just indicate briefly the very
reason behind this convergence. First of all, notice that the existence of solutions to equation
(16) for N; follows (by exact formulas) from the same choice as above of the parameter A (in
other words the primal and dual problems have the same first eigenvalue associated to a positive
eigenvector!). Next, we have

2 (e Mny(t,a)) + Zle Mvi(a)ni(t, )] + [di(a) + Kisiv1(a) + An(t,a) = 0,
vi(0)e™ni(t,a=0) = [ o, Kic1oi(a') e™Mni_y(t,d) dd.

Substracting equation (16) for N;, and multiplying by sgn(e=*n;(¢,a) — N;) (this is well justified
even though the sgn function is not smooth) we arrive at

File M ni(t, a) = Ni(a)| + Fr[vi(a)le ™ n(t, a) — Ni(a)|)+ [di(a) + Kisip1 (@) + Alni(t, a) = Ni(a)| = 0,

vi(0)|e_)‘tm(t, a=0)—-N;(a=0)| < |fa [Ki—15i(a’) e_/\tni_l(t, a') — Ni(a')] dd'|.

IZO

Therefore, after integration against the dual solution ¢;(a), and summation of these equations
we arrive at

izt JusoleT M ni(t, @) — Ni(a)dalé;(a)
< it 8500) [| f 50 Kimosi(@)[e™ni(t, a) = Ni(a)]dal
- faZO Ki_1_:(a)le=n;(t, a) — Ny(a)|da

< 0.

This proves that the quantity decays but also that the quantity in the right hand side is inte-
grable, that is

/ |/ Ki_15i(a) [e_Mni(t, a) — N;(a)]dal —/ Ki_l_ﬂ(a)e_/\tm(t, a) — N;(a)|da < oo,
t=0 Ja>0 a>0

which implies that
e Mng(t,a) — Ni(a) = 0, as t— 0o,

on the support of K;_1_;(-). Then, one can obtain that the full quantity vanishes in using the
PDE again and compactness arguments that are detailed in [16].

4 Numerical method: one phase

Before we consider the effect of an outside control on one of the phases, we present the numerical
method used here. It is based on an upwind scheme for the transport equation ([8]) in the finite
volume spirit. These methods are known to be inaccurate except when an optimal time step
can be used: we therefore consider here this optimal situation (CFL=1), this is possible under
the restriction that

v;(a) = Cst, Vi=1,...,1,

a condition that we assume from now on with v;(a) = 1, i.e. At = Aa where these are the
(uniform) discretization parameters in the two variables ¢ and a. Below we denote by n7 () the
average value of n;(t", a) on the j — th cell in the age variable, at time t" = nAt.



In order to avoid further time restriction, we also consider an implicit scheme for the death rates
and transition rates. We arrive at the algorithm:

n+1 Z Igz 1—>2 n+1(l - 1)

WO+ AL (d() + Kisin ()] =0l (1), 5=2,...,J,

(except for ¢ = 1 where the cell division factor 277 is added). Here we have in mind that the
first point in a represents the flux on the boundary and not an average in a cell. Therefore the
point nf(7) is excluded from the discrete renewal kernel.

Figure 1: Solution of the renewal equation (one phase) in case 1 (peaked renewal kernel). Left:the
total population density as a function of time. Right: the steady state N(a).

Figure 2: Solution of the renewal equation (one phase) in case 2 (uniform renewal kernel). Left:
the total population density as a function of time. Right: the steady state N(a).

For the sake of completeness, we now present results for the case of one phase (McKendrick-
Von Foerster equation). They are obtained with .J = 2 % 20 (20 is the number of discretization
points for a unit age time which is the maximal age for renewal in the choice we make below
for K i.e. ap = 1 in the two cases below). In other words our simulations are conducted for



0 < a < 2xaps and up to the final time ¢ 4;,4; = 3*aps. Also we use a death rate d(a) = 2.xa/ap.
It is well known that, after multiplication by the factor e=*?, the solution converges to a steady
state but with an oscillatory behavior (this is related to the second eigenvalue of the underlying
operator which has an imaginary part). This kind of behavior has been confirmed and matched
to experiments on cancerous cells in [4]. We also exhibit this phenomenon in the numerical tests
below and relate it to the form of the kernel K (a) used for the renewal term. We consider in this
case a renewal kernel K with bounded support. We show that the more ‘peaked’ is the kernel
K, the more oscillations the solution exhibits. To do so, we consider two cases

o Dirst case.  K(a) =4 % 1y, /2<a<ay}, see Figure 1.

e Second case. K(a) =2% lioca<a,},  see Figure 2.

5 Numerical results on the circadian control

We now come to the case of two phases in the model (8)—(10) for the cell cycle. Still assuming
that the cycle speeds are constant, it can be discretized exactly as explained previously in §4
and we do not give additional details.

In this preliminary study, we consider two cases in order to see the effect of an outside (circadian)
control that can affect the transitions as motivated in the introduction,

e Third case. No switch is imposed in the transitions between phases, we are in the situation
of transition rates given by (6), see Figure 3,

e Fourth case. A switch blocks the transition from phase 1 to phase 2 periodically, as
proposed in (7), see Figure 4.

These are merely chosen as a first illustration of possible effects of a circadian control. More
systematic and elaborate numerical tests, as well as mathematical and biological interpretations
remain to be performed.

The results are shown after normalizing the solution by a growth factor e, with X the eigenvalue
(Malthus parameter) which has been analyzed in §3. The value A is of primary importance and
is affected by the circadian control: the order of magnetude is 1/3 for a circadian switch closed
one third of the day length and a total cell cycle of approximately one day. The oscillations that
appear in Figure 4 have the period of the cell cycle, not the circadian period.

6 Conclusion

Motivated by understanding the role of cell-cycle in tumour developments we have proposed
a mathematical model to describe a cell population structured by its age in each phase. This
model is especially designed to incorporate control parameters at several, biologically based,
points (death rate, transition rates) in order to take into account therapy or circadian clock.
A mathematical theory for existence and long time asymptotics has been developed based on
entropy methods. The numerical tests are in accordance with this theory and with previous
comparisons with experiments in [4]. First numerical results are also given on the effect of a
circadian control.
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Figure 3: Solution of the cell cycle equation (two phases) in case 3 (no periodic control). Left:
the total population density in the first phase as a function of time. Right: the steady state
Nl(a).
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Figure 4: Solution of the cell cycle equation (two phases) in case 4 (periodic blocking). Left: the
total population density in the first phase as a function of time. Right: the steady state Ni(a).
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