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Abstract

An alternative proof of the convergence to self-similar profiles for solutions to the
Smoluchowski coagulation equation with constant coagulation kernel is provided. In
contrast to the previous approaches which rely on the Laplace transform, a dynamical
systems approach is used on the equation written in self-similar variables, for which
several Liapunov functionals are identified.

Keywords. Coagulation, self-similar solution, Liapunov functional

AMS Subject Classification. 45K05, 45M05, 37L45, 82C21

1 Introduction

The Smoluchowski coagulation equation is a mean-field model for the dynamics of a system
of particles growing by successive mergers [7, 23, 24]. Assuming that each particle is fully
identified by its volume, the Smoluchowski coagulation equation provides a description of
the evolution of the volume distribution function f = f(t, y) ≥ 0 as a function of the time
t ≥ 0 and the volume y ∈ R+ := (0,+∞) and reads

∂tf(t, y) =
1

2

∫ y

0

a(y − y′, y′) f(t, y − y′) f(t, y′) dy′ −
∫ ∞

0

a(y, y′) f(t, y) f(t, y′) dy′

for (t, y) ∈ (0,+∞) × R+. Here, the function a is the coagulation kernel and satisfies
a(y, y′) = a(y′, y) ≥ 0 for (y, y′) ∈ R2

+.
For homogeneous coagulation kernels satisfying a(ξy, ξy′) = ξλ a(y, y′) for some λ ≤ 1,

it is conjectured by physicists that the distribution function f behaves in a self-similar way
for large times. More precisely, the dynamical scaling hypothesis asserts that

f(t, y) ∼ fS(t, y) =
1

s(t)2
gS

(
y

s(t)

)
(1)
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after a sufficiently large time, and fS is a self-similar solution to the coagulation equation,
see [6, 19] and the references therein. Here, the particle mean volume s(t) and the profile
gS are to be determined and depend on the coagulation kernel a but not on the “details” of
the initial data. Several computational studies have been performed to check the dynamical
scaling hypothesis (1) and seem to support its validity [10, 12, 14, 20]. Also, rather precise
information on the profile gS have been obtained by formal arguments in [6, 19]. From the
rigorous point of view, the validity of (1) is still an open problem, except for the constant
kernel a(y, y′) = 1 and the additive kernel a(y, y′) = y + y′ [2, 4, 5, 13, 21, 22]. In fact, for
other homogeneous coagulation kernels, the first difficulty encountered is the existence of
the scaling profile gS which satisfies a nonlinear and nonlocal integro-differential equation.
For a wide class of homogeneous coagulation kernels, such an existence result has been
recently obtained in [9, 11]. Still, the uniqueness of the profile (in a suitable class) and the
convergence to self-similar solutions are open problems.

For the constant and additive kernels, explicit formulae for gS are available [6]. More
precisely, when a(y, y′) = 1, the function

fm(t, y) :=
1

t2
gm

(y
t

)
, gm(y) :=

4

m
exp

(
−2 y

m

)
, (2)

is a self-similar solution to the Smoluchowski coagulation equation for anym ≥ 0 and satisfies∫ ∞

0

y fm(t, y) dy =

∫ ∞

0

y gm(y) dy = m (3)

for each t ≥ 0.

For the constant kernel, the dynamical scaling hypothesis (1) becomes f(t) ∼ f%(t) for
large times, where % denotes the first moment of the initial datum f(0). It has been proved
rigorously in [4, 13] for rapidly decaying initial data, the convergence being uniform on
compact subsets of R+. Different proofs have been subsequently supplied by a probabilistic
approach in [2, 5] but the convergence only takes place in the weak topology of L1(R+). More
recently, other self-similar solutions to the Smoluchowski coagulation equation with constant
kernel have been identified in [22], and their domains of attraction for the weak convergence
of measures have been characterized. Unlike (2), these self-similar solutions have an infinite
first moment when a(y, y′) = 1. In addition, a class of initial data for which the convergence
to self-similarity takes place in L∞ is identified in [21], thereby extending and improving the
previous results. Similar results are available for the additive kernel [3, 5, 21, 22].

