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Abstract

The coagulation-fragmentation equation describes the concentration fi(t) of particles of size
i ∈ N/{0} at time t ≥ 0, in a spatially homogeneous infinite system of particles subjected to
coalescence and break-up. We show that when the rate of fragmentation is sufficiently stronger
than that of coalescence, (fi(t))i∈N/{0} tends to an unique equilibrium as t tends to infinity.
Although we suppose that the initial datum is sufficiently small, we do not assume a detailed
balance (or reversibility) condition. The rate of convergence we obtain is exponential.
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1 Introduction and result

Consider an infinite system of particles characterised by their size i ∈ N∗ := N/{0}. Assume that
two particles of size i ∈ N∗ and j ∈ N∗ coalesce at rate ai,j to give a particle of size i+ j. Suppose
also that each particle of size i+ j breaks up to give two particles of size i ∈ N∗ and j ∈ N∗ at rate
bi,j . We will assume in the whole paper that for all i, j in N∗,

0 ≤ ai,j = aj,i ; 0 ≤ bi,j = bj,i. (1.1)

Denote by fi(t) the concentration (i.e. number per unit of volume) of particles of size i ∈ N∗ at
time t ≥ 0. Then f = (fi(t))i∈N∗,t≥0 satisfies the coagulation-fragmentation equations [7, 2]:

∀ i ∈ N∗,
d

dt
fi(t) = Qi(f(t)), t ∈ (0,∞); fi(0) = f in

i , (1.2)

where the initial datum (f in
i )i∈N∗ is given. The coagulation-fragmentation operator is defined, for

c = (ci)i∈N∗ a sequence of nonnegative numbers and i ∈ N∗, by

Qi(c) :=
1
2

i−1∑
j=1

(aj,i−jcjci−j − bj,i−jci)−
∞∑

j=1

(ai,jcicj − bi,jci+j). (1.3)

These equations have the following physical meaning: particles of size i appear due to coalescence
of smaller particles at rate 1

2

∑i−1
j=1 aj,i−jfjfi−j , the factor 1/2 avoiding to count twice each pair

of particles. Particles of size i also appear by break-up of greater particles at rate
∑∞

j=1 bi,jfi+j .
Disappearance of particles of size i occur by coalescence at rate fi

∑∞
j=1 ai,jfj and by fragmenta-

tion at rate 1
2fi

∑i−1
j=1 bj,i−j .

One of the main problems is the long time behavior of solutions to (1.2). On the one hand, it is
proved in [3] that, in the long time asymptotic:
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(i) when a ≡ 0 and b > 0 (pure fragmentation case) all particles break into monomers, that is
fi(t) → 0 when t→∞ for any i ≥ 2;
(ii) when b ≡ 0 and a > 0 (pure coagulation case) each particle’s mass increases to infinity, that is
fi(t) → 0 when t→∞ for any i ≥ 1.
On the other hand, one may assume a detailed balance condition: there exists a nonnegative
sequence M = (Mi)i∈N∗ such that M 6≡ 0,

∑∞
i=1 iMi <∞, and for all i, j in N∗,

ai,j MiMj = bi,j Mi+j . (1.4)

This structure condition about the rates a and b ensures reversibility properties. This allows one
to use entropy methods, see [1, 4, 5, 11], and to show that any solution f to the coagulation-
fragmentation equation (1.2) converges to an equilibrium.

Let emphasize, that [8] deals with existence of equilibria in a particular case where (1.4) does not
hold. To our knowledge, other results concerning trend to equilibrium of solutions to (1.2) were
obtained assuming one of the three above conditions.

Our aim in the present paper is to show that trend to equilibrium may hold without any structure
condition. We will consider a case where coalescence is weaker than fragmentation, and where
the initial datum is small enough. More precisely, we will suppose that we are in a case of strong
fragmentation. We assume that there exist some constants a0 ≥ 0, b0 > 0, b1 > 0, α, γ and s such
that for all i, j in N∗,

ai,j ≤ a0(ij)α, bi,j ≥ b0(i+ j)γ , α ∈ [0, 1], γ ∈ (−1,∞), 2 + γ > 2α, (1.5)

bi,j ≤ b1(i+ j)s s ∈ (−1,∞). (1.6)

Let us now define the notion of solutions and equilibria we will consider. For µ ≥ 1, we set

`1µ :=

{
(ci)i∈N∗ ∈ [0,∞)N∗ ;

∞∑
i=1

iµci <∞

}
. (1.7)

Definition 1.1 Assume (1.1). A sequence of nonnegative C1((0,∞)) functions f = (fi(t))i∈N∗,t≥0

is an admissible solution to (1.2) associated to an initial datum f in = (f in
i )i∈N∗ if:

(i) for all i ∈ N∗, (1.2) holds,
(ii) for all µ ≥ 1, f belongs to C([0,∞), `11) ∩ C1((0,∞), `1µ),
(iii) conservation of mass holds, that is for all t ≥ 0,

∑∞
i=1 ifi(t) =

∑∞
i=1 if

in
i .

