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Abstract

Consider a spatially homogeneous infinite particle system in which
coalescence and elastic collisions occur. The Boltzmann-Smoluchowski
equation describes the evolution of the concentration f(t, m, v) of particles
of mass m and velocity v at time t ≥ 0. Using a stochastic version
of this equation, we give an exact simulation scheme and we study the
asymptotics of solutions for large times.
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1 Introduction

We consider a system of particles characterized by their mass m ∈ (0,∞)
and velocity v ∈ R3. We assume that two particles of characteristics (m, v)
and (m∗, v∗) may coalesce to give a larger particle at rate aS(m,m∗)ϕS(v, v∗),
while they may collide to give two particles with different velocities at rate
aB(m,m∗)ϕB(v, v∗). Then the Boltzmann-Smoluchowski equation (BS) (see
Definition 2.1) describes the evolution of the concentration density f(t,m, v) of
particles of mass m and velocity v at time t ≥ 0.
Collisional invariants have been described by Hylkema-Villedieu [11], and the
pure kinetic coalescence equation (aBϕB ≡ 0) has been studied by Roquejoffre-
Villedieu [8] and Escobedo-Laurençot-Mischler [4] .
¿From a physical point of view, particles evolving according to these rules are
met, for instance, in dense sprays of liquid droplets, see Hylkema-Villedieu [11],
Baranger [1], and the reference therein for a desciption of models. They are also
met in astrophysics (in order to describe formation of galaxies) and we refer to
Bobylev-Illner [2] for mathematical models in this context.

Typical rates (in the hard spheres case) are aS(m,m∗) = aB(m,m∗) = (m1/3 +
m

1/3
∗ )2, ϕS(v, v∗) = ϕB(v, v∗) = |v−v∗|. We will deal with general assumptions,
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which contain this case, in a work in preparation [6]. However, we consider in
the present paper the simpler case where ϕS and ϕB are bounded, while the
masses of the particles belong to N∗ (discrete case).

To study equation (BS), we introduce a pure jump stochastic Markov process
(Mt, Vt)t≥0, which shall be seen as the evolution of the characteristics (mass,
velocity) of a typical particle. More precisely, the link between this process and
equation (BS) is the following: the function

f(t,m, v) = m−1P [Mt = m,Vt ∈ dv] (1.1)

satisfies (BS). The stochastic process contains however more information than
the deterministic equation (BS), since it contains historic information on typ-
ical particles. We refer to Tanaka [10], Sznitman [9], Graham-Méléard [7] for
such a technique for the Boltzmann equation, and to Deaconu-Fournier-Tanré
[3] for the Smoluchowski equation.

Our main aim here is to use the stochastic interpretation of (BS):
1) to derive an exact simulation scheme of the process (Mt, Vt) which yields an
immediate and constructive existence proof for (BS),
2) to show that as t tends to infinity, Mt tends almost surely to infinity, which
in particular implies that the solution f(t, .) to (BS) tends to 0 in L1. Although
the probabilistic proof is quite easy, we are not able, for the moment, to handle
a deterministic proof (which has been done in [4] in the case without collisions
aBϕB ≡ 0).

The paper is organized as follows: in Section 2, we give definitions of equation
(BS) and of typical particles. We also state our results. In Section 3, we show
how to simulate exactly the typical particles. Finally, Section 4 is devoted to
the large time behavior.

2 Notations and results

We denote by S2 the sphere of R3, which will be used to model the impact
parameters of the collisions. Let us first introduce our hypotheses.

