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1 Introduction

Coalescence is a widespread phenomenon in nature and is one of the mech-
anisms by which particles (clusters) grow, the underlying process being suc-
cessive mergers. In particular, coalescence phenomena are met and play an
important role in various fields of physics (aerosol and raindrops formation,
smoke, sprays, ...), chemistry (polymer, ...), astrophysics (formation of galax-
ies) and biology (hematology, animal grouping, ...) and take place at different
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scales [33]. At the level of particles, coalescence (or coagulation or aggrega-
tion) refers to mechanisms by which two (mother) particles encounter and
merge into a single (daughter) particle. In the simple situation where each
particle is fully identified by its mass (or size) y € Y (where Y = N\ {0} or
Y =Ry := (0,+00)) and is denoted by {y}, the coalescence mechanism can
be represented in a schematic way as

W+ 1w} "2 y+y), (1)

where a stands for the probability (or rate) of occurrence of such an event.
Let us observe right now that, during each coalescence event (1), the total
mass is conserved, while the number of particles decreases and the mean size
of the particles increases (from (y +y')/2 to y +y').

From the modelling point of view, there are basically three levels of de-
scription of a system of a large number of particles undergoing coalescence
events.

— The microscopic level: we consider a system of N particles, V > 1, which
evolves according to the coalescence mechanism (1), the coagulation events
occurring in a random way. Such a description is mainly stochastic as
was originally proposed by Smoluchowski [97, 98]. Among the stochastic
models of coalescence, we mention the Markus-Lushnikov process [77, 82]
which has been extensively studied recently [2, 55, 89]. Stochastic models
of coalescence are currently an active field of research in probability theory
and we refer to the survey by Aldous [2] and to [10, 27, 36, 37, 55, 56] (and
the references therein) for a more detailed account.

— The mesoscopic level: when we are not interested in the description of
each identified particle in the system but rather in statistical properties
of the system, a less accurate (mean-field) description is meaningful. We
then introduce the statistical distribution f(¢,y) > 0 of particles of mass
y € Y at time ¢ > 0 and mainly consider the time evolution of f. The most
commonly used mean-field equation for f is the celebrated Smoluchowski
coagulation equation on which we will focus in this survey. We will discuss
at length its main properties below, as well as some related models.

— The macroscopic level: the physically observable quantities are often av-
erages of f with respect to y and a coarser description of the system can
be reduced to the evolution of these quantities. However, the derivation
of macroscopic equations for coalescence mechanisms is not yet clear and
requires further investigations.

Still, there are links between these different levels and, in particular, the
relationship between the microscopic and the mesoscopic levels is now well
understood, and convergence proofs are available as well: convergence of the
Marcus-Lushnikov process to the Smoluchowski equation [55, 89], Boltzmann-
Grad limit of Smoluchowski’s description [60]. As for connections between the
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mesoscopic and the macroscopic levels, we are only aware of the recent work
[39].

The aim of this survey is to present an overview of the mathematical anal-
ysis of coalescence equations and related models, and focus on the statistical
description at the mesoscopic level. We point out some of the main mathemat-
ical problems and results with physical interest, as well as some mathematical
tools and strategies that we think of efficiency to investigate further these
models. We also provide a (non-exhaustive) list of recent contributions and
stress here that we mainly consider the deterministic approach to study coa-
lescence models.

From now on, we thus restrict ourselves to the statistical description at the
mesoscopic level and first consider the case where the distribution function f =
f(t,y) depends only on the time and mass variables (¢, y), that is, each particle
is fully identified by its mass at the microscopic level. In order to understand
the time evolution of f, the main issue is to figure out how exchange of mass
takes place in the system. In fact, a central feature of the models considered
herein is that mass “can be lost” during the time evolution. More precisely,
the total mass of particles in the system Y;(t) at time ¢ given by

Yi(t) :Z/Yf(t,y)ydy

might not remain constant through time evolution, though mass is conserved
in each coalescence event at the microscopic level. A physical explanation
for this phenomenon is the occurrence of a phase transition, the loss of mass
accounting for the particles being transfered to the newly created phase. From
a mathematical viewpoint, the underlying mechanism is that mass escapes
as y — +oo which may be interpretated as the formation of particles with
infinite mass. Since the statistical description does not take explicitly into
account particles with infinite mass (y = +00), their possible appearance is
represented by a loss of mass. Let us mention here that, from the modelling
point of view, a statistical description of a system of particles undergoing
coalescence events and including particles with infinite mass, is still lacking,
besides some attempts in [41, 113]. Depending on the model, this loss of mass
may occur

- either in finite time: this is the gelation phenomenon,

- or in the large time asymptotics : this is the saturation phenomenon.

Though the understanding of these two phenomena is still far from being
complete, several relevant mathematical results are now available. Our aim is
thus to present what can be said on these two phenomena from a mathematical
point of view, along with conjectures proposed by physicists. The main ques-
tion we will discuss below is then: when and how does the gelation/saturation
phenomenon occur?
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1.1 The Smoluchowski coagulation equation

In this subsection, we restrict ourselves to the statistical description of a sys-
tem of particles, each of them being fully identified by its mass, and the evo-
lution of the system is assumed to be governed by the sole coalescence process
(1). The most widely used mean-field equation in that situation is the Smolu-
chowski coagulation equation which was originally derived by Smoluchowski
in [97, 98] in a discrete setting (Y = N\ {0}) and subsequently extended to the
continuous case Y = Ry by Miiller [87] (see also [33] for further information
on that issue). We mainly consider the latter to simplify the presentation.

The dynamics of the density f = f(t,y) > 0 of particles with mass y € Ry
at time ¢t > 0 is governed by the Smoluchowski equation

Of = Qc(f) :==Qu(f) —Q2(f),  (Hy) € (0,+00) XY, 2)
fO)=f"  yey. 3)

The reaction term Q.(f) describing the effect of coalescence on the evolution
of f is given by

1

QN = [ =9 16 =9 d

%W = | Sty 1) 1) dy

for y € Ry. The meaning of these terms is the following: Q1 (f)(y) accounts
for the formation of particles {y} by coalescence of smaller ones, i.e. by the
reaction

( - ,7 I)
r+{y—v}r "= ), v ey,

while Q2(f)(y) describes the depletion of particles {y} by merging with other
particles, i.e. by the reaction

{y} +{v'} ") {y+v'}, v eRy.

The coalescence coefficient (kernel, rate) a depends on the precise physical
mechanism by which pairs of particles do stick. It thus depends on the physical
context. In his original model for colloidal particles, Smoluchowski derives the
following expression for a:

aly,y) =@+ @) W "+ @) (4)

with @ = v = 1/3, 8 = 1 [97], and the more general case with a, 8,7 > 0
may also be considered under the restriction a8 < 1. Other commonly used
kernels a involve products of powers such as

aly,y) =v* ') +@)*y", «aBel01], (5)
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and includes Golovin’s kernel (a,) = (0,1) [48] and Stockmayer’s kernel
a = =1 [105]. Also of interest is the ballistic kernel

ay,y) = W* + @)’ Iy — ('), (6)

with a, 8,7 > 0 and a §+ v < 1. We refer to [33] for more information on the
coagulation coefficient a.

Observe that, under the indicated restrictions on the exponents a, 3,7, all
the above kernels satisfy the symmetry condition

0<a(y,y)=aly',y) forae y,y €Y xY, (7)
the growth condition
a(y,y) < Csyy'  for (y,y") € (6,+00) x (3, +00) (8)
for every § > 0, as well as the additional structure condition

a(y,y) <aly,y+y')+aly,y+y') for (y,y)eY xY. 9)

Throughout the paper we will always assume that the coagulation coefficient
a satisfies (7) and (8). At some places, we will also require in addition the
structure assumption (5) or (9) to be fulfilled.

The starting point of the qualitative analysis of the Smoluchowski coagu-
lation equation (2) is the following fundamental (and formal) identity: for any
¢ :Y — R there holds

[ownoa=5 [ [ awy)fr @ -o-a) aa. o

Here and below, we put g = g(y), ¢’ = 9(¥') and ¢" = g(y + y') to shorten
notations. This identity is obtained after a change of variables and applying
(without justification) the Fubini theorem to Q1 (f). Suitable choices of func-
tions ¢ in (10) lead to several qualitative (but formal) information on the
reaction term Q.(f), and on the solution f as well. We list some of them now.

-For k € R and ¢(y) = y*, we have sign (¢ —¢—¢') = sign (k—1) and
it readily follows from (10) that

decreasing if £ < 1,
t— Yi(t) := / y f(t,y)dy is constant if k =1, (11)
v increasing if k > 1.