A nonnegative sequence (ci)i∈N∗ is an admissible equilibrium for (1.2) if it is a stationary admissible
solution to (1.2).

It is well-known that under (1.5) and (1.6) existence and moment regularisation hold: the following
result can be found in [13, 3, 6, 10].

Theorem 1.2 Assume (1.1), (1.5) and (1.6). Let f in satisfy

m1 :=
∞∑

i=1

if in
i <∞. (1.8)

There exists at least one admissible solution f to (1.2) associated to the initial datum fin.

Let us finally state our result.
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Theorem 1.3 Assume (1.1), (1.5) and (1.6). Let m1 > 0 be fixed, and suppose that

ϕ

(
a0m1

b0

)
< 1 with ϕ(ζ) := 2(32ζ)2+

1+2α
2+γ−2α + 128ζ. (1.9)

(i) There exists an unique admissible equilibrium c to (1.2) such that
∑∞

i=1 ici = m1.
(ii) There exists K,κ > 0 (explicitly computable and depending only on α, γ, a0, b0,m1) such that
for any admissible solution f to (1.2) with initial datum satisfying (1.8),

∀ t ≥ 1,
∞∑

i=1

i2|fi(t)− ci| ≤ K e−κ t. (1.10)

We believe that Theorem 1.3 is not optimal. The condition that a0m1/b0 is small is probably a
technical assumption. The main interest of this result compared to [1, 4, 5, 11] is that it does not
require any structure condition on the rates a and b. The bound conditions on a and b under the
form (1.5) are made to simplify presentation, but we may use the same method with other type of
assumptions, see [6].
Our condition that 2 + γ > 2α is not so stringent since if 2 + γ < 2α it is expected that
supt∈(0,∞)

∑∞
i=1 i

2fi(t) = ∞, which contradicts the (strong) stability of the system. For exam-
ple, occurence of gelation has been shown when α > 1/2, 2 + γ < 2α, see [12, 9, 10].

The rest of the paper is entirely devoted to the proof of Theorem 1.3. Section 2 contains a
contraction result, which is applied in Section 3.

2 A contraction property

The aim of this section is to present the main tool of the paper, namely a contraction property for
the solutions of the coagulation-fragmentation equation.

Theorem 2.1 Let m1 > 0 be fixed. Assume (1.1), (1.5), (1.6) and (1.9). There exists a time
T ∗ > 0 (explicitly computable in terms of α, γ, a0, b0,m1) such that for any pair of admissible
solutions f and g to (1.2) associated with some initial data f in and gin both satisfying (1.8) (with
the same value for m1), there holds

∀ t ≥ T ∗,
d

dt

∞∑
i=1

i2|fi(t)− gi(t)| ≤ −κ
∞∑

i=1

i2|fi(t)− gi(t)|, (2.1)

with κ := b0
32 (1− ϕ(a0m1/b0)) > 0.

We start with a well-known formulation of solutions.

Lemma 2.2 Assume (1.1), (1.5) and (1.6). Let f be an admissible solution to (1.2) associated to
an initial data f in satisfying (1.8). Then for any φ : N∗ 7→ R with at most polynomial growth and
any β : R 7→ R Lipschitz, for all t > 0,

d

dt

∞∑
i=1

φ(i)β(fi(t)) =
1
2

∞∑
i=1

∞∑
j=1

fi(t)fj(t)[ψ(i+ j)− ψ(i)− ψ(j)]ai,j

+
1
2

∞∑
i=1

fi(t)
i−1∑
j=1

[ψ(j) + ψ(i− j)− ψ(i)]bj,i−j , (2.2)

with ψ(i) = φ(i)β′(fi(t)), and the above series converge absolutely.
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Proof The proof follows from a straightforward computation when φ has a bounded support. Our
assumptions on f (see Definition 1.1 (ii)) and on the rates (see (1.5) and (1.6)) allows us the
extension to functions with at most polynomial growth. �

The key arguments of our proof are contained in the following lemma.