Assumption (A): There exists a constant A such that:
1. The two maps aS and aB from N∗ × N∗ into R+ satisfy, for all m,m∗ in N∗

aS(m,m∗) = aS(m∗,m) ≤ A(m+m∗)
aB(m,m∗) = aB(m∗,m) ≤ A(m+m∗). (2.1)

2. The maps ϕS from R3 × R3 into R+ and ϕB from R3 × R3 × S2 into R+

satisfy, for all v, v∗ in R3, all n ∈ S2,

ϕS(v, v∗) = ϕS(v∗, v) ≤ A; ϕB(v, v∗, n) = ϕB(v∗, v, n) ≤ A. (2.2)
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3. The initial condition f0 from N∗ × R3 into R+ satisfies∑
m≥1

∫
R3
mf0(m, v)dv = 1;

∑
m≥1

∫
R3

(m2 +m|v|2)f0(m, v)dv <∞. (2.3)

For (m, v) and (m∗, v∗) in N∗×R3, we denote by (m∗∗, v∗∗) the post-coagulation
characteristics, given by

m∗∗ = m+m∗; v∗∗ =
mv +m∗v∗
m+m∗

. (2.4)

Note that in a coalescence, the mass m and momentum mv are preserved, while
the kinetic energy decreases: m∗∗|v∗∗|2 = m|v|2 +m∗|v∗|2− mm∗

m+m∗
|v− v∗|2. We

denote by LS the associated operator acting on bounded measurable functions
φ from N∗ × R3 into R by

LSφ[(m, v), (m∗, v∗)] =
1
2
{φ(m∗∗, v∗∗)− φ(m, v)− φ(m∗, v∗)}

aS(m,m∗)ϕS(v, v∗). (2.5)

For (m, v) and (m∗, v∗) in N∗ × R3 and n ∈ S2, we denote by (m′, v′) and
(m′

∗, v
′
∗) the post-collision characteristics given by

m′ = m; v′ = v + 2
m∗

m+m∗
[(v − v∗).n]n

m′
∗ = m∗; v′∗ = v∗ − 2

m

m+m∗
[(v − v∗).n]n. (2.6)

Collisions thus preserve mass, momentum, and kinetic energy. Then, for φ
bounded and measurable from N∗ × R3 into R, we set

LBφ[(m, v), (m∗, v∗)] =
1
2

∫
S2

{φ(m′, v′) + φ(m′
∗, v

′
∗)− φ(m, v)− φ(m∗, v∗)}

aB(m,m∗)ϕB(v, v∗, n)dn

=
∫

S2

{φ(m′, v′)− φ(m, v)} aB(m,m∗)ϕB(v, v∗, n)dn, (2.7)

the second equality being a consequence of our symmetry assumptions. We now
may define equation (BS).

Definition 2.1 A function f from [0,∞) × N∗ × R3 into R+ is said to be a
solution to (BS) if:
(i) for all t ≥ 0,

∑
m≥1

∫
R3 mf(t,m, v)dv = 1,

(ii) for all bounded measurable function φ from N∗ × R3 into R, for all t ≥ 0,∑
m≥1

∫
R3
φ(m, v)f(t,m, v)dv =

∑
m≥1

∫
R3
φ(m, v)f0(m, v)dv (2.8)

+
∫ t

0

ds
∑
m≥1

∫
R3
dv

∑
m∗≥1

∫
R3
dv∗{LSφ+ LBφ}[(m, v), (m∗, v∗)]

f(s,m, v)f(s,m∗, v∗).
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This equation is quite natural. For example, the term containing LS explains
that there are coalescence between particles of characteristics (m, v) and (m∗, v∗),
at rate aS(m,m∗)ϕS(v, v∗), and proportionally to the concentrations f(t,m, v)
and f(t,m∗, v∗). Note that Assumption (A) and condition (i) ensures that ev-
erything makes sense in (ii).
We now introduce a stochastic version of this equation, that contains more in-
formation about the particles, which will be usefull to study the large time
behavior of solutions.

Definition 2.2 Assume (A). Let (Ω,F , (Ft)t≥0, P ) be a (sufficiently large)
probability space. A stochastic process (Mt, Vt)t≥0 is a solution to (SDE) if the
following conditions hold.
(a) M is a càdlàg adapted nondecreasing N∗-valued process, while V is a càdlàg
adapted R3-valued process.
(b) The law of (M0, V0) is given by

∑
k≥1 kf0(k, v)δk(dm)dv.