Roughly speaking, (11) reflects the fact that small particles aggregate to create
larger ones while preserving the total mass. Let us stress here again that the
computations leading to (11) are formal and, in particular, that the last two
assertions of (11) only hold true on a finite time interval in general.
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- Under the structure assumption (9), another interesting piece of informa-
tion is obtained with the choice ¢(y) = p f(t,y)?~, from which one deduces
that

t— ||f(t)||lLr is non-increasing for any p > 1, (12)

together with some information on Q.(f) as well (see Lemma 3 in Section 4.1
below). A straightforward consequence of (12) is that the aggregation process
takes place without concentration at a fixed mass.

Actually, both (11) and (12) express some monotonicity of the coalescence
evolution (as well as irreversibility).

After this general discussion, let us come back to the question of total mass
conservation which has attracted the attention of physicists in the eighties.

At first, it is easily seen from (2) that Y; is a non-increasing function of time.
Indeed, for R > 0, the choice ¢(y) = min {y, R} in (10) entails that

t— /Ymin {y, R} f(t,y)dy

is non-increasing, and the claimed monotonicity of Y¥; then readily follows by
the Fatou lemma after letting R — +00. Next, it turns out that an elementary
but fundamental argument shows that the conservation of mass

Yi(t) =v1(0), t>0, (13)
cannot be true for the multiplicative coalescence kernel a(y,y') = yy' [73].
Indeed, taking ¢(y) =1 in (10) implies that a solution to (2) satisfies

1 T
Yo(T) + 5/ Y32(s) ds = Y5(0) for every T >0.
0

In particular, since Yy > 0, we realize that Y7 € L?(R, ), which contradicts
(13). Consequently, the total mass conservation breaks down in finite time, a
phenomenon known as the occurrence of gelation: more precisely, there exists
a time T, > 0 such that Y;(¢) = Y31(0) for each t € [0,T,) and Y71 (¢) < Y1(0)
for each ¢ > T,. The gelation time Ty is then defined by

T, :=inf{t >0, Yi(t) < Yi(0)}. (14)

More generally, for the coalescence coefficient (5) with A := a+ 8 € (1,2], it
is shown in [42] that

Y, € LA(Ry) if ke (M\/2,(1+1)/2). (15)

In particular, ¥; € L2(R, ) since A > 1, which implies that gelation occurs in
that case. We will sketch the proof of (15) in Section 3. The occurrence of gela-
tion for the coefficient (5) with A € (1,2) had been previously proved by Jeon
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[55] with probabilistic arguments, and (15) actually provides an alternative
and simpler proof (as well as a more accurate statement).

On the other hand, it was proved by White [108] and Ball & Carr [6]
that the conservation of mass (13) holds true under the condition a(y,y') <
A (1+y+y") (for the coalescence coefficient (5), this case corresponds to the
range of parameters (a, 3) for which A =a + g < 1).

In addition, the total number of particles Yy decays to zero as time goes
to infinity:
Yo(t) - 0 when t— +o00. (16)

Such a property is heuristically clear as a consequence of the coalescence
mechanism (1) and can be rigorously proved in several situations. For instance,
the convergence (16) holds true when a > 0 on the set {(y,y') € Y?, y #y'}
(further additional assumptions have to be made in the discrete case Y = N*),
see [68], and when a > 0 a.e. on Y2 and a satisfies (9), see [85]. The assertion
(16) actually means that all the particles with a given and finite mass y > 0
have merged in the large time limit. Therefore, when the conservation of mass
(13) holds true, the loss of mass does not take place in finite time but in
infinite time. We then put

+oo if (13) holds true,
T, = (17)
T, if gelation occurs.

The next step is to understand when and how the loss of mass occurs.
The answer to the first question being obvious in the absence of gelation since
T, = +oo, we assume that we are in a situation where gelation occurs at
the finite time 7, and look for information on 7,. It turns out that, for the
multiplicative kernel a = y3’, the gelation time is explicitly calculable and
T, = T» where T» = Y5(0)~! is the blow-up time of the second moment Y3
[38, 90]. For other gelling coagulation kernels, fewer information seem to be
known and only estimates of T, from above and from below are available
[38, 50]. In particular, it is not clear (though likely) whether the gelation
time coincide with the blow-up time of some particular moment. Concerning
the second question on the way gelation occurs, an open problem is which
moments of the solution blow up at the gelation time. For instance, for the
coagulation kernel (5) with A = a+8 € (1, 2], it is conjectured that Y} (¢) blows
up as t = T, for k > (A +1)/2 [50]. When T, = +o00, an interesting question
is the speed at which the total number of particles Yy (or some moment Y%,
k € ]0,1)) decays as a function of time. Except for the constant kernel a = 1
(for which an exact computation gives Yy(t) = 1/(¢t + 1)) and for the additive
kernel @ = y + y' (for which we may compute exactly Yp(t) = e~ %) for an
initial datum such that ¥5(0) = Y1(0) = 1, the rate of convergence to zero is
not known. Still, temporal decay estimates (which seem to be non-optimal)
are available for Yy (t), k € (A\/2,)) when a = (yy')*? [68].
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A further step is to determine the“profile” of the solution at the gelation
time T,. This question has been thoroughly studied by physicists (see, e.g.,
[32, 38, 50, 74] and the references therein). For the coagulation kernel (5) with
A=a+p € (1,2], it is conjectured that

f(T,,y) ~ y’3/2*’\/2 when y — +00. (18)

A mathematical proof is still lacking, but it is shown in [42] that
Yk ¢ L (Tl,TQ) for every k> T and T1 < Tg < T2 . (19)

As a consequence of both (15) and (19), we see that the only polynomial decay
at infinity compatible with these moments estimates at the gelation time is
precisely the one suggested in (18), but of course this does not prove (18).

At last, one can look for a more precise description near Ty. On the grounds
of physical experiments, physicists have suggested that the behaviour of any
solution f to (2), (3) near the time T, has a self-similar form. This is the
so-called dynamical scaling hypothesis which asserts that

1
T9) ~ S5z 9 (sé’—t)> as t—T,. (20)
The parameter 7, the mean particle mass s(t) and the profile ¢ are to be
determined and depend on the coagulation kernel a but not on the “details”
of the initial data, the mean particle mass being such that s(t) — 400 as
t — T [32, 74]. Several formal and computational studies have already been
performed for homogeneous coagulation kernels a (see [32, 33, 44, 59, 71, 83]
and the references therein), but not very much is known from the rigorous
point of view. Assuming that the coagulation kernel a is homogeneous

aléy,&y') =& aly,y'),  (y,y, &) €Y?,

for some A < 2, it is conjectured that the self-similar profile s(t) =" ¢ (y/s(t))
is actually a self-similar solution to (2). Then, for (20) to comply with the
total mass conservation (13) when T, = +oo0, it is clear that 7 = 2 in that
case. When gelation occurs (7% = T, < +00), the determination of 7 is less
clear and is performed in [32] by formal arguments, the resulting value being
7 = (A + 3)/2. Once 7 is known, inserting the ansatz s(t)~" ¢ (y/s(t)) in
(2) yields an explicitly solvable ordinary differential equation for s(¢) and
a nonlinear integro-differential equation for . Unfortunately, owing to the
nonlinear and nonlocal character of the equation satisfied by ¢, the existence
of the profile ¢ is still an open problem, except for the constant kernel a = 1,
the additive kernel a = y +y' and the multiplicative kernel a = y ', for which
explicit formulae are available. Nevertheless, in spite of the lack of existence
results for ¢, several information have been obtained by formal arguments on
the behaviour of ¢ for £ ~ 0 or z ~ 400, and we refer to [32] for a detailed
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discussion. In the few cases where self-similar solutions are known to exist,
the next question is whether (20) is valid or not. When a = 1, an affirmative
answer has first been given by Kreer & Penrose for initial data fi" decaying
exponentially at infinity [58] and extended to general initial data in [2, 28, 68].
When a = y+4' and a = yy', the validity of (20) is considered in [10, 28]. We
shall return to a more precise description of the dynamical scaling hypothesis
in Section 4.3 below.

1.2 Other models

In many cases, coalescence is not the only mechanism governing the dynamics
of the system of particles and other effects should be taken into account. These
mechanisms may act directly on the size (and on the growth!) of particles
(that is fragmentation, condensation, evaporation) or they may act on other
variables such as the position z € 2 C R®, the velocity v € R® or/and the
charge ¢ € R of particles when particles are not solely identified by their size
(that is diffusion, transport (inner or exterior), friction, ...). We list below
additional mechanisms encountered in the literature.