A common feature of the above mentioned works is that the proof of (1) always relies
on the use of the Laplace transform. Our aim in this work is to show that an alternative
approach can be used for the constant kernel. In fact, the main achievement of this work
is the construction of Liapunov functionals for the Smoluchowski coagulation equation with
constant kernel written in self-similar variables (Section 2). One of the main tools which we
used here is several adaptations of an inequality established by Aizenman & Bak [1]. The
convergence to self-similarity for the weak topology of L1(R+) will then follow (Section 3).
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For k ∈ R, we set L1
k(R+) := L1(R+, (1 + yk)dy) and

Mk(f) :=

∫ ∞

0

yk f(y) dy .

We consider an initial datum f in satisfying

f in ∈ Yp :=
{
u ∈ L1

2(R+) , u ≥ 0 such that up ∈ L1
1(R+)

}
, (4)

where p ∈ (1,∞). We denote by f the corresponding solution to the Smoluchowski coagu-
lation equation with constant kernel, that is, the solution to

∂tf = Qc(f) , (t, y) ∈ R2
+ , (5)

f(0) = f in , y ∈ R+ , (6)

where

Qc(f)(y) :=
1

2

∫ y

0

f(y − y′) f(y′) dy′ −
∫ ∞

0

f(y) f(y′) dy′ , y ∈ R+ . (7)

We recall that f satisfies ∫ ∞

0

y f(t, y) dy = % :=

∫ ∞

0

y f in(y) dy (8)

for each t ≥ 0, cf. [2, 17] and the references therein. We introduce the self-similar variables
(ln (1 + t), y/(1 + t)) and put

f(t, y) =
1

(1 + t)2
g

(
ln (1 + t),

y

1 + t

)
(9)

for (t, y) ∈ R2
+. Then g is a solution to

∂tg = y ∂yg + 2 g +Qc(g) , (t, y) ∈ R2
+ , (10)

g(0) = f in , y ∈ R+ . (11)

Observe that, in terms of g, the dynamical scaling hypothesis (1) reads g(t) ∼ g% for large
times (recall that g% is defined in (2) and % in (8)). Also, since f% is a self-similar solution
to (5), it is clear that g% is a stationary solution to (10). The validity of (1) thus reduces to
the question of convergence of g towards the steady state g%.

We next introduce the functionals

H0(u|v) :=

∫ ∞

0

{
u(y)

(
ln

(
u(y)

v(y)

)
− 1

)
+ v(y)

}
dy ≥ 0 , (12)

H1(u|v) :=

∫ ∞

0

{
u(y)

(
ln

(
u(y)

v(y)

)
− 1

)
+ v(y)

}
y dy ≥ 0 , (13)

L1(u|v) :=

∫ ∞

0

|u(y)− v(y)| dy ≥ 0 . (14)

With these notations, our main result is the following.
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Theorem 1 The functions H0(g|g%)/M0(g), H1(g|g%), H0(G|G%) and L1(G|G%) are non-
increasing functions of time, where

G(t, y) :=

∫ ∞

y

g(t, y′) dy′ , G%(y) :=

∫ ∞

y

g%(y
′) dy′ =

%

2
g%(y) (15)

for (t, y) ∈ R2
+.

The choice of the functionals H0, H1 and the proof of Theorem 1 heavily rely on the
explicit formula (2) for the self-similar profile g%. Though we believe that the Liapunov
functional approach could apply to a larger class of coagulation coefficients than the Laplace
transform, finding Liapunov functionals for non-constant coagulation coefficients seems to
be a rather difficult task.

As a consequence of Theorem 1, we obtain the following convergence result, already
obtained in [2, 5, 22] by different methods.

Theorem 2 For any ψ ∈ L∞(R+), we have

lim
t→+∞

∫ ∞

0

g(t, y) ψ(y) dy =

∫ ∞

0

g%(y) ψ(y) dy ,

that is, {g(t)} converges weakly towards g% in L1(R+) as t→ +∞. In other words,

lim
t→+∞

(1 + t)

∫ ∞

0

f(t, y) ψ

(
y

(1 + t)

)
dy =

∫ ∞

0

g%(y) ψ(y) dy .

The convergence to self-similar solutions obtained in Theorem 2 is only with respect to
the weak topology of L1(R+). Improving this convergence with the approach developed in
this paper would, for instance, require to obtain uniform Lq-bounds on g(t) for some q > 1,
which we have yet been unable to prove. In [21], by means of the Laplace transform, a class
of initial data is identified for which convergence in L∞(R+) holds true.