(c) For all T <∞, E[MT + |VT |2] <∞.
(d) Denote, for each t ≥ 0, by Qt the law of (Mt, Vt) (it is a probability measure
on N∗ × R3). There exist two independent (Ft)t≥0-adapted Poisson measures
νS(ds, d(m, v), du) on [0,∞)× (N∗×R3)× [0,∞) and νB(ds, d(m, v), dn, du) on
[0,∞) × (N∗ × R3) × S2 × [0,∞) with intensity measures dsQs(dm, dv)du and
dsQs(dm, dv)dndu such that a.s., for all t ≥ 0,

Mt = M0 +
∫ t

0

∫
N∗×R3

∫ ∞

0

m11n
u≤ aS(Ms−,m)

m ϕS(Vs−,v)
oνS(ds, d(m, v), du),

Vt = V0 +
∫ t

0

∫
N∗×R3

∫ ∞

0

m(v − Vs−)
m+Ms−

11n
u≤ aS(Ms−,m)

m ϕS(Vs−,v)
o

νS(ds, d(m, v), du)

+
∫ t

0

∫
N∗×R3

∫
S2

∫ ∞

0

2
m

m+Ms−
[(v − Vs−).n]n11n

u≤ aB(Ms−,m)
m ϕB(Vs−,v,n)

o
νB(ds, d(m, v), dn, du). (2.9)

The simulation algorithm of (M,V ) given in the next section might help to
understand the meaning of this equation. Before giving more details, let us
state the link between (SDE) and (BS). (see Tanaka [10] and Deaconu et al.
[3] for rigorous proofs of similar results).

Proposition 2.3 Assume (A). Consider a solution (Mt, Vt)t≥0 to (SDE). As-
sume that for each t ≥ 0, the law of Vt has a density. Thus the law Qt(dm, dv) of
(Mt, Vt) can be written as

∑
k≥1 g(t, k, v)δk(dm)dv. Set f(t,m, v) = g(t,m, v)/m.

Then f is a solution to (BS) in the sense of Definition 2.1.

Let us explain briefly the main idea of (SDE): we wish to build a process
(Mt, Vt)t≥0 whose law is the distribution of masses and velocities in the particle
system. Hence, (Mt, Vt) has to be the evolution of a sort of typical particle.
Recall that we are in the discrete case, so that a particle of size m may be
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understood as being composed of m atoms. We mark, at time 0, a given atom,
chosen randomly (and uniformly) among all atoms in the system. Then we
denote by (Mt, Vt) the mass and velocity of the particle containing our marked
atom at time t. Such a process is naturally Markov, the mass M and velocity
V are naturally piecewise constant, and M is of course nondecreasing. Finally,
Equation (2.9) explains that at some random instants (with a well-chosen rate,
which appears in the indicator functions), we choose another typical particle
in the system, we denote by (m, v) its characteristics, and we make this parti-
cle coalesce with our typical particle (this modifies M and V ). Of course, we
choose (m, v) according to the distribution Qt = L(Mt, Vt), since Qt represents
the distribution of the characteristics in the system. In the same way (and in-
dependently), at some random instants (with a well-chosen rate, which appears
in the indicator functions), we choose another particle in the system, we denote
by (m, v) its characteristics, we choose at random an impact parameter n ∈ S2,
and we make the particle (m, v) collide with our typical particle according to n
(this modifies only V ).
Note finally that the rate aS(Ms−,m)/m is natural, since we pick in the system
an atom, and denote by m the mass of the particle containing this unit particle.
Hence a particle of mass m appears m times, which leads to divide the rate
aS(Ms−,m) by m.

Using an explicit simulation algorithm, we will prove in the next section the
following result.

Theorem 2.4 Assume (A). Then there exists a solution to (SDE). Further-
more, the law of Vt has a density for each t ≥ 0. Hence there exists a solution
f to (BS) (see Proposition 2.3).