Lemma 2.3 Assume (1.1), (1.5) and (1.6). Consider two admissible solutions f and g to (1.2),
associated to some initial data f in and gin both satisfying (1.8) with the same value for m1. Then,
for all t > 0,

d

dt

∞∑
i=1

i2|fi − gi| ≤

(
2a0

∞∑
i=1

j3(fj + gj)−
b0
16

) ∞∑
i=1

i2|fi − gi|. (2.3)

Proof Applying Lemma 2.2 to f − g, choosing φ(i) = i2 and β(x) = |x|, we obtain, with ψ(i) =
i2sign(fi − gi), for t > 0,

d

dt

∞∑
i=1

i2|fi − gi| =
1
2

∞∑
i=1

∞∑
j=1

ai,j [(fi − gi)fj + gi(fj − gj)][ψ(i+ j)− ψ(i)− ψ(j)]

+
1
2

∞∑
i=1

[fi − gi]
i−1∑
j=1

[ψ(j) + ψ(i− j)− ψ(i)]. (2.4)

Using the signs as often as possible, we deduce that

d

dt

∞∑
i=1

i2|fi − gi| ≤ 1
2

∞∑
i=1

∞∑
j=1

ai,j |fi − gi|fj [(i+ j)2 − i2 + j2]

+
1
2

∞∑
i=1

∞∑
j=1

ai,jgi|fj − gj |fj [(i+ j)2 + i2 − j2]

+
1
2

∞∑
i=1

|fi − gi|
i−1∑
j=1

bj,i−j [j2 + (i− j)2 − i2]. (2.5)

Making the substitution (i, j) 7→ (j, i) in the second term leads to

d

dt

∞∑
i=1

i2|fi(t)− gi(t)| ≤
∞∑

i=1

|fi(t)− gi(t)|
∞∑

j=1

[ij + j2]ai,j(fj(t) + gj(t))

−
∞∑

i=1

|fi(t)− gi(t)|
i−1∑
j=1

j(i− j)bj,i−j . (2.6)

Using (1.5), since
∑i−1

j=1 bj,i−j ≥ b0
6 i

γ+1(i2 − 1), 1 + α ≤ 3 and 2 + α ≤ 3, we deduce

d

dt

∞∑
i=1

i2|fi − gi| ≤ −b0
6

∞∑
i=1

iγ+1(i2 − 1)|fi − gi|+ 2a0

∞∑
i=1

|fi − gi| i2
∞∑

j=1

j3 (fj + gj). (2.7)
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But f and g are mass-conserving. Thus
∑∞

i=1 ifi =
∑∞

i=1 igi = m1 for each t, and we deduce that
|f1 − g1| ≤

∑∞
i=2 i|fi − gi|. Since γ > −1,

∞∑
i=1

iγ+1(i2 − 1)|fi − gi| ≥ 3
4

∞∑
i=2

i2|fi − gi|

≥ 3
4

∞∑
i=1

i2|fi − gi| −
3
4

∞∑
i=2

i|fi − gi|

≥ 3
4

∞∑
i=1

i2|fi − gi| −
3
8

∞∑
i=2

i2|fi − gi|

≥ 3
8

∞∑
i=1

i2|fi − gi|. (2.8)

We finally deduce (2.3), gathering (2.7) and (2.8).
�

The main idea of the proof of Theorem 2.1 is now clear: we have to show that in (2.3), the negative
term dominates the positive term. This fact will be a consequence of the following moment estimate.

Lemma 2.4 Let m1 > 0 be fixed. Assume (1.1), (1.5), (1.6) and (1.9). There exists a time T ∗

(explicitly computable in terms of α, γ, a0, b0,m1) such that, for any admissible solution f to (1.2)
with initial datum f in satisfying (1.8), there holds

sup
t≥T∗

∞∑
i=1

i3 fi(t) ≤
b0

128a0

{
ϕ

(
a0m1

b0

)
+ 1
}
, (2.9)

with ϕ defined in (1.9).