Remark 3 It is likely that Theorems 1 and 2 are also valid for initial data in the space Y`

defined by
Y` :=

{
u ∈ L1

2(R+) , u ≥ 0 , u lnu ∈ L1
1(R+)

}
. (16)

Indeed, it is the natural space on which H0(g|g%) and H1(g|g%) are well-defined. However,
the convergence of the approximation scheme outlined at the end of Section 2 (in particular,
the convergence of H0 and H1) seems to be more technical to justify, but it might be possible
to argue as in [16, Section 3].
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2 Liapunov functionals

This section is devoted to the proof of Theorem 1. Since H0 and H1 involve logarithmic
terms, a rigorous proof of Theorem 1 requires two steps: one first considers initial data for
which the solution g to (10), (11) is bounded from below by a negative exponential, for which
the computations below can be done. The second step is to use the continuous dependence
of the solutions to (10), (11) on the initial data to deduce by an approximation argument
that Theorem 1 holds true for every f in ∈ Yp. To simplify the presentation, we will however
only provide a formal proof of Theorem 1, and refer to the end of the section for a discussion
of the approximation procedure.

We first recall that the time evolution of Mi(g), i = 0, 1, 2, can be computed explicitly.

Lemma 4 For t ≥ 0, we have

dM0(g)

dt
=

M0(g) (2−M0(g))

2
, (17)

M1(g(t)) = M1(f
in) = % , (18)

dM2(g)

dt
= −M2(g) + %2 , (19)

that is,

M0(g(t)) = 2 +
2 (M0(f

in)− 2)

M0(f in) (1− e−t) + 2 e−t
e−t ,

M2(g(t)) = e−t M2(f
in) +

(
1− e−t

) (
M1(f

in)
)2
.

Proof of Lemma 4. We recall that g satisfies∫ ∞

0

(
g(t, y)− f in(y)

)
ψ(y) dy

=

∫ t

0

∫ ∞

0

(ψ(y)− y ∂yψ(y)) g(s, y) dyds

+
1

2

∫ t

0

∫ ∞

0

∫ ∞

0

(ψ(y + y′)− ψ(y)− ψ(y′)) g(s, y) g(s, y′) dydy′ds (20)

for every ψ ∈ W 1,∞(R+) and every t ≥ 0. We take ψ ≡ 1 in (20) and obtain that

M0(g(t)) = M0(f
in) +

1

2

∫ t

0

M0(g(s)) (2−M0(g(s))) ds ,

from which (17) readily follows. The formulae (18) and (19) also formally follow from (20)
with ψ(y) = y and ψ(y) = y2, respectively. Since these functions do not belong to W 1,∞,
an approximation argument has to be used, first with ψ(y) = min {y,R} and then with
ψ(y) = y min {y,R}. The formulae for M1(g) and M2(g) are then obtained by letting
R→ +∞. �
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Proposition 5 For t2 ≥ t1 ≥ 0, we have

H0(g(t2)|g%)

M0(g(t2))
≤ H0(g(t1)|g%)

M0(g(t1))
. (21)

The proof of Proposition 5 relies on the following observation due to Aizenman & Bak
[1, Proposition 4.3].

Lemma 6 Introducing

DAB(g) :=

∫ ∞

0

∫ ∞

0

g(y) g(y′) ln

(
g(y + y′)

g(y′)

)
dydy′ ,

we have
DAB(g) +M0(g)

2 ≤ 0 .

Proof of Proposition 5. We first notice that

H0(g|g%) =

∫ ∞

0

g (ln g − 1) dy + 4− ln

(
4

%

)
M0(g) .

We then infer from (10), (17) and Lemma 6 that

d

dt
H0(g|g%) =

∫ ∞

0

ln g ∂tg dy − ln

(
4

%

)
dM0(g)

dt

=

∫ ∞

0

g ln g dy +M0(g) +
1

2

∫ ∞

0

∫ ∞

0

ln (g(y + y′)) g(y) g(y′) dy′dy

− M0(g)

∫ ∞

0

g(y) ln (g(y)) dy + ln

(
4

%

)
M0(g) (M0(g)− 2)

2

=
2−M0(g)

2
H0(g|g%)− (M0(g)− 2)2 +

1

2

(
DAB(g) +M0(g)

2
)

≤ 1

M0(g)

dM0(g)

dt
H0(g|g%) .