We now wish to show that under some conditions, the whole mass of the system
becomes infinite as time tends to infinity. We would like to treat at least the
case of cutoff hard spheres rates: aS(m,m∗) = aB(m,m∗) = (m1/3 + m

1/3
∗ ),

ϕS(v, v∗) = |v − v∗| ∧ A, while ϕB(v, v∗, n) = |(v − v∗).n| ∧ A. Hence, there
is an intrinsic difficulty: the masses of the particles growing, their velocities
decrease, because coalescence dissipates kinetic energy. Thus the rate of co-
alescence (which contains |v − v∗|) decreases, and hence the masses grow less
and less fast. The main idea will thus be to prove that, in some sense, a par-
ticle whose mass does not tend to infinity has an energy which is bounded below.

Let us introduce an additional assumption, which says essentially that: there
are not much more collisions than coalescences, and the coagulation rates do
not vanish too fast.

Assumption (B)
1. There exists ε > 0 such that for all m,m∗ in N∗ and v, v∗ in R3,

aS(m,m∗) ≥ εaB(m,m∗); ϕS(v, v∗) ≥ ε

∫
S2

ϕB(v, v∗, n)dn. (2.10)
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2. For all m in N∗, aS(m,m) > 0, while
∫

R3

∫
R3 11{ϕS(v,v∗)=0}dvdv∗ = 0.

Theorem 2.5 Assume (A) and (B). Consider a solution (Mt, Vt)t≥0 to (SDE).
Then limt→∞Mt = ∞ a.s. As a corollary, we deduce that the corresponding so-
lution f(t, .) to (BS) (see Proposition (2.3)) tends to 0 in L1(N∗×R3), as time
tends to infinity.

Remark 2.6 The present results will be extended in [6] which is work in progress.
We anticipate to obtain the corresponding results both for the discrete and con-
tinuous case and for unbounded rates. We remark, that to prove existence and
uniqueness, the probabilistic arguments used here will not be sufficient.

3 Existence and simulation

Our aim in this section is to build explicitely a solution to (SDE). We denote,
for each m ∈ N∗, by λ(m) the maximal event rate of a particle of size m:

λ(m) = sup
v,m∗,v∗,n

[
aS(m,m∗)

m∗
ϕS(v, v∗) +

aB(m,m∗)
m∗

4πϕB(v, v∗, n)
]
. (3.1)

Let Q0(dm, dv) be defined by
∑

k≥1 kf0(k, v)δk(dm)dv. For any t ≥ 0, we build
the following (recursive) random function.

function (mass,velocity)(t):

{ Simulate a Q0-distributed r.v. (m, v).
. Set s = 0.
. While s < t do
. { Simulate an exponential r.v. u with parameter λ(m).
. . Set s = s+ u.
. . If s ≤ t
. . { Set (m∗, v∗) =(mass,velocity)(s).
. . . Choose n ∈ S2 uniformly.

. . . Compute p1 = 1
λ(m)

aS(m,m∗)
m∗

ϕS(v, v∗).

. . . Compute p2 = 1
λ(m)

aB(m,m∗)
m∗

ϕB(v, v∗, n).
. . . Go to (a), (b), or (c) with probability p1, p2, 1−p1−p2.
. . . (a) Set m = m+m∗ and v = mv+m∗v∗

m+m∗
.

. . . (b) Set m = m and v = v + 2 m∗
m+m∗

[(v − v∗).n]n.
. . . (c) Do nothing.
. . }
. }
. Set (mass,velocity)(t) = (m, v).
}
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Let T < ∞. Using this algorithm allows to obtain a process (Mt, Vt)t∈[0,T ], by
stocking the successive values (m0, v0), (m1, v1),... of the variables (m, v), the
successive values 0 = t0 < t1 < ... of the variable s, and setting (Mt, Vt) =∑

i(mi, vi)11{t∈[ti,ti+1)}. Following the proof of [5], one may check the following
result.