1. Linear fragmentation. Fragmentation is the mechanism by which a
single particle splits into two or several smaller pieces. In particular, binary
spontaneous (or linear) fragmentation corresponds to the reaction

w2 W+ -y}, Y e O) (21)

at the microscopic level [33]. Multiple spontaneous fragmentation and colli-
sional breakage can be considered as well, see, e.g., [78] for the former and
[70, 109] for the latter. For a precise modeling of that mechanism, see equation
(23) below.

2. Condensation-Evaporation. Another natural growth mechanism is the
growth of particles by exchange of matter with the surrounding medium
(condensation/evaporation): for instance, liquid droplets in its gaseous phase,
such as raindrops. The distribution of particles is still given by the density
f = f(t,y) which satisfies the mass transport equation

O f+0y(Ef)=0, (22)

where E = E(u,y) is the rate of clusters growth and depends on the size
y and the density u of the medium. Condensation (transfer of matter from
the medium towards the clusters) occurs when E > 0, while evaporation
(transfer of matter from the clusters to the medium) takes place when E <
0. A particular case is the Lifshitz-Slyozov-Wagner (LSW) equation which
describes the Ostwald ripening [75, 107]. The growth rate E is then E =
k(y) u — q(y) and one has to supplement (22) with the time evolution of u
which is given by one of the following two equations:
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S aly) fty) dy
Jo k(y) f(ty) dy

The LSW equation is in fact connected with coagulation-fragmentation equa-
tions [91, 92, 96].

3. Diffusion. Consider now particles which, at a microsopic level, move with
respect to space in a domain 2 C R3. Assuming that the motion of a particle of
mass y obeys a Brownian motion (with a mass-dependent diffusion constant
d(y) > 0), a diffusion —d(y) A, f appears at the mesoscopic level, and the
density f = f(¢,2,y) now depends on time ¢ > 0, position z € 2 and y € Y.

U(t)+/oooyf(t,y)dy=p or u(t)

4. Transport. Assuming next that particles are transported along a velocity
field v € R3, a transport term v - V f is to be added at the mesoscopic level.
Here, either v = v(¢,z,y) is a given velocity drift or v is the inner velocity of
the particle. In the latter case, particles are identified by the mass-momentum
pair (m, p), the velocity being given by v = p/m, and the distribution function
f = f(t,z,m,p) depends on time ¢t > 0, position z € 2, mass m € Y and
momentum p € R3.

5. Kinetic coalescence. In the situation described in the previous point, ob-
serve that, at a microscopic level, the coalescence between two particles with
respective mass-momentum {m,p} and {m/',p'} results in a particle of mass-
momentum {m",p"} with m" = m + m' and p" = p + p'. Such a mechanism
can be seen as a multi-dimensional extension of the coalescence mechanism
(1). Corresponding mesoscopic models have been recently investigated from a
modeling and a mathematical point of view [8, 11, 40, 93, 106].

6. Friction. When liquid or solid particles are transported by a gaseous phase,
the velocity of particles has the tendency to get closer to that of the gas
because of friction. This phenomenon is taken into account by a friction term
div,(F f), with F = Fy (v—u) and u € R®. We refer to [52] for a mathematical
analysis of such a model when u = u(t,z) is a given vector field and to [54]
for more complicated nonlinear friction mechanisms.

7. Maximal admissible mass. In some situations such as in liquid-liquid dis-
persions in a vessel with rotating impellers, it is experimentally observed that
droplets beyond some mass yg cannot persist for any time. A model account-
ing for this phenomenon has been recently developed in [43]. Roughly speak-
ing, the coalescence of two droplets {y} and {y'} with y < yo, ¥’ < yo and
y+1y' > yo is possible but the resulting droplet is instantaneously broken into
smaller pieces with admissible masses below yq.

A detailed description of the above mechanisms is out of the scope of
this survey and we thus focus here on the situation where only the (binary)
fragmentation mechanism comes into play and competes with the coalescence
mechanism. Some results on the models where spatial diffusion is taken into
account will also be discussed in the sequel.

Let us first observe that, at the microscopic level, fragmentation also con-
serves the total mass but acts in a reverse way on the distribution of particles.
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At the mesoscopic level, the coagulation-fragmentation (CF) equation reads

atsz(f) ch(f)_Qf(f)v (tay) € (07+OO) xY, (23)

where the coagulation term Q.(f) is still given by (2) and the fragmentation
term Q¢ (f) := Qs(f) + Q4(f) by

—l/yb(y y—y') dy' f(y),

Qs(f)y) :
Qa(f)y) :

/ by,y') fly+y') dy

In the discrete setting (Y = N\ {0}), the discrete version of (23) reads

Tioaup, @) e +o0) xN\ {0}, (24)
where f = (fi)izl;
i—1 [e%s)
Qi(f) = % (@jizj fj ficj = bjizj fi) = > _(aij fi fi—bij firs)
Jj=1 j=1

and (a;,;) and (b; ;) denote the coagulation and fragmentation coefficients,
respectively. A particular case of the discrete coagulation-fragmentation equa-
tion is the Becker-Déring (BD) equation which is obtained from (24) with the
choice a;; = b; ; = 0 if max {i,j} > 2 (see [7, 96] and the references therein,
and Sections 5.3 and 5.4 as well). From a physical point of view, it means
that all coagulation and fragmentation events involve a cluster of size 1. In-
troducing a; = a;1, biy1 = b;1 for i > 2, and a1 = a1,1/2, by = b1,1/2, the
BD equation then reads

df1 B [eS)

E—_Hl(f)_;:l”i(f)a (25)
dfi _ W ;

E = z—l(f) 1(f)7 ? Z 27 (26)

where f = (fi)izl and Wz(f) = Qa; f1 fz - b,’+1 fz'+1 for ¢ Z 1.

Besides existence and uniqueness results, nothing much is known on the
qualitative behaviour of solutions to the coagulation-fragmentation equation
(23), except when the coagulation and fragmentation coefficients are linked
by the so-called detailed balance condition: there exists a nonnegative function
M e Li(Y) := LYY, (1 + y) dy), M # 0, such that

a(y,y ) My) M(y") =bly,y" ) My +y'), (v,y) €Y xY. (27

Let us first point out that this condition is not fulfilled for arbitrary pair of
coefficients a and b. Observe next that (27) implies that M is a stationary
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solution to (23), usually refered to as an equilibrium. It is then straightforward
to check that, for z > 0, M, defined by

M.(y) :=M(y)2¥, yevY, (28)

also satisfies (27) but does not necessarily belong to L1(Y). We therefore
introduce
zs:=sup{z >0, M, € L}(Y)} € [1,+d],
(29)
0s :=Y1(M,,) € [0, +00].

s

Since no equilibrium with a total mass above g5 can exist, g5 is usually refered
to as the saturation mass. An additional and interesting feature of the detailed
balance condition (27) is the existence of a Liapunov functional H given by

H) ::/Yf {m%q} dy. (30)

With this definition of the entropy (or free energy), a solution f to the CF
equation (23) satisfies (at least formally) the following H-Theorem

d

SH(f) = =5D(), (31)

1
2

where the so-called entropy dissipation term D(f) is given by
D)= [ [(af£=bs") (naf 1)~ (o) dydy’ >0. (32
yJy

Since D(f) only vanishes when f is an equilibrium, we are naturally led
to the following conjecture:

f,y) = M,(y) when t— +oo,

the parameter z being uniquely determined by the condition Y;(M,) =
Y1 (fin) if 1(f™) < g5 and z = z, if Y1(f™) > p,. The interesting feature
here is that, when g, < +00, there is a saturation phenomenon: mass is lost
in infinite time. However, a mathematical proof of this conjecture is far from
being complete and the only cases where complete proofs are available are
the Becker-Doring equations [5, 7, 94] and their generalisations [13, 16, 22], or
the strong fragmentation case [14, 67]. We will return more precisely to that
point later on, in Section 5.