Integrating the above inequality over (t1, t2) yields Proposition 5. �

Proposition 7 For t2 ≥ t1 ≥ 0, we have

H1(g(t2)|g%) +

∫ t2

t1

D1(g(s)) ds ≤ H1(g(t1)|g%) , (22)

where

D1(g) := %

∫ ∞

0

G
(

2

%
+ ∂y lnG

)2

dy ≥ 0 , (23)

and

G(t, y) :=

∫ ∞

y

G(t, y′) dy′ , (t, y) ∈ R2
+ .
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As for Proposition 5, the cornerstone of the proof of Proposition 7 is the following lemma,
which is in the spirit of [1, Proposition 4.3].

Lemma 8 We have∫ ∞

0

∫ ∞

0

y′ g(y) g(y′) ln

(
g(y′)

g(y + y′)

)
dy′dy ≥ %

∫ ∞

0

|G(y)|2

G(y)
dy . (24)

Proof of Lemma 8. We proceed along the lines of the proof of [1, Proposition 4.3]. Setting

I :=

∫ ∞

0

∫ ∞

0

y′ g(y) g(y′) ln

(
g(y′)

g(y + y′)

)
dy′dy ,

and ϕ(r) = r ln r, r ≥ 0, we deduce from the convexity of ϕ, the identity

G(y) =

∫ ∞

0

y′ g(y + y′) dy′ , y ∈ R+ ,

and the Jensen inequality that

I =

∫ ∞

0

g(y) G(y)

∫ ∞

0

ϕ

(
g(y′)

g(y + y′)

)
y′ g(y + y′)

G(y)
dy′dy

≥
∫ ∞

0

g(y) G(y) ϕ

(∫ ∞

0

g(y′)

g(y + y′)

y′ g(y + y′)

G(y)
dy′

)
dy

≥
∫ ∞

0

g(y) G(y) ϕ

(
%

G(y)

)
dy

≥ %

∫ ∞

0

g(y) ln

(
%

G(y)

)
dy

≥ % ln % G(0) + %

∫ ∞

0

∂yG(y) lnG(y) dy

≥ %

∫ ∞

0

|G(y)|2

G(y)
dy ,

whence (24) follows. �

Proof of Proposition 7. We have

d

dt
H1(g|g%) =

∫ ∞

0

y ln g ∂tg dy +
2

%

dM2(g)

dt
.

On the one hand, by (10), we have

I :=

∫ ∞

0

y ln g ∂tg dy

7



=

∫ ∞

0

y2 ln g(y) ∂yg(y) dy + 2

∫ ∞

0

y ln g(y) g(y) dy

+

∫ ∞

0

∫ ∞

0

y ln

(
g(y + y′)

g(y)

)
g(y) g(y′) dydy′

= −
∫ ∞

0

y2 ∂yg(y) dy

+

∫ ∞

0

∫ ∞

0

y ln

(
g(y + y′)

g(y)

)
g(y) g(y′) dydy′

= 2 %+

∫ ∞

0

∫ ∞

0

y ln

(
g(y + y′)

g(y)

)
g(y) g(y′) dydy′ .

On the other hand, (19) also reads

2

%

dM2(g)

dt
= −2

%
M2(g) + 2 % .

Consequently,

− d

dt
H1(g|g%) = −4 %+

2

%
M2(g) +

∫ ∞

0

∫ ∞

0

y′ g(y) g(y′) ln

(
g(y′)

g(y + y′)

)
dy′dy .

Next, a direct computation and (18) give

M2(g) = 2 M1(G) = 2 M0(G) and % = M1(g) = M0(G) = M0(−∂yG) . (25)

We then deduce from Lemma 8 and (25) that

− d

dt
H1(g|g%) ≥ 4

∫ ∞

0

∂yG(y) dy + %

∫ ∞

0

|∂yG(y)|2

G(y)
dy +

4

%

∫ ∞

0

G(y) dy

= D1(g) ,

and the proof of Proposition 7 is complete. �

Proposition 9 For t2 ≥ t1 ≥ 0, we have

H0(G(t2)|G%) +
1

2

∫ t2

t1

D1(g(s)) ds ≤ H0(G(t1)|G%) , (26)

where D1(g) is still defined by (23).