Proposition 3.1 Assume (A), and let T < ∞. Then the computation of
(mass,velocity)(T ) a.s. ends. The corresponding process (Mt, Vt)t∈[0,T ] is
a solution to (SDE) on [0, T ].

We presented this algorithm in its simplest form here. It looks quite unefficient.
One may however significantly increase its speed by using some computational
tricks, see [5].

The main idea of this algorithm consists in noting that the characteristics (mass,
velocity) of a typical particle are obtained by making it collide and coalesce, with
well-chosen rates and acceptance-rejection procedures, with other typical parti-
cles. The characteristics of these other typical particles will be obtained by mak-
ing them collide and coalesce, with well-chosen rates and acceptance-rejection
procedures, the mass of other typical particles, and so on... This explains why
the algorithm we propose is recursive.

To conclude the proof of Theorem 2.4, one still has to show the following lemma.

Lemma 3.2 Assume (A). Consider a solution (Mt, Vt)t≥0 to (SDE). Then
for all t ≥ 0, the law of Vt has a density.

Proof First of all denote by Qt the law of (Mt, Vt), and by µt(dm, dv) =
m−1Qt(dm, dv). Then a fair computation shows that, even if µt is not ab-
solutely continuous, µt is a measure solution to (BS): it solves (2.8) replacing
f(s,m, v)dv and f(s,m∗, v∗)dv∗ by µs({m} × dv) and µs({m∗} × dv∗). See
[3] for such a computation in a similar context. Denote now by A = {A ∈
B(R3) ;

∫
A
dv = 0}. One has to show that for each t ≥ 0, m0 ∈ N∗,

A ∈ A, µt({m0} × A) = 0. This can be done by applying the measure
version of (2.8) with the function φ(m, v) = 11{m=m0}11{v∈A}, neglecting all
the loss terms, and then by applying the Gronwall Lemma to the function
ψt(m1) = supm0≤m1

supA∈A µt({m0} × A). As an example, one easily checks
that for all A ∈ A, all m, m∗, v∗, the set B = {v ; v∗∗ ∈ A} still belongs to A.
�

4 Large time behavior

Our aim in this section is to prove Theorem 2.5. In the whole section, we assume
(A), (B), we consider a fixed solution (Mt, Vt)t≥0 to (SDE). For each t ≥ 0,
we denote by Qt(dm, dv) =

∑
k≥1 kf(t, k, v)δk(dm)dv the law of (Mt, Vt). We
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know that f is a solution to (BS) in the sense of Definition 2.1. We begin with
a lemma.

Lemma 4.1 For any m ∈ N∗,∫ ∞

0

dt

∫
R3
f(t,m, v)dv

∫
R3
f(t,m, v∗)dv∗ϕS(v, v∗) <∞. (4.1)

The proof is immediate, applying (2.8) with φ ≡ 1, using the nonnegativity of
all the involved functions, and the fact that aS(m,m) > 0 thanks to (B).

Lemma 4.2 Almost surely, M∞ = limt→∞Mt ∈ N∗ ∪ {∞} exists.

The proof of this is immediate, since M is a nondecreasing N∗-valued process.
Our aim is thus to check that P [M∞ = ∞] = 1. We will assume the converse.

Assumption (S): P [M∞ <∞] > 0.

The key point of the proof consists in the following lemma.

Lemma 4.3 Assume (S). Then there exists t0 ≥ 0 and m0 ∈ N∗ such that

γ0 = P [for all t ≥ t0, Mt = m0 and Vt = Vt0 ] > 0. (4.2)

Proof We break the proof into three steps.
Step 1 First of all, the discrete nature of M allows to conclude that under (S),
there exists t1 ≥ 0 and m0 ∈ N∗ such that, if

Ω1 = {for all t ≥ t1, Mt = m0} , (4.3)

then P [Ω1] > 0. We now define

JS
t =

∫ t

0

∫
N∗

∫
R3

∫ ∞

0

11n
u≤ aS(Ms−,m)

m ϕS(Vs−,v)
oνS(ds, d(m, v), du), (4.4)