To go further, one may wonder how the saturation phenomena takes place.
An answer to this question has been supplied in [91, 92, 88] for the Becker-
Déring equations (25), (26) (see also the survey paper [96]). More precisely,
assume that g5 = Y1 (M,,) < +oo and that ¢ := Y1(f™) > ps. As already
mentioned, it is expected that f;(t) — M; 2% as t — +oo for i > 1, while the
remaining fraction of mass g — g; accumulates on larger and larger clusters.
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To obtain quantitative information on the latter process (saturation), Penrose
introduces in [91] a new time variable 7 = ¢! =% ¢ and a cut i. between small
and large masses, and studies the limiting behaviour as € = 0, i — 4+00 and
€ i — 0 for the coefficients

a; = ay i%, bi=a;i (z:+qi’"), i>2,

with @ € (0,1], v € [0,1), a1 > 0, z, > 0 and ¢ > 0 (in [91], Penrose
actually considers only the case & = v = 1/3. The extension presented here
is performed by Niethammer in [88]). Recalling that solutions to the Becker-
Déring equations (25), (26) satisfy Y1(f(t)) = Yi(f™") for all t > 0 [7], an
alternative formulation of the Becker-Doring equations (25), (26) reads

Y ifi(r)=¢ and % :% Wit (F) =Wi(f)), i>2, (33)
i=1
where
Wi(f) = a; (fl - —> fi— (big1 fiyr —bi fi)
=a1i® (fi—2s—qi ") — (bip1 fix1 — bi fi) (34)
Introducing
fr) = 5 an) and Wine) = e Wilf()
for (r,z) € (0,400) x ((i —1/2)e, (i + 1/2)e)), we may approximate the dif-

00) x (
ferences in (33) and (34) by derivatives for 7 > i. and obtain, since z ~ i ¢,
Orf ~ =0, W(f) and W(f)(r,z) ~ar (z%u(r) —q2*7),  (35)

to first order in e, where u(7) := &= (f1(7) — 25). Also, for a suitable choice
of i (for instance, ic = —Ine),

ie

ZZ fz(T) ~ Os

=1

and the first equality in (33) becomes

/Ooomf(mv) dz =0 os. (36)

The system (35), (36) is the Lifschitz-Slyozov-Wagner (LSW) equation [75,
107] and a rigorous proof of the above formal arguments has been recently
provided in [88]. We also refer to [17, 66] for connections between the Becker-
Doring equations and the LSW equation in a similar spirit.
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2 Existence and uniqueness

Since the pioneering works of Melzak [84] and McLeod [79, 80, 81], many works
have investigated the existence of solutions to the coagulation-fragmentation
equation (23) for initial data f" satisfying at least

fin e LYY) = LY(Y, (1 + y)dy) is nonnegative a.e. in Y . (37)

Basically, two different functional approaches have been used to study the
existence of solutions to (23). On the one hand, fixed point and compact-
ness methods in the space of continuous functions satisfying (37) have been
introduced in [81, 84] and further developed in [35, 47]. On the other hand,
weak and strong compactness methods in L'(Y) have been introduced by
Ball, Carr & Penrose [7] in the discrete setting and by Stewart [100] for (23).
They were subsequently developed in [6, 99] for (24) and in [41, 42, 61, 65] for
(23). It turns out that the latter approach has proved to be more efficient and
we briefly outline the strategy below. It relies on a Stability Principle which
is the following: let (f,) be a sequence of solutions to (23) (or to suitable
approximations of (23)). If

(f») and Qi(f.) belong to a weakly compact subset of Li,.((0,T) xY)
fori € {1,...,4} and

t— / fn(t,y) #(y) dy belong to a strongly compact subset of L(0,T)
Y

for any ¢ € C.(Y), there are a subsequence of (f,) (not relabeled) and a
function f such that f, = f and Q(fn) = Q(f) in L}, .((0,T) xY). Thus f is
a solution to the coagulation-fragmentation equation (23). Let us recall here
that, by a solution to (23), we mean the following;:

Definition 1. Let f™ be such that (37) is satisfied. A (weak) solution to (23)
with initial datum f™ is a nonnegative function f € L>(0,T;L}(Y)) such
that Q;(f) € L'((0,T) x (0,R)) for every T > 0, R > 0 and i € {1,...,4}
which satisfies Y1 (t) < Y1(0) for t > 0 and

/Ooo/i’fatwdydt+/§,fin¢(o=')dy+/OOO/YQ(f)¢dydt:0

for each ¢ € C§°([0, +00) x Y).

In order to be able to apply the above mentioned stability principle, we
basically need two estimates which we discuss now. Note that, in general, the
only piece of information readily available is a uniform bound on Y; (f,).

A. On the one hand, we need a control on the behaviour of f,(¢,y) for small
or large values of y to be able to pass to the limit in the integral terms

Qi(fn), 1 €{1,...,4}.
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! b !
sup a(y,ly)7 sup (y,y'")

ve,R) Y yeo,r) Y
for R > 0, the bound on Y;(f,) is sufficient [65, 73, 99, 100]. It also
works in a spatially inhomogeneous setting for the diffusive coagulation-
fragmentation equation [3, 9, 18, 26, 49, 63, 64, 85, 110]. Otherwise, a
control of a moment of order larger than one is needed. Fortunately,
such a control is available in several situations:

2. product kernel (5) [42, 61, 65]. In that case, the estimate is also use-
ful in a spatially inhomogeneous setting for the diffusive coagulation-
fragmentation equation [64];

3. weak coagulation a < A(1+y+1y') [6, 41, 65];

4. strong fragmentation, that is, a(y,y’) < A (y* (¥')? + (¥')*y?) with
0<a<pB<landbly,y’)>B(l+y+y") withy > a+5-2[20, 41].

5. The coagulation coefficient @ may also have a singularity for y = 0 as
the coagulation kernel (4) when v > 0. In that case, a control on the
behaviour of f,(t,y) for small values of y is needed, such as a moment
of negative order [40, 85, 89].

. On the other hand, we need to prevent concentration, that is the formation

of Dirac masses. In other words, a uniform integrability estimate on f and

Q(f) is needed (except for the discrete coagulation-fragmentation equation

(24)).

1. For the continuous coagulation-fragmentation equation (23), such an
estimate can be obtained under mild growth conditions on a and b
[41, 61, 65, 100];

2. In the spatially inhomogeneous setting, such a uniform integrability es-
timate is much harder to obtain because of the local dependence on the
spatial variable x. Nevertheless, a uniform integrability estimate can
be obtained in the general case for the discrete diffusive coagulation-
fragmentation equation [63], see also [9, 18, 110] where L*°-bounds are
obtained under restrictive assumptions on a;j, b;; and d;. For the con-
tinuous diffusive coagulation-fragmentation equation, additional struc-
ture conditions on the coagulation coefficient seem to be needed to
obtain additional bounds. Three cases have been investigated recently:
— the case of coalescence kernels satisfying (9) coupled with a suffi-

ciently weak fragmentation: LP-norms are Liapunov functionals (in
the absence of fragmentation) or remain bounded on finite time
intervals [12, 64, 85];

— the case where the coagulation and fragmentation coefficients fulfil
the detailed balance condition (27), for which the entropy H and the
entropy dissipation term D defined by (30), (32) remain bounded
[64].

— for bounded coefficients, local existence and uniqueness have been
established in [3].

-0 as y — +oo,
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Let us mention that the assumption (37) on the initial data can be weaken
for coagulation coefficients satisfying a(y,y') < ¢(y) ¢(y'), where ¢ is a sub-
additive function (i.e., (y +y') < ¢(y) + ¢(¥')). In that case, existence of
a weak solution to the coagulation equation (2) is shown for any initial data
f™ such that f(y) min(1+y,p(y)) € L*(Y), see [85, 89]. We also point out
that there are coefficients a and b (such as a;; = i® + j*, a > 1) for which
non-existence results are available [7, 15, 29].

Let us close this section with some comments about the uniqueness issue
for the CF equation (23). Uniqueness results have been obtained by several
authors. It turns out that they can be seen as a consequence of Theorem 1
below. Let us emphasize that a modified version of (39) used in the proof of
Theorem 1 gives a strong stability result which in turn may be used to prove
existence [45, 68] in a similar way as for the Boltzmann equation [86]. A strong
connection between the existence and uniqueness proofs also appears in [89).

Theorem 1. Assume that there are a subadditive function ¢ and nonnegative
constants A, B such that

a(y,y") < Ap(y) ely"),

v (38)
/0 by, y —y") (e + oy —y') — o)) dy' < Bo(y)

for (y,y") € Y x Y. Then, there exists a unigque solution to (23) in the class
C([0,T], Ly,(Y)) N L (0, T; L2 (Y)) for each T > 0. Here Ly(Y) denotes the
space of functions g such that g € L'(Y).

Proof of Theorem 1. Consider two solutions f and g to (23) enjoying the
properties stated in Theorem 1. We multiply the equation satisfied by f — g
by ¢ = sign(f — g) ¢ and integrate over Y to obtain

d
2 E/y |f —gledy
- ! ' " _ b — ") dudy!
<[ [et=a ¢+ @ —v=v) dyay
y
- [ U= [ 46y -v) )= 66) - -v) d' dy
On the one hand, the subadditivity of ¢ and (38) ensure that

a(f—g) W' —9—¢)<alf—gl " —p+¢)<24|f—glp .
On the other hand, we infer from (38) that

-0 [ by — o) () — ) — Dy — o) dy

> |(f - )W)l / by — ) (oly) — o) — oy — ') dy
> -B o(y) |(f —9)()|.
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Therefore,

da _ _ > _
dt/ylf glcpdySAfylf glcpdyfy(fw)so dy+B/Y|f gl edy, (39)

whence f = g thanks to the Gronwall Lemma. O

Observe that Theorem 1 requires that the solution to (23) belongs to
LY0,T5L.»(Y)), a fact which might not be true for arbitrary T > 0 and
initial data f;, € L}. Uniqueness then reduces to the problem of getting
moment estimates on solutions. We will come back to this question in the
next section.