The proof of Proposition 9 relies on the following lemma, which is again a modification
of [1, Proposition 4.3].

Lemma 10 We have∫ ∞

0

∫ ∞

0

g(y) G(y′) ln

(
G(y′)

G(y + y′)

)
dy′dy ≥ %

∫ ∞

0

|G(y)|2

G(y)
dy . (27)
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Proof of Lemma 10. Since ϕ(r) = r ln r, r ≥ 0, is convex, the Jensen inequality implies
that

I :=

∫ ∞

0

∫ ∞

0

g(y) G(y′) ln

(
G(y′)

G(y + y′)

)
dy′dy

=

∫ ∞

0

g(y) G(y)

∫ ∞

0

ϕ

(
G(y′)

G(y + y′)

)
G(y + y′)

G(y)
dy′dy

≥
∫ ∞

0

g(y) G(y) ϕ

(∫ ∞

0

G(y′)

G(y + y′)

G(y + y′)

G(y)
dy′

)
dy

≥
∫ ∞

0

g(y) G(y) ϕ

(
%

G(y)

)
dy

≥ %

∫ ∞

0

g(y) ln

(
%

G(y)

)
dy

≥ % ln % G(0) + %

∫ ∞

0

∂yG(y) lnG(y) dy

≥ %

∫ ∞

0

|G(y)|2

G(y)
dy ,

whence (27). �

Proof of Proposition 9. We first notice that, by (10), G satisfies

∂tG(t, y) = y ∂yG(t, y) +

(
1− G(t, 0)

2

)
G(t, y) +

1

2

∫ y

0

g(t, y′) G(t, y − y′) dy′ (28)

for (t, y) ∈ R2
+. To obtain (28), we have used that

1

2

∫ ∞

y

∫ y′

0

g(y′ − y′′) g(y′′) dy′′dy′

=
1

2

∫ ∞

y

∫ y

0

g(y′ − y′′) g(y′′) dy′′dy′ +
1

2

∫ ∞

y

∫ y′

y

g(y′ − y′′) g(y′′) dy′′dy′

=
1

2

∫ y

0

g(y′′)

∫ ∞

y

g(y′ − y′′) dy′dy′′ +
1

2

∫ ∞

y

∫ ∞

y′′
g(y′ − y′′) g(y′′) dy′dy′′

=
1

2

∫ y

0

g(y′′) G(y − y′′) dy′′ +
1

2

∫ ∞

y

g(y′′)

∫ ∞

0

g(y′) dy′dy′′

=
1

2

∫ y

0

g(y′) G(y − y′) dy′ +
1

2
G(0) G(y) .

We infer from (19), (25) and (28) that

d

dt
H0(G|G%) =

∫ ∞

0

lnG ∂tG dy +
2

%

dM1(G)

dt

9



= M0(G)− M0(g)

2

∫ ∞

0

G lnG dy

+
1

2

∫ ∞

0

∫ ∞

0

g(y) G(y′) ln (G(y + y′)) dydy′ − 2 M1(G)

%
+ %

= 2 %− 2 M1(G)

%
− 1

2

∫ ∞

0

∫ ∞

0

g(y) G(y′) ln

(
G(y′)

G(y + y′)

)
dy′dy

Thanks to Lemma 10 and the equality M1(G) = M0(G), we obtain that

− d

dt
H0(G|G%) ≥ 2 M0(G)

%
− 2 %+

%

2

∫ ∞

0

|∂yG(y)|2

G(y)
dy .

Noticing that ∫ ∞

0

G(y) ∂y lnG(y) = −G(0) = −%

by (18), we end up with

− d

dt
H0(G|G%) ≥ 2

%

{∫ ∞

0

G(y) dy + %

∫ ∞

0

G(y) ∂y lnG(y) dy

+
%2

4

∫ ∞

0

G(y) |∂y lnG(y)|2 dy

}
≥ 2

%

∫ ∞

0

G(y)
(
1 +

%

2
∂y lnG(y)

)2

dy

=
1

2
D1(g) ,

which completes the proof of Proposition 9. �

Remark 11 It follows from the Jensen inequality that

H0(G|G%) ≤ H1(g|g%) .