JB
t =

∫ t

0

∫
N∗

∫
R3

∫
S2

∫ ∞

0

11n
u≤ aB(Ms−,m)

m ϕB(Vs−,v,n)
oνB(ds, d(m, v), dn, du),

where JS
t (resp. JB

t ) represents the number of coalescences (resp. collisions)
endured by our typical particle before t. With these notations,

Ω1 =
{
Mt1 = m0, JS

∞ − JS
t1 = 0

}
. (4.5)

The lemma will thus be proved if there exists t0 ≥ t1 such that

P
[
Mt0 = m0 ; JS

∞ − JS
t0 = 0 ; JB

∞ − JB
t0 = 0

]
> 0. (4.6)

Step 2 We now show that

P
[
Mt1 = m0 ; JS

∞ − JS
t1 = 0 ; JB

∞ − JB
t1 <∞

]
= P [Ω1] > 0. (4.7)
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This is not hard. Indeed, consider the successive instant of jumps t1 < τ1 <
τ2 < ... of JS

t + JB
t after t1, and for each i ∈ N∗, set the random variable Zi

to be 1 (resp. 0) if τi is an instant of jump of JS (resp. JB). Then the Zi

are independent, and thanks to (B)-1, we deduce that P [Zi = 1] ≥ ε2/[1 + ε2].
Indeed, at each instant t, the rate of jump RS

t (resp RB
t ) of JS

t (resp. JB
t ) is

given by

RS
t =

∑
m≥1

∫
R3
aS(Mt−,m)ϕS(Vt−, v)f(t,m, v)dv,

RB
t =

∑
m≥1

∫
R3
aB(Mt−,m)

∫
S2

ϕB(Vt−, v, n)dnf(t,m, v)dv, (4.8)

so that RS
t ≥ ε2RB

t . Hence,

P
[
JS
∞ − JS

t1 = 0 ; JB
∞ − JB

t1 = ∞
]
≤ P [for all i ≥ 1, Zi = 0] = 0. (4.9)

One easily concludes that (4.7) holds.
Step 3 We thus deduce that on Ω1, the last instant of jump of JB is a.s. finite,
so that for t0 ≥ t1 sufficiently large, (4.6) holds. This concludes the proof. �

Lemma 4.4 Assume (S). There exists a nonnegative function β on R3 such
that

∫
R3 β(v)dv > 0 and for all t ≥ t0, all v ∈ R3, m0f(t,m0, v) ≥ β(v).

Proof First of all consider the nonnegative measure M(dv) on R3 defined by

M(A) = P [for all t ≥ t0, Mt = m0 and Vt = Vt0 , Vt0 ∈ A] . (4.10)

This measure has a density β, since the law of Vt0 has a density. This function
β is nonnegative, and thanks to Lemma 4.3,

∫
R3 β(v)dv = γ0 > 0.

Using the link between (SDE) and (BS), we obtain for each t ≥ t0, all A ⊂ R3,∫
A

dvm0f(m0, t, v)dv = P [Mt = m0, Vt ∈ A] ≥M(A) =
∫

A

β(v)dv. (4.11)

which ends the proof. �

Proof of Theorem 2.5 Assume (S). Using Lemma 4.4, we obtain for all t ≥ t0,∫
R3
f(t,m0, v)dv

∫
R3
dv∗f(t,m0, v∗)ϕS(v, v∗)

≥ m−2
0

∫
R3

∫
R3
dvdv∗ϕS(v, v∗)β(v)β(v∗) = δ > 0, (4.12)

thanks to assumption (B)-2, the constant δ not depending on t ≥ t0. This
contradicts Lemma 4.1 with m = m0. Hence (S) does not hold, and M∞ = ∞
a.s. Finally,

∑
m≥1

∫
R3 f(t,m, v)dv = E[1/Mt], which obviously tends to 0 due

to the Lebesgue Theorem, since 1/Mt is always smaller than 1. In other words,
f(t, .) tends to 0 in L1(N∗ × R3). �
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