In the absence of fragmentation (b = 0), Theorem 1 has been established
in [89], while the choice p(y) = (1+y)'/? allows us to recover the uniqueness
results from [6, 102]. Finally, with the choice ¢(y) = 1 + y, we recover the
uniqueness result from [20, 56] (strong fragmentation with v > 0 and a(y,y’) <
A (1+y)* (1+y")® for some a € (1/2,1]) and [56, 62] (a(y,y') < A(1+y+y')
and fi" € LY(Y) := L*(Y, (1 + y?) dy)). The uniqueness of solutions to (23)
with strong fragmentation and without the restriction v > 0 is established
in [13]. Let us finally point out that, for the Becker-Doring equations (25),
(26), the conditions of Theorem 1 can be relaxed and uniqueness holds true
for a large class of coefficients [7, 66]. The available uniqueness results only
deal with mass-conserving solutions and none of them applies to cases where
gelation takes place. In that case, there are uniqueness results which are valid
up to the gelation time T, but there is no global uniqueness result except for
the multiplicative kernel a = yy' for some initial data. More precisely, for
initial data for which Y7 (¢) can be explicitly computed, there are uniqueness
results past the gelation time [34, 57]. In the spatially inhomegeneous setting,
the uniqueness issue is much harder and only a few results are available under
strong assumptions on the reactions rates a, b, the diffusion coefficient d and
the initial data [3, 111] (typically, the diffusion coefficient d does not depend
on the size y for y > yg or the space dimension is equal to 1).

3 Mass conservation and gelation

In this section, we give a more detailed account of the available results con-
cerning mass conservation and gelation for the solutions to the coagulation-
fragmentation equation (23). Recall that a solution to (23) is mass-conserving
if

Yi(t) = Y1(0) for each t>0,

or is a gelling solution if gelation occurs in finite time, that is,

Yi(t) =Yi(0) if t<T,,
there exists T, € [0,+00) such that
Yi(t) <Yi(0) if t>T,.
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From an historical point of view, the gelation phenomenon was already
discussed in the forties (see, e.g., Stockmayer [105]). The fact that the Smolu-
chowski coagulation equation (2) (or (24) with b; ; = 0) could account for it
did not seem to be clear at that time. Seemingly, this was pointed out later on
by Ziff [112] by constructing coagulation kernels for which gelation was likely
to occur. Nevertheless, Stockmayer’s kernel a; ; = (A i+ B) (A j + B) is not
included in his analysis. Two important results were obtained at the beginning
of the eighties: on the one hand, White showed that mass-conserving solutions
do exist as soon as a; ; < (i+j) [L08]. On the other hand, Leyvraz & Tschudi
considered the multiplicative kernel a; ; = ¢ j and proved that gelation must
occur for any solution to (24) in that case [73]. Furthermore, they succeeded
in computing the solution corresponding to the monodisperse initial datum
¢1(0) =1 and ¢;(0) = 0 for ¢ > 2, which reads [73]:

-3
? i-1 _—it -
7(2__1)!1& e " if te[0,1],
ci(t) =
ciil) if tell,+00),

and satisfies
> 1
Zi ¢;(t) = min {1, f} ,
i=1

whence Ty = 1. Let us emphasize here that the above solution is unique [57],
while a simpler way of computing it was later given by Slemrod [95]. For the
coagulation kernel a; ; = (i§)*2, A € [0,2], the conjecture was then that
gelation occurs for A > 1 [50, 74], since the result of White excludes the
occurrence of gelation for A € [0, 1] [108]. A first step towards the proof of the
above conjecture was done by Leyvraz, who showed in [72] that, if A € (1,2),
there exists a sequence (7y;);>1 of nonnegative real numbers such that

(o]
Zi% < 400,
i=1

and ¢;(t) = v;/(1+t),i > 1, ¢ > 0, is a solution to (24) with a; ; = (i j)*/? and
b;; = 0 (see also [30] for a similar result for a; ; = i® j° +i° j* when a + 3 €
(1,2)). Clearly, T, = 0 for that particular solution. Therefore, there is at least
one gelling solution to (24) with a; ; = (i5)*/? and A > 1. The remaining
question was then whether gelation occurs for any initial data in that case. A
similar conjecture is stated in [38] for the continuous coagulation equation (2)
for a = (yy')*? for A > 1, and several explicit gelling solutions are computed
there for the multiplicative kernel @ = y ¢'. An important contribution towards
the proof of this conjecture is due to Jeon and relies on a stochastic approach
[55]. For a dense set of initial data, Jeon proves that there is at least a gelling
solution to (24) with a = (yy')»? and A € (1,2). At the same time, da
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Costa extends the construction performed by Leyvraz in [72] and exhibit an
infinite family of solutions to the discrete Smoluchowski equation of the form
ci(t) =~vi/(1+t),i > 1and ¢t > 0 [23]. A definitive and positive answer to the
conjecture was recently provided by Escobedo, Mischler & Perthame [42]. For
the coagulation kernel (5), they prove that gelation occurs in finite time for
any initial data and any weak solution to (2) as soon as A = a+ > 1. The fact
that this result is valid for any weak solution is important since no uniqueness
results are available in that case. The approach employed in [42] relies on a
tricky use of differential and integral inequalities and actually works for both
discrete and continuous coagulation equations. It provides several additional
information on the gelation phenomenon which we outline below. It also allows
to study the occurrence of gelation for the coagulation-fragmentation equation
(23) for which nothing was known or conjectured, besides some partial results
in [55, 61].

On the other hand, the existence of mass-conserving solutions initiated
in [108] was subsequently completed in [6, 35, 41, 65] for the coagulation-
fragmentation equation (23) for weak coagulation kernels (i.e., a(y,y’) <
A(1 4+ y+y") under mild assumptions on the fragmentation kernel b. It
was also noticed that fragmentation can prevent the occurrence of gelation,
as observed in [20] for the discrete model and extended to (23) in [41].

To illustrate the above discussion, let us now give a more precise statement
for a particular class of kernels.

Theorem 2. Assume that f" fulfils (37) and put

ay,y) =A@y)?*,  byy)=BA+y+y)",
where A >0, B> 0, A €0,2] and v € R.

1. weak coagulation: if A < 1, there is at least a mass-conserving weak
solution to (23).

2. strong fragmentation:if A > 1 and v > A —2, there is at least a mass-
conserving weak solution to (23).

3. strong coagulation: if A > 1 and v < A — 2 or (A,y) = (2,0), there
erists Y* > 0 such that gelation occurs for any weak solution whenever
Y1 (fi™) > Y*. Furthermore, Y* = 0 if either A > 1 and b=0 or if A = 2
and v < —1. In that case, we have Yi(t) — 0 ast — oo.

Let us first point out that the last assertion of Theorem 2 only gives a
sufficient condition for gelation to occur for any non-zero initial data. Scaling
arguments performed in [41] seem to indicate that ¥Y* should be equal to zero
when v < (A—3)/2 (observe that (A—3)/2 < A—2 as A > 1). We also mention
that the “critical” case vy = A — 2 is not included in Theorem 2, except when
A=2.

Remark 1. In the strong fragmentation case v > A — 2, there are also unphys-
ical solutions for which Y;(¢) increases with time [6, 41].
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We now give some arguments towards the proof of Theorem 2 and focus
on the moment estimates needed to control the behaviour of f for large y
(Point A in Section 2) and to prove or exclude gelation.

Case 1 - weak coagulation: we assume in addition that f* € Li(R,), the
general case being handled in a similar way. We multiply (23) by ¢(y) = 3>
and notice that the contribution of the fragmentation term is non-positive,
while (10) yields

d

whence Y5 (t) < €€ 1+ for t > 0, and a strong control on the behaviour of f
for large y which guarantees the existence of a mass-conserving solution.

Case 2 - strong fragmentation: multiplying again (23) by ¢(y) = 32, we
obtain p
%Yz SCiY1Yia—CaYsy,,

from which the bound Y2(t) < Ct~* follows for some v > 0, since Yf:; <
YA YR and Y7 < ¥ Yay, by the Hélder inequality.