Proof We break the proof into three steps.
First Step. Let thus f be an admissible solution to (1.2). First note that

∀i, j ∈ N∗, (ij)α ((i+ j)3 − i3 − j3) ≤ 3ij(iαj1+α + i1+αjα) ≤ 6(i2+2α j + i j2+2α), (2.10)

∀i ∈ N∗, iγ
i−1∑
j=1

(i3 − j3 − (i− j)3) =
iγ+2(i2 − 1)

2
≥ 3

8
(iγ+4 − 1). (2.11)

Applying Lemma 2.2 with φ(i) = i3, β(x) = x, and using (2.10) and (2.11) leads to

d

dt

∞∑
i=1

i3fi ≤ 3a0m1

∞∑
i=1

i2+2αfi −
3b0
16

∞∑
i=1

(iγ+4 − 1)fi, (2.12)

for all t > 0. Using the Young inequality (recall that 2 + 2α < 4 + γ)

i2+2α ≤
(

1
ε

) 3+γ
2+γ−2α

i+ ε
3+γ
1+2α i4+γ with ε :=

(
b0

32a0m1

) 1+2α
3+γ

, (2.13)

and introducing the notation Mµ(t) = Mµ(f(t, .)) =
∑∞

i=1 i
µ fi(t), we get

d

dt
M3 ≤ A−BM4+γ , (2.14)

with

A := 3a0m
2
1

(
32a0m1

b0

) 1+2α
2+γ−2α

+
3b0m1

8
, B :=

3b0
32

. (2.15)
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Second Step. We first establish a bound for M3(1). Using the Hölder inequality M3 ≤ m
1+γ
3+γ

1 M
2

3+γ

4+γ ,
we deduce from (2.14) the differential inequality

d

dt
M3 ≤ A−B′M1+θ

3 with θ :=
1 + γ

2
, B′ :=

3
32
b0m

− 1+γ
2

1 . (2.16)

On the one hand, if, for some τ ∈ (0, 1), there holds M3(τ) ≤ (2A/B′)1/(1+θ) then the same holds
for any t ∈ (τ, 1) since (0, (2A/B′)1/(1+θ)) is an invariant region for the differential inequality
(2.16). On the other hand, if for any t ∈ (0, 1), there holds M3(t) ≥ (2A/B′)1/(1+θ), then we
deduce from (2.16) that for all t ∈ (0, 1),

d

dt
M3 ≤ A

(
M3

(2A/B′)1/(1+θ)

)1+θ

−B′M1+θ
3 ≤ −B

′

2
M1+θ

3 . (2.17)

A direct computation gives

∀ t ∈ (0, 1], M3(t) ≤
(

2
θB′t

)1/θ

. (2.18)

As a conclusion, in any case,

M3(1) ≤ max
(

(2A/B′)1/(1+θ),
2
θB′

)
. (2.19)

Note that the RHS term is an explicit function of α, γ, a0, b0,m1.
Third Step. Next, just using that M4+γ ≥M3, we deduce from (2.14) that

d

dt
M3 ≤ A−BM3 on (0,∞), (2.20)

which in turns implies

∀t ≥ 1, M3(t) ≤M3(1) e−B(t−1) +
A

B
. (2.21)

But a straightforward computation using (1.9) and (2.15) shows that

64a0

b0

A

B
= ϕ(a0m1/b0). (2.22)

Using (2.19) and (2.21), the fact that by assumption ϕ(a0m1/b0) < 1, we deduce that there exists
T ∗ = T ∗(α, γ, a0, b0,m1) such that

sup
t≥T∗

64a0

b0
M3(t) ≤

1
2
ϕ

(
a0m1

b0

)
+

1
2
, (2.23)

from which (2.9) follows. �

Proof of Theorem 2.1. Gathering (2.3) and (2.9), we get for any t ≥ T ∗ (with T ∗ defined in
Lemma 2.4)

d

dt

∞∑
i=1

i2|fi − gi| ≤ (2a0[M3(f(t)) +M3(g(t))]− b0/16)
∞∑

i=1

i2|fi − gi|

≤ − b0
32

(1− ϕ(a0m1/b0))
∞∑

i=1

i2|fi − gi|. (2.24)

This concludes the proof. �
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3 Proof of Theorem 1.3

We begin with a direct consequence of Theorem 2.1.