Indeed, if y ∈ R+ and ϕ(r) = r ln r, r ≥ 0, the Jensen inequality yields that∫ ∞

y

g(y′) ln

(
g(y′)

g%(y′)

)
dy′ =

∫ ∞

y

ϕ

(
g(y′)

g%(y′)

)
g%(y

′)
dy′

G%(y)
G%(y)

≥ G%(y) ϕ

(∫ ∞

y

g(y′)

g%(y′)
g%(y

′)
dy′

G%(y)

)
= G(y) ln

(
G(y)

G%(y)

)
,

and the claim follows after integration over R+ with respect to y.
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Proposition 12 For t2 ≥ t1 ≥ 0, we have

L1(G(t2)|G%) +

∫ t2

t1

DL(g(s)) ds = L1(G(t1)|G%) , (29)

where

DL(g) :=
1

2

∫ ∞

0

∫ ∞

0

(g%(y
′) + g(y′)) [1− sign (w(y + y′) w(y))] |w(y)| dydy′ ≥ 0 ,

and w = G−G%.

Proof of Proposition 12. Since G% is a stationary solution to (28) and satisfies G%(0) = 2,
we have

y ∂yG%(y) +
1

2

∫ y

0

g%(y
′) G%(y − y′) dy′ = 0 .

Substracting this identity from (28), we obtain

∂tw(t, y) = y ∂yw(t, y) +

(
1− G(t, 0)

2

)
G(t, y) +

1

2
Σ(t, y) , (30)

with

Σ(t, y) =

∫ y

0

[g(t, y′) G(t, y − y′)− g%(y
′) G%(y − y′)] dy′ .

Now, using an integration by parts, we have∫ y

0

(g + g%)(y
′) w(y − y′) dy′ =

∫ y

0

g(y′) G(y − y′) dy′ +

∫ y

0

G%(y − y′) ∂yG(y′) dy′

+

∫ y

0

g%(y
′) G(y − y′) dy′ −

∫ y

0

g%(y
′) G%(y − y′) dy′

= Σ(y) +G%(0) G(y)−G%(y) G(0)

+

∫ y

0

G(y′) (∂yG%)(y − y′) dy′ +

∫ y

0

g%(y
′) G(y − y′) dy′

= Σ(y) + 2 G(y)−G%(y) G(0) .

Consequently, (30) becomes

∂tw(t, y) = y ∂yw(t, y)− G(t, 0)

2
w(t, y) +

1

2

∫ y

0

(g(t, y′) + g%(y
′)) w(t, y − y′) dy′ (31)

for (t, y) ∈ R2
+. We multiply the previous equation by sign(w(t, y)) and integrate over R+.

Since M0(g%) = 2, we use the Fubini theorem and a change of variables to obtain that

d

dt
‖w‖L1 = −

(
1 +

G(t, 0)

2

)
‖w‖L1

11



+
1

2

∫ ∞

0

∫ ∞

0

(g + g%)(y
′) sign(w(y + y′)) w(y) dy′dy

= −1

2

∫ ∞

0

(g% + g)(y′) dy′ ‖w‖L1

+
1

2

∫ ∞

0

∫ ∞

0

(g + g%)(y
′) sign(w(y + y′)) w(y) dy′dy

= −DL(g) .

Proposition 12 then follows after integrating with respect to time. �

Theorem 1 is now a straightforward consequence of Propositions 5, 7, 9 and 12.

The end of this section is devoted to a description of an approximation procedure which
allows us to rigorously justify the computations performed above. We first observe that
solutions to (10), (11) enjoy the following properties.

Proposition 13 Let f in and f̂ in be two functions in Yp and denote by g and ĝ the corre-
sponding solutions to (10), (11). Then g and ĝ belong to L∞(0, T ;Lp(R+; (1 + y) dy)) for

each T > 0 and there is a constant C depending only on max
{
M0(f

in),M0(f̂
in)

}
such that

‖(g − ĝ)(t)‖L1 ≤ ‖f in − f̂ in‖L1 eCt , t ≥ 0 . (32)

In addition, if there are ε > 0 and C > 0 such that

f in(y) ≥ ε exp {−C(1 + y)} , y ∈ R+ , (33)

then there exists γ > 0 depending only on M0(f
in) such that

g(t, y) ≥ ε exp
{
−γ(1 + y)et

}
, (t, y) ∈ [0,+∞)× R+ . (34)

Proof of Proposition 13. The fact that g ∈ L∞(0, T ;Lp(R+; (1 + y) dy)) for each T > 0
can be proved as [15, Corollary 3.2].