Case 3 - strong coagulation: the cornerstone of the analysis is to establish
that

/ " Y2()dt < Oy (V(0) + Vi (0) + B2T) (40)

for each T' > 0. The occurrence of gelation then follows from (40) as soon as
the initial mass satisfies Y;?(0) > C, , B%. We now sketch the proof of (40)
for the coagulation equation (2) in the absence of fragmentation (B = 0) and
also set A = 1 without loss of generality.

Proof of (40). On the one hand, it follows from (10) with ¢ = 1 that

/0 ! YY)y (t) dt < 2Y5(0). (41)

As already pointed out in the Introduction, the above bound implies that
Y1 € L?(0,+oc) when A = 2. Therefore, ¥; cannot remain constant through
time evolution and gelation occurs. When A € (1,2), the estimate (41) does
not allow to conclude and more information are needed.

On the other hand, for R > 0, we infer from (10) with ¢ = y A R :=
min {y, R} that

/OT (/Izoof(t,y)yk/2dy)2dt§2 Yll(%o) (42)

for T' > 0, since ¢(y) + ¢(y') — d(y + ') > R 1k 100)(¥) 1R 400)(y)-
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We next consider & € WL1([0,+00)) such that #(0) = 0 and Cy :=
|®'(y) y='/?||z1 < oo. Using the Fubini theorem and the Cauchy-Schwarz
inequality, we have

/oT (/ooo F(t,) v 2(y) dy>2 dt
N /OT (/OOO ?'(R) /ROO fty)y™? dy dR)2 dt

T [e’e] o) 2
s/ qu/ &'(R) R'/? (/ ft,y)y*? dy) dRdt
0 0 R

() T () 2
< [“omrr | (/ f(t,y)y*/zdy) gt dR.
0 0 R

Using (42) to estimate the right-hand side of the above inequality, we
obtain

/OT (/Omf(t,y)y*/‘"sIS(y)dy)2 dt <2Ce /000 %Yi(o)d}z: 20,

The choice ¢(y) = (y — 1/ 2)}[’\/ % in the previous estimate implies that

/OT (/loof(t,y)ydy)Q dt < C'Y;(0),

which, together with (41), yields (40). O

4 Time asymptotics for the coagulation equation

In this section, we gather further information on the behaviour of solutions to
the coagulation equation (2), (3) as t — 400 or t — Ty. We actually aim at
a more precise description of how the loss of mass occurs as t — T, and first
analyze the behaviour of moments of f near T,. We next briefly present the
conjectured self-similar behaviour.

4.1 Decay of the total number of particles Yy

From a physical point of view, coagulation process reduce the number of
particles until only one particle remains (with an infinite mass), and we thus
expect the total number of particles to converge to zero for large times.

Proposition 1. Assume that

aly,y) >0,  (y,y) €Y xY, y#y. (43)
Then, Y;(t) — 0 as t = +oo for k € [0,1).
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Since solutions to (2), (3) satisfy Y7 (¢) < ¥31(0) by Definition 1, it suffices
to prove Proposition 1 for k¥ = 0. We prove Proposition 1 under the additional
assumption (9) on a. We refer to [16] when the coalescence kernel satisfies
a > 0 on Y? and to [45, 68] for the general case in the continuous setting
and for some extensions in the discrete setting. When a satisfies (9), the
proof relies on the availability of several Liapunov functionals, a fact which
is an interesting property by its own and can also be used in a spatially
inhomogeneous setting, and for the existence theory as well. The cornerstone
of the proof is the following result [40, 85].

Theorem 3. Assume a satisfies (9). Let f be a solution to (2), (3) and & be
a nonnegative increasing and convex function such that #(0) = 0. We have

t .
/ S(f(t,y)) dy + / Da(f(r)) dr < / S(fry) dy,  (44)
Y 0 Y

where Dg(f) := D5(f) + D3(f),

DN =5 [ alws) GV BUNT) dydy' 20, (@)
D50 = [ L alws) T £ 15, d'dy >0,

and ¥(s) := s ®'(s)—D(s) > 0 for s > 0. Here and below, we use the notations
FV i =max{f,f'} and f A f' =min{f, f'}.
Proof of Theorem 3. Fo the sake of simplicity we only present the proof in

the case @(s) = s? and refer to [40, 85] for the general case. It follows from
the Young inequality that

2f afrraa=2] arar) v
< [LeGns {uv P+ aydy

We now use (9) to bound the second term of the right-hand side of the above
inequality and deduce that

2[ arf 1 ayay
< [LaUnr) vy ayay
+ / (aly,y") +aly',y") (FAF) (F7)° dy'dy
Y2
< [LeUnm @R aaee [ o) £ aly

< / a (FAL) (FV I dydy +2 / a f' (1) Lo (v) dy'dy.
Y2 v2
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Consequently,
2 [an pa= [ ars r-1-1) dyay
<3 fL s UNDUVI? By [ s £ 30, drd
_2/1/2a f2 1 dy'dy,

whence (44). O

Proof of Proposition 1 (when o fulfils (9)). We assume here again for
simplicity that f* € L?(Y). On the one hand, Theorem 3 with &(s) = s? and
the bound on Y; in Definition 1 imply that {f (%) ,t > 0} is weakly sequentially
compact in L}(Y). On the other hand, Theorem 3 with &(s) = s entails that
(t,y,y") — a(y,y') f(t,y) f(t,y') belongs to L1 ((0,00) x Y?2). A weak lower
semicontinuity argument then ensures that (f(¢)) converges weakly to zero in
LY(Y) as t — +00, which completes the proof. O

The next question to be solved is whether we can estimate the speed of
this process. Besides the cases a = 1 and a = y + y' where Y} is explicitly
calculable, we have also the following result [68].

Proposition 2. Assume that there are A € [0,1) and § > 0 such that
a(y,y') > (yy')? for (y,y') €Y?,

and f™ =0 a.e. on (0,8). Then, for each k € (0,1), there is a constant Cj
such that Yx(t) < Crt* for t > 0.

It is likely that, in fact, Y3 (¢) decays as C't~!, but we have been unable
to prove it. On the other hand, it can be shown that Y} (t) cannot decay at a
faster algebraic rate if a(y,y’) = y* + (¥")*, X € (0,1).

4.2 Profile at the gelation time

In this section, we assume that a is given by (5) with A = a + § € (1,2] and
consider a solution f to (2), (3). According to Theorem 2, gelation takes place
and T, = T, < co. A more precise result is actually available [42].

Theorem 4. Consider Ty > Ty > 0 such that Y1(T1) < Y1(To). Then,

T 00 4 (142)/2 2
/T 0 ( / e f(t,y)dy) dt = +oo, (46)
while
T 00 4 (14+X)/2 2
/T 0 ( / o f(t,y)dy) dt < +oo, (47)

for any 6 > 1.
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In particular, Theorem 4 applies when Tp = Ty, — 7 and Ty = T, + 7 for
any 7 > 0 and indicates that a singularity takes place at the gelation time Tj.
More precisely, it somehow (of course formally) implies that

YA/2+1/2+E(Tg) = +oo and YA/2+1/2—5(T9) < +oo

at the gelation time T} for any ¢ > 0. In other words, it means in a weak sense
that the distribution function f(7,) at the gelation time behaves as follows
for large sizes
fTyy) o~ Cy OFI2,

which is actually the behaviour conjectured by physicists. Further information
of the same kind as that of Theorem 4 can also be obtained in terms of
Morrey-Campanato norms [42]. Also, Theorem 4 extends to the coagulation-
fragmentation equation (23) under the same assumption on a when b is given
by b(y,y') = 1+y+y') and v < (A — 3)/2 [42]. However, when v €
((A=3)/2,A—2) for which gelation also occurs by Theorem 2 for “large” initial
data, the situation seems likely to be of a different nature, the fragmentation
having a stronger influence on the dynamics as suggested by scaling arguments

[41].