Lemma 3.1 Let m1 > 0 be fixed. Assume (1.1), (1.5), (1.6) and (1.9). Any admissible solution
f to (1.2) satisfies

∀ i ∈ N∗, lim
t→∞

∣∣∣∣ ddtfi(t)
∣∣∣∣ = 0. (3.1)

Proof For any h > 0, we introduce the notation fh
i (t) = fi(t + h). Then fh is an admissible

solution to (1.2). Using Theorem 2.1 with the pair of solutions fh and f , we deduce that for all
t > T∗ and h > 0,

∞∑
i=1

i2 |fi(t+ h)− fi(t)| ≤ e−κ (t−T∗)
∞∑

i=1

i2 |fi(T ∗ + h)− fi(T ∗)|. (3.2)

Dividing the above inequality by h > 0 and passing to the limit h → 0 (what is justified by the
fact f ∈ C1((0,∞); `12) in Theorem 1.2), we get for t > T ∗,

∞∑
i=1

i2
∣∣∣∣ ddtfi(t)

∣∣∣∣ ≤ e−κ (t−T∗)
∞∑

i=1

i2
∣∣∣∣ ddtfi(T ∗)

∣∣∣∣ , (3.3)

and (3.1) readily follows. �

We now are able to conclude.

Proof of Theorem 1.3. We skip the proof into three parts.
Existence of an admissible equilibrium. We start with an admissible solution f to (1.2) associated
to some initial datum f in satisfying (1.8). We first claim that for all p ≥ 1,

Kp := sup
t≥1

∞∑
i=1

ipfi(t) <∞. (3.4)

This can be shown following the line of Steps 1 and 3 of the proof of Lemma 2.4. Indeed, applying
Lemma 2.2 with φ(i) = ip and β(x) = x and using (1.5), one obtains the existence of some constants
Cp > 0, cp > 0, whose values change from line to line, such that

d

dt

∞∑
i=1

ipfi ≤ Cp

∞∑
i=1

ip−1+2αfi

∞∑
j=1

jfj − cp

∞∑
i=1

(iγ+p+1 − 1)fi

≤ Cp − cp

∞∑
i=1

ipfi. (3.5)

The second inequality holds since p − 1 + 2α < γ + p + 1 and γ + p + 1 > p. Then (3.4) follows
from the fact that f is admissible.
This yields the existence of an increasing sequence tn → ∞ and of a nonnegative sequence c =
(ci)i∈N∗ such that for all φ : N∗ 7→ R with at most polynomial growth,

∞∑
i=1

φ(i)ci = lim
n→∞

∞∑
i=1

φ(i)fi(tn). (3.6)

In particular,

c ∈
⋂
µ≥1

`1µ and
∞∑

i=1

ici = m1. (3.7)
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It is now straightforward to pass to the limit as n tends to infinity in (1.2) and obtain, thanks to
Lemma 3.1,

∀i ∈ N, Qi(c) = lim
n→∞

Qi(f(tn)) = lim
n→∞

d

dt
fi(tn) = 0. (3.8)

As a conclusion c is an equilibrium as stated in Theorem 1.3.
Uniqueness of an admissible equilibrium. We consider two admissible equilibria c and d to (1.2)
with same mass

∑∞
i=1 ici =

∑∞
i=1 idi = m1. Then c and d are two (constant) admissible solutions

to (1.2), so that we may apply Theorem 2.1, and get

0 =
d

dt

∞∑
i=1

i2|ci − di| ≤ −κ
∞∑

i=1

i2|ci − di|, (3.9)

which yields c ≡ d.
Convergence to equilibrium. Consider finally an admissible solution f to (1.2) associated to some
initial data f in satisfying (1.8). Consider the unique admissible equilibrium c to (1.2) such that∑∞

i=1 ici = m1. Since c is a admissible solution to (1.2), one may apply Theorem 2.1, and obtain
that for t ≥ T ∗ = T ∗(α, γ, a0, b0,m1),

d

dt

∞∑
i=1

i2|fi − ci| ≤ −κ
∞∑

i=1

i2|fi − ci|. (3.10)

with κ = κ(α, γ, a0, b0,m1). Hence, for t > T ∗,

∞∑
i=1

i2|fi − ci| ≤ e−κ(t−T∗)
∞∑

i=1

i2|fi(T ∗)− ci| (3.11)

On the other hand, we have shown, in the proof of Lemma 2.4 (see (2.19), (2.21)), that for some
constant C = C(α, γ, a0, b0,m1), for all admissible solution g to (1.2) with initial data satisfying
(1.8), supt≥1

∑∞
i=1 i

3gi(t) ≤ C. Hence

sup
t≥1

∞∑
i=1

i2|fi(t)− ci| ≤ 2C. (3.12)

One finally obtains (1.10) with the constants κ andK = 2CeκT∗ , which depend only on α, γ, a0, b0,m1,.
�
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