Concerning the continuous dependence (32), a formal proof is as follows: setting w :=
g − ĝ, we infer from (10) that

d

dt
‖w‖L1 = ‖w‖L1 +

1

2

∫ ∞

0

sign(w(y))

∫ y

0

(g + ĝ) (y − y′) w(y′) dy′dy

− 1

2

∫ ∞

0

sign(w(y)) {(M0(g) +M0(ĝ)) w + (g + ĝ) (y) (M0(g)−M0(ĝ))} dy

≤ 1

2
(2−M0(g)−M0(ĝ)) ‖w‖L1 +

1

2

∫ ∞

0

∫ ∞

0

(g + ĝ) (y) |w(y′)| dy′dy

+
1

2
(M0(g) +M0(ĝ)) ‖w‖L1

≤ 1

2
(2 +M0(g) +M0(ĝ)) ‖w‖L1 .

12



Since M0(g) ≤ max {2,M0(f
in)} by (17), the inequality (32) follows.

We finally consider f in enjoying the positivity property (33). For (t, y) ∈ R2
+, we put

a(t) := γ et and ψ(t, y) := ε e−a(t)(1+y), where

γ := max

{
C,

2 |M0(f
in)− 2|

min {2,M0(f in)}

}
.

On the one hand, the non-negativity of g and (10) ensure that

∂tg ≥ y ∂yg + (2−M0(g(t))) g .

On the other hand, a straightforward computation, (17) and the choice of γ imply that

∂tψ ≤ y ∂yψ + (2−M0(g(t))) ψ .

Since g(0, y) ≥ ψ(0, y) for y ∈ R+, the comparison principle entails that g ≥ ψ. �

Now, if f in is an arbitrary function in Yp, we introduce f in
ε (y) = f in(y) + ε e−(1+y) for

y ∈ R+ and ε ∈ (0, 1). Clearly, (f in
ε ) is a bounded sequence in Yp which converges toward f in.

Denoting by gε the solution to (10), (11) with initial datum f in
ε , we infer from Proposition 13

that (gε(t)) converges to g(t) in L1(R+) for each t ≥ 0. Also, arguing as in [15, Corollary 3.2],
one can prove that (gε(t)) is bounded in Lp(R+) for each t ≥ 0. Consequently, we deduce
from (19) and the Vitali theorem that

(H0(gε(t)|g%ε), H1(gε(t)|g%ε)) −→ (H0(g(t)|g%), H1(g(t)|g%)) ,

(H0(Gε(t)|G%ε), L1(Gε(t)|G%ε)) −→ (H0(G(t)|G%), L1(G(t)|G%)) ,

with the obvious notation %ε := M1(f
in
ε ). Finally, since gε(t) is bounded from below by a

negative exponential by (34), the computations performed above can be rigorously justified
for gε(t) and Theorem 1 for g follows from the previously established convergences.

3 Convergence

In this last section, we show how the information obtained in Theorem 1 allow us to prove
the convergence stated in Theorem 2. Consider f in ∈ Yp with % := M1(f

in) and denote by
g the corresponding solution to (10), (11). We also put

G(t, y) :=

∫ ∞

y

g(t, y′) dy′ , G(t, y) :=

∫ ∞

y

G(t, y′) dy′ , h(t, y) = G(t, y)1/2

for (t, y) ∈ R2
+.

Lemma 14 Let (tn)n≥1 be an increasing sequence of positive real numbers such that tn →
+∞. Introducing gn(t) := g(t + tn), Gn(t) := G(t + tn), Gn(t) := G(t + tn) and hn(t) :=

13



h(t + tn) for t ∈ [0, 1] and n ≥ 1, there are a subsequence of (tn) (not relabeled) and
g∞ ∈ C([0, 1];L1

w(R+)) such that

gn −→ g∞ in C([0, 1];L1
w(R+)) , (35)

and
(Gn(t),Gn(t), hn(t)) −→ (G∞(t),G∞(t), h∞(t)) in C([0,+∞)) (36)

for each t ∈ [0, 1], where

G∞(t, y) :=

∫ ∞

y

g∞(t, y′) dy′ , G∞(t, y) :=

∫ ∞

y

G∞(t, y′) dy′ , h∞(t, y) = G∞(t, y)1/2

for (t, y) ∈ [0, 1]× R+.