4.3 Dynamical scaling hypothesis

We close this section with a short discussion on the more precise behaviour of
f near T, conjectured by physicists and focus for simplicity on the case where
the coagulation coefficient is given by (5), that is,

aly,y") =y* ()" + () *y°,

where 0 < a < B < 1. The formal analysis performed in [32] which we
present below actually includes a wider class of coagulation coefficients and we
refer to [32] for a more complete account. As previously mentioned, physicists
conjecture that the distribution function f behaves in a self-similar way as
time approaches T, forgetting the details of the initial datum as times goes
by. It is however not completely clear which features of the initial datum are
retained in the large time. The main conjecture is that

[0 ~ fs(t) = v (%) ast— T, (48)

the function fs being a self-similar solution to (2) and the mean particle size
satisfying s(t) — 400 as t — T. The first step is to identify the parameter 7:
if \:=a+p €]0,1], then T, = 400 by Theorem 2 and the conservation of
mass implies that 7 = 2. If A € (1, 2], gelation takes place and Ty = T, < +00.
In that case, formal arguments are given in [32] and lead to 7 = (A + 3)/2.
Thus
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A+3

=2 if A€0,1] and 7= if Ae(1,2]. (49)

Inserting the ansatz for fg in (2) yields an ordinary differential equation for s

sTA2 % =w, s(Ty) = 400, (50)

and a nonlinear integro-differential equation for ¢

w [7(roetr) +2 5200 di. G1)
+ ’ /OO ua(u,v) o(u) () dvdu =0, yey, (52)
0 y—u

the separation constant w being a positive real number. While (50) is ex-
plicitly solvable, the analysis of (52) is less obvious and is currently one of
the main open questions in the field. In the absence of existence results for
(52), the validity of (48) is still pending. Let us however mention that quali-
tative properties of ¢ are derived in [25, 32, 59, 71, 83] by formal arguments
and/or numerical simulations, while numerical evidence of the validity of (48)
is reported in [44, 46, 59, 71].

Remark 2. According to [32], the ansatz (48) for fs is not correct when A =1
and a > 0 and has to be modified.

There are however three cases for which explicit solutions to (52) are avail-
able, and for which the validity of (48) has been investigated. Let us begin
with the constant coefficient case a = 1. In that case, 7 = 2 and given g > 0,
we have

4 .
s(t) =1+t, w(y)=<pg(y)=ge“’/", yey, (53)

and Yi (¢,) = 0. Then, we have
(1 FE+1(E+D)9) = poly)  with 0:=Vi(0),  (54)

The first proof of (54) has been provided by Kreer & Penrose for initial data
fi* decaying exponentially at infinity [58], the convergence being uniform on
compacts subsets of ¥ (see also [21] for the discrete model). Different proofs
have been subsequently supplied by Aldous [2, Section 3.1] and Deaconu &
Tanré [28, Theorem 3.6] by a probabilistic approach, the convergence being
in the weak topology of L!(Y’). The proofs performed in the above mentioned
papers rely on the Laplace transform which can be computed explicitly in
that case. We have proposed a different approach in [68] where we construct
suitable Liapunov functions for the coagulation equation (2) written in self-
similar variables and also prove that (54) holds true for the weak topology
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of L}(Y). Let us emphasize here that the large time behaviour is uniquely
determined by the initial mass Y7 (0).
We next consider the case of the additive kernel a = y + y'. Here again,
7 =2 and, for p > 0 and ¢ > 0, we have
3/2
_ 20t _ _ @O —3/2 —y/(2
s(t) = et oY) = po0(y) = TRE y 32 e/ (20) (55)

for y € Y, with
Yi(peo) =0 and Ya(peo)=o0o0.
However, as pointed out in [10, Section 3.3], this is not the only family of

self-similar solutions to (2): in particular, given a € (1,2) and g > 0, the
function (t,y) — (0/8a(t)?) Va0 (y/sa(t)) with

salt) = e0/@D g (y) =y OF R, (@) (56)

is a self-similar solution to (2), where R, denotes the completely asymmetric
a-stable density [10].
As for the validity of (48), it is shown in [10, 28] that, if Y2(f™") < +oo,
e'? f2et, €' y) — 9o0(y) with 0:=Y1(0) and 0= ==, (57)
the convergence being with respect to the weak topology of L!(Y). The proof
still relies on a probabilistic approach together with the Laplace transform.
We refer to [10] for results when Y (f") = +oo.

We finally consider the multiplicative kernel a = yy’. In that case, gela-
tion occurs and the gelation time T, can be explicitly computed and is equal
to 1/Y5(0) [38, 90]. It turns out that there is a simple connection between
solutions of (2) with a = y + ¢’ and a = yy’ which has been noticed in [28]:
let f be a solution to (2) with a =y +y', T > 0 and put

1 1 In(T) —In(T —1t) Y >
F(t,y) = . - , -
w9 =gy s=g (" wg
for (t,y) € (0,T) x Y. Then F is a solution to (2) with a = yy'. Thanks to
this transformation, convergence results for the multiplicative kernel a = y 1’

readily follow from that obtained for the additive kernel a = y + y' since T},
is known.

5 Convergence to equilibrium under the detailed balance
condition

In this section, we assume that the coagulation and fragmentation coefficients
fulfil the detailed balance condition (27). In that case, we may define a Li-
apunov functional H by (30) which decreases along the trajectory by the
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H-Theorem (31). We refer to (27)—(32) in the Introduction for the notations
used in this section.

Let f* be such that (37) holds true and H(f¥") < 4+00. We next consider
a solution f to (23) such that f(0) = f and recall that the expected result
is:

o if Vi(f™) < g5, then f(t) — M, in L}(Y) as t — +o0, where
z is such that Y1 (M) = Y1 (f"). (58)

o if Y1(f"") > g,, then f(t) = M,, in L' (Y) as t = +oo0.

As already mentioned, the assertion (58) is far from being proved com-
pletely in all cases. We briefly summarize now the available results, together
with the main tools used for the proof. Roughly speaking, it is in general pos-
sible to prove that the only cluster points of {f(t)} as t = 400 are equilibria.
The next step would be to identify uniquely the mass of the cluster points as
conjectured in (58) but this turns out to be quite difficult. In some cases, using
the LaSalle invariance principle allows to bypass this difficulty and prove that
f(t) has a limit as t - +o00. This method however does not allow to identify
the mass of the limit.

5.1 Weak lower semicontinuity of the entropy dissipation

The H-Theorem (31) formally holds, but in general, it is only possible to prove
a weaker assertion, namely that,

sup H(f(t)) < +00 and D(f) € L*(0,4+00). (59)
>0

Since Y1(f(t)) < Yi(f'™) by Definition 1, the first bound in (59) and the
Dunford-Pettis theorem ensure that {f(t)} is weakly sequentially compact in
L(Y). Consequently, if (¢,) is an increasing sequence such that t, — +oo,
there are a function F' and a subsequence (t,/) of (¢,) such that f(t, +.) =
F(.)in L'((0,1)xY). The weak lower semicontinuity of D, the second estimate
in (59) and the Fatou lemma then allow to conclude that D(F) = 0, and thus
aF F' = bF". Classical arguments finally entail that there is z € [0, z,] such
that
flty) = M, in LYY) with Yi(M,) <Yi(f™).

At this stage, the parameter z can depend on (t,+) and (¢,). Using an argument
from [76], the above weak convergence can be improved to strong convergence
in L1 (Y) [64]. Of course, this step is useless in the discrete setting.

For the above method to be justified, rather mild assumptions on a, b and
fim are needed, so that the above result is true in most cases and it also works
in a spatially inhomogeneous setting. This approach has been used for the
Becker-Doring equations (25), (26) [7], the discrete coagulation-fragmentation
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equations (24) [16], the continuous coagulation-fragmentation equations (23)
[67], the discrete diffusive Becker-Déring equations [69], the discrete diffusive
coagulation-fragmentation equations [19] and the diffusive discrete or contin-
uous coagulation-fragmentation equations [64].

5.2 The LaSalle invariance principle

The main drawback of the above method is that it does not guarantee the
convergence of f(t) ast — +00. It however only uses a weak form (59) of the H-
Theorem (31). It turns out that the conservation of mass and the H-Theorem
(31) allow us to conclude that a modified version of H is a Liapunov functional
as first pointed out in [7]. One may next apply the LaSalle invariance principle.
More precisely, assume that f satisfies

t
YVi(f(t) = Ya (/") and H(f(t) — H(f™) = / D(f(s) ds

for t > 0. Then, on the one hand, t — H(f(¢)) is a non-increasing function
on time. On the other hand, 1) — H (%)) is not continuous in L!(Y’) but the
modified entropy

H.,(¥) == H{¥) =Y1(¢) In 2,

is continuous in L'(Y) on bounded subsets of Li(Y) under the additional

assumption
1
lim M(y)Y/v = —. 60
S M(y) - (60)
Combining the above two properties allows to proceed as in the proof of
the classical LaSalle invariance principle and conclude that there is a unique

z € [0, z5] such that
Yi(M,) < Yi(f™) and f(t) — M, in L}(Y).

Still, let us emphasize that it does not allow to identify 2z as conjectured in
(58).