Here and below, C([0, 1];L1
w(R+)) denote the space of continuous functions from [0, 1] in

L1(R+) endowed with its weak topology.

Proof of Lemma 14. It follows from (17), (19) and Proposition 5 that

{g(t) , t ≥ 0} is bounded in Y` , (37)

where Y` is defined by (16). In particular, since r 7−→ r ln r, r ≥ 0, is superlinear at
infinity, we infer from (37) and the Dunford-Pettis theorem that (g(tn)) is weakly sequentially
compact in L1

1(R+). In addition, (10) and (37) entail that

t 7−→
∫ ∞

0

gn(t, y) ψ(y) dy is bounded in W 1,∞(0, 1)

for any ψ ∈ W 1,∞(R+). With the help of the Dunford-Pettis and Arzelà-Ascoli theorems,
we may then argue as in [8, Section 3.2] to conclude that there are a subsequence of (gn)
(not relabeled) and g∞ ∈ C([0, 1];L1

w(R+)) such that (35) holds true. Since (M2(gn(t))) is
bounded by (37), it also follows from (18) and (35) that

M1(g∞(t)) = M1(gn(t)) = M1(g(tn)) = % , t ∈ [0, 1] . (38)

We next claim that
Gn(t) −→ G∞(t) in C([0,+∞)) (39)

for each t ∈ [0, 1]. Indeed, since 1[y,+∞) belongs to L∞(R+) for each y ≥ 0, it readily follows
from (35) that (Gn(t, y)) converges towards G∞(t, y) for any (t, y) ∈ [0, 1] × [0,+∞). In
addition, (37) implies that there is a positive constant C such that

sup
t∈[0,1]

sup
n≥1

∫ ∞

0

gn(t, y) | ln (gn(t, y))| dy ≤ C .

14



Consequently, if t ∈ [0, 1], y ≥ y′ ≥ 0 and M := max {2, |y − y′|−1/2} > 1, we have

|Gn(t, y)−Gn(t, y′)| ≤
∫ y

y′
|gn(t, z)| dz

≤ M |y − y′|+
∫
{[y′,y]∩{gn(t)≥M}}

gn(t, z) | ln (gn(t, z))|
lnM

dz

≤ M |y − y′|+ C

lnM
,

which implies the equicontinuity of (Gn(t)) with respect to y. Since Gn(t, y) ≤ % y−1 by
(18), we are in a position to apply the Arzelà-Ascoli theorem and conclude that (39) holds
true. We next employ a similar argument for Gn to complete the proof of Lemma 14. �

It remains now to identify g∞. On the one hand, we infer from (22) that D1(g) ∈
L1(0,+∞). Consequently,

lim
n→+∞

∫ 1

0

D1(gn(t)) dt = 0 .

On the other hand, since ∂yhn = G−1/2
n ∂yGn/2, we observe that

D1(gn(t)) =
4

%

∫ ∞

0

(hn(t) + % ∂yhn(t))2 dy ,

and (36) and a lower semicontinuity argument imply that∫ 1

0

D1(g∞(t)) dt ≤ lim inf
n→+∞

∫ 1

0

D1(gn(t)) dt .

Therefore, D1(g∞(t)) = 0 for a.e. t ∈ (0, 1), that is, h∞(t, y) + % ∂yh∞(t, y) = 0 a.e. in
(0, 1) × R+. Thus, there is γ(t) such that h∞(t, y) = γ(t) e−y/%. Recalling (38) and the
relationship between h∞ and g∞, we are led to g∞(t) = g% for a.e. t ∈ (0, 1). Thanks to the
weak continuity of g∞, this equality is actually valid for each t ∈ [0, 1].

Summarizing, we have proved that, for each increasing sequence (tn) of positive real
numbers such that tn → +∞, there is a subsequence (tnk

) of (tn) such that (g(tnk
)) converges

weakly towards g% in L1(R+). Since {g(t) , t ≥ 0} is weakly sequentially compact in L1
1(R+)

by (37) and has only one possible cluster point g%, Theorem 2 follows by a classical argument.
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