This approach works under stronger assumptions on a, b and fi" and
has been used for the Becker-Doring equations (25), (26) [7], the discrete
coagulation-fragmentation equations (24) [16], the continuous coagulation-
fragmentation equations (23) [67, 104], the discrete diffusive Becker-Doring
equations [69]. Up to now, no result of this kind is available for the general
diffusive coagulation-fragmentation equations, the main reason being that it
does not seem obvious to prove the conservation of mass and the entropy
equality in that case. If one could justified these two properties, the above
method could also be used.
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5.3 Strong compactness

Fortunately, there are some cases for which one can prove (58). The easiest
case is when z; = 400, which in turn implies that gs = +o0. This assumption
warrants that o
lim SUP/ Y f(t,ys) dys = 0,
Y=+00 >0 Jy

which, together with the entropy bound, entail that (f(¢)) is weakly sequen-
tially compact in L1(Y). It is then clear that f is mass-conserving and that
any cluster point F of (f(t)) as t — +oo0 satisfies Y1 (F) = Y;(f?"). Combining
this fact with the result of Section 5.1 yields the expected convergence (58)
(see, e.g., [7, 19, 24, 64] and the references therein).

A similar situation is met under the strong fragmentation assumption (see
case 2 of Theorem 2). In that case, gs = +00 and Y>(f(t)) becomes finite for
positive times [14, 20, 41], from which the weak sequential compactness of
(f(#)) in L}(Y) readily follows, again with the help of the entropy bound. A
similar argument as above then leads to (58) [14, 24, 67].

Observe that, in the previous two situations, gs; = 400, and no saturation
phenomenon occurs.

Let us finally mention a third case for which (58) can be proved by con-
structing supersolutions. Up to now, this method only works successfully for
the Becker-Déring equations (25)—(26), see [5, 7]. An extension of this method
to the generalized Becker-Doring equations (that is, the discrete coagulation-
fragmentation equations (24) with a;; = b;; = 0 if max{i,j} > N for some
given N > 3) has been performed in [16, 22] for initial data fi* with a suffi-
ciently small mass, Y7(f") < cy. Unfortunately, cy — 0 as N — +oo. This
assumption has been removed recently in [13]. We emphasize here that z,; and
0s can be finite in that case.

We now give a sketch of the proof for the Becker-Doring equations (25),
(26), following the arguments of [5]. Introducing

Gi=> jfj, i>2,
j=i

the specific structure of (25)-(26) allows us to construct a supersolution to the
equation satisfied by (G;) and deduce that (f;(¢));>1 is compact in L{ (N\{0}),
whence (58) [5]. Indeed, by Section 5.2, we know that there is z € [0, z;] such
that f;(t) — M; 2% for i > 1 as t — +o00. Assume that

2 < Zg. (61)

Then, there exists § > 0, T > 0, 49 > 1 and a sequence (r;);>1 of positive real
numbers such that r; — 0,

fl(t)sz+6<zsa GZ(T)STZ for tZTy
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and G4, (t) < 1, for every t > T. The cornerstone of the proof is to notice
that (r;) can be constructed so that a direct computation (using the particular
structure of the BD equations) yields

9

ot
for i > ig and t > T. Therefore, G;(t) < r; for for ¢ > ip and ¢ > T, and
(4 fi)i>1 is equi-summable, from which we readily conclude that

(Gi —ri)+ < (Gig —Tip)+ + C(Gi — 1)+

o . oo o>
Z;iMiZ’ = lim . 1ifi(t) =00 := Z;ifi(o)-
1= = =

Then, either gy < g5 and we have proved (58). Or go > g5, and the assumption
(61) leads to a contradiction. Therefore, z = 2, in that case, which completes
the proof of (58).

5.4 Convergence rates by entropy dissipation methods

Another approach to the trend to equilibrium is to estimate the distance be-
tween f(t) and its expected limit equilibrium. This method has the advantage
of providing convergence as well as rates of convergence, but usually requires
to establish non-obvious functional inequalities. Still, it has been successfully
worked out for the continuous coagulation-fragmentation equation (23) with
constant coefficients a and b [1] and for the Becker-Déring equations (25)-(26)
[53].

The basic underlying idea is to exploit further the H-theorem (31) and
estimate from below the entropy dissipation D(f) in terms of the relative
entropy H(f|M,) = H(f) — H(M,), M, being the equilibrium associated
to f in (58). For instance, if there is a nonnegative function ¥ (depending
possibly on f) such that

1
D)2 FEHGM) and [ T = oo, (62)

the H-theorem (31) then yields a differential inequality for the relative entropy
from which a time-dependent estimate H(f(t)|M,) < w(t) follows by direct
integration, with w(t) — 0 as t = +00. A temporal decay estimate for || f(t) —
M_||L1(y) is then recovered by the Csiszdr-Kullback inequality (see, e.g., [4]
and the references therein)

1£6) = My, < (2O SO mrponaey, oo,

provided a control on Yy(f) is available.

Let us now be more precise about the inequality (62) obtained in [1, 53].
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The continuous coagulation-fragmentation equation (23) with
a=b=1

In that case, it is plain that the detailed balance condition (27) is satisfied with

M(y) := e ¥. Then z; = e and g5 = +00. To simplify notations, we however

use a slightly different way of denoting the equilibria and define My = 0 and
—-1/2

Mu(y)=e ™" yev,

for m > 0, so that Y; (M,;,) = m. The lower bound for the entropy dissipation
D(f) established in [1] reads

D(f(t) 2 Yo(f (1)) H (f(O)| My, (sim)) ,  t20.

Since Yp(f(t)) — 2 as t — +oo in that case, we end up with an exponen-
tial temporal decay estimate for the relative entropy H (f(t)|My,(sin)) <
C1 e 2t where C; and Cs depend on fi™. We now give a proof of the above
lower bound for D(f). Though it follows the lines of [1], we state it in a slightly
more precise form.

Lemma 1. Let f be a nonnegative function in L}(Y) and put mo := Yo(f)
and my := Yi1(f). We denote by M¥ = M,,, the equilibrium with the same
mass, the relative entropy being

HM) = [ (il (i> —i)d,
()= [0 (5 mn(57) 1= 57)
and the entropy dissipation

D)= [ [ 8= nis £ a7y dydy'
There holds

Duf) 2 mo M) + (1o = m}*) 4 (2

Ol\:| =
/N
33
N—

+

—
EXE
N—

Observe that the three terms of the right-hand side of (63) are nonnegative.
Proof. We define

g=% and F(y) :=/y f" dy’=/0 fly+y) dy'.
We have

Dl(f):/ / MM g gIngdydy’ (=: D1i(g))
0 0
o0 o0 !
+ / / M M gg' In (g’#) dydy' (=: D1a(g))
0 0

00 foe) "
+/ / MM g In (g—/> dydy' (=: Di3(g)),
A 99
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and estimate each term D;(g) separately. First,

Di1(g) = mo /OooMf% In (%) dy = mo (H(f|Mf)+m0_m}/2) '

Next, since ¢(s) = s Ins is a convex function and M M’ = M", we infer
from Jensen’s inequality that

00 ooMf”glI q
D g:/ g/ 7¢<—>dy'de
12(9) 0 0 F g"
oo OoMf” " dof!
Z/ gF & (M) d
0 F

oo
| g ay = mo M),
0
we obtain

Do) > [ gmodrn (") dyzmo [ 1 (hlmo s lnF> dy.
0 0 my

Now, dF/dy = —f, F(0) = mg, and F(y) — 0 as y = +o00, from which we
deduce that

Noticing that

—/ flany:/ d—Flanyz—mo(lnmg—l).
0 o dy
Consequently,

Dr2(9) 2 mo (mo Inmo — my/? = mo (Inmo — 1)) = mo (mo -~ m}ﬂ) .

Finally, using once more Jensen’s inequality, we obtain

WERVER !
Di3(9) =m§/ 729945(9 ) dydy’
o Jo my g9

MMfI "
>mid (/ 7gdydy> gﬁ(m—é)
My My
Inserting the bounds from below for D11(g), D12(g) and D13(g) in D1 (f) leads
o (63). O

With the help of Lemma 1, it is actually possible to adapt the approach
used in [1] and obtain rates of convergence to the equilibrium when a = b but
not necessarily constants [68].
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The Becker-Déring equations (25)-(26)

Here again, it is clear that the detailed balance condition is satisfied. Under
suitable assumptions on the coefficients (a;) and (b;), and if the initial datum
f = (f™) satisfies

[ee)
Yi(f") < o5 and Ze’” fin < 400
i=1
for some i > 0, it is shown in [53] that there is a constant C' (depending on

fi™) such that
H(f|M-)

(In H(f|M))*’
M, being the equilibrium such that Y;(M,) = Y1 (f™). This inequality then
yields a temporal decay estimate e—t"" for H (f@®)|My).

D(f)=